
j
I

Defence Scieoce Journal, VOI46, IN°. 4, October 1996, pp 253-255
(Q 1996. DESIDOC

Improve4 Metliod of Generating Bit Reversed Numbers for
Calculating Fast Fourier Transform

T. Suresh

National Institufe of Oceanography, Goa-403 004

ABSTRACT

.Fast Foulier Transform (FFT) is an important tool required for signal processing in defence applications.

Thi~ paper reports an improved method for generating bit reversed numbers needecj in calculating FFf using

radix-2. The refined algorithm takes advantage of some features of the bit reversed numbers, using intermediate

arra~ lor storage and improved procedure for calculating base values required when generating bit reversed

numbejrs.

bit reversed numbers to place data at bit reversed

positions, but only make use of efficient methods of

swapping the data from the array for placing them at bit

reversed positions.

An improved method of generating bit reversed

numbers is presented here, based on an earlier algorithm

by SJresh4 (Hereafter referred to as basic algorithm.

Methol;l is given in Appendix I). The modified algorithm

generates a continuous stream of N bit reversed

numbers for any given index n, i.e., N = 2n.

I These bit reversed numbers can be us~d as indices

of the data array for placing the data at bit reversed
positions. 1

2. METHOD

The features observed in the bit reversed numbers

generated using basic algorithm are (Table I):I.

(a) B~e values, which are the first values in the block of

four numbers, are observed to be in bit reversed

sequence. These are bitreversed numbers obtained with
an index value of n -2. Thus there are 2n-2 base vaJues.

1. INTRODV:CTION, ,

Fast FourIer Transform (FfT) is an ubiquitous

tool required for procefsing signals in defence

applications, such as Iradars, doppler frequency

measurements, moving tar~et inaicators, sonars,

underwater communications, image reconstructions and

restorations, digital fitters and ojther!. One of the

noticeable features lobs'erved with 'in-place' F.FT

calculation is that with irlput data placed in a natural
I

sequence, the output oqtained for each data point from

the calculation is in bit reversed p(jsition. Thus, if input

data are in natural order (x(O), x(1), x(2), x(3), x(4),
.

x(5), x(6), x(7», the output of the FFf calculation will

have data at bit re~ersed positions (x(O), x(4), x(2),

x(6), x(l), x(5), x(3), x(7».It is often found difficult to

calculate FFT with input and output in natural sequence.
I

Thus, it is necess.ary to either load input data in natural

order and then reorder the output, or place the input data

at bit reverJed positions before the calculation to obtain
I I

the output in a natu,ral sequence. I
I I

It is essential to have a fast perIf1utation al.gorithm

for reordering. Thi~ could be done~ either by placing

each data directly at bit reversed p~sition in the array

or hy rcor(lcrillg llIc 11:111\ I\vl\ill\hlc i~, II or 111"1 1i('(III('II(.C

to bit reversed posi'tions. The latter method is usually

adoptedl-~ .These algorithms do not actually generate

(b) The bit reversed numbers are divided into two halves.
l;il~111111I tlll~ ("V(" II VIIIIIC~ wllilc 11,c Ilcxllllllfl:OIIIJlill1i

odd values. 'These odd values are ~e incremental of the

first half even values.

Received 30 October 19951 revised 13 May 1996

I

I 253

,,~.
,.~. ';

DEF SCI I, VOL 46, NO 4, OCfOBER 1996

'f1l1.1. 2.)1~."t.Ulloll Ip""d or II1I r..""r*-1 -llt lIlIlII 0111.111"" 011

I'C/4116 .2S M Ilz UIIIII C 1811K1I8&e ,

TII<' f(!llowillg rc[ill~J 111~lhoJ is Ih~r~li)r~ "J()PI.~d

laking inlo consider:llion Ihe above observalions.
,

Stcp I. With tlIC illilcx 11-2, calcullltc Ihc fir~t h:llf 2"-1 (If

bil revcrscd numbcrs using basic algorithm.

These are the first half of base values. Store lhem

in an array. base (j), j = 0, ...2"-3-1

Step 2. Calculate 2"-1 bit reversed numbers using above

base values as given in the basic algorithm.

Step 3. Increment the base values in the array.
base 0) = base 0) + I, for j = 0, ..2n-3-1 f

)tep 4. Calculale next half2"-1 bit reversed numbers us-

ing the incremented base values from the array. Modified algorithms presented here have shown to

perform better. Though this method makes Use of

intermediate array of size 2n-3, its speed of calculation
is found, to be ab-ove 25 per cent faster than the

coml:norily used swapping methods for such

p~rmutations in the calculation of FFr.

Table I. Bit reversed num bers ror index n = 5

ACKNOWLEDGMEN1lS
,

The author is thankful to ;Or. Ehrlich Desa,
I

Director, National In!;titute of Oceanography, Goa, for
I. ,

all the encouragement and Support. Thanks are also due

to Dr. Elgar Desa, for his ~uidance, discussions and
valuable suggestion. ,

REFERENCES
RESULTS

Using this improved algorithm, the execution

speed has been found to be above six times faster than

the basic algorithm. The performance of this modified

algorithm as compared to the algorithm given in3, is

given in Table 2. These average execution speeds have

been obtained with programs in C on PC 486/25 MHz.

These are the average values obtained after 10,000

execution cycles. 11 is seen that the speed has been
I

improved by using intermediate array and a modified
method of generating base values. I

2.

3.

Ahmed, N. & Ra.o, K.R. Orthogonal'trnnsfonns for

digital signal processing. Springer-Verlag, New York,
1986, p. 263. r ,

,
Rabiner, L.R. & Gold, B. Theory 3f1d application of

digital signal processing. Prentice Hall, New Jersey,
1975.

'
Willi~, H. Press, et'al. NuJle1cal recipes in fortran,

Cambridge University Press, New York, 1992, p. 5or.
.,

Suresh, T. Generating bit reyersed numbers for

cakulating fast fourier transform. Co';'pute-r &

Geosciences, 1995,21(2), T49-S2.

j

4.

254

SURESH : GENERA TINa BIT REVERSED NUMBERS FOR CALCULA TINa FFT

Appendix I
I

Met.hod or generating sequence or bit reversed numbers ror a given number or bits, n.

Step I. Define Co~stants j where the base value b is calculated as

Let Cl, C2. C3 be the constants, whose values are Begin
., ,gIven as I i = n

I
~n-2C2 = T by = bx = O

C) = C2 +j C2 do while by # bx

C3 = Cl + C2 ,

~
Step 2. IGenerate bit rev~rsed numbers

Numbers are calculated .in blocks. Each block

contains fou1"\numbers gi\.!en in a sequence as Rk, Rk+l,
I I

Rk+2, Rk+3.

Qk = b

Rk+1 = b + C)

Rk+2 = b + C2

Rk+3 = b + C3

I = I -I

by = bx

t = 2;

bx = mod(Rk+3. t)

End do

b = by + t

End

Contributor

M r T Suresh obtained his MTech (Electronics) from Cochin University. Presently. he is working
as Sci9ntist ~t the National Institute of Oceanography. Goa. The areas of his interest are computers,
marine optics and signal processing.

255

