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ABSTRACT

IThis review ~per broa£Dy covers the studies conducted on nitmmine OOuble base (DB) propellants,
particularI y in the field of formulation. evaluation, catal ysis and combustion mechanism. Addi tion of RDX and
IHMX in double base matrix shows relatively low burn rates and high pressure index values. Further, the bum
rate of this class of propellants enhances in tpe presence of energetic binders/plasticisers like glycidyl azide

I polymer.tThis paffr also disc~sses the combustion mechanism ofHMX/RDX-based DB propellants, especially
in the presence of catalytic sal~. As scanty data is available on extruded nitrarnine DB propellants, further wo~
is needed in the field of form~~ation as wet! as evaluation with a view to generate exhaustive data.

I
t

I. INTRODUCTION I
,

Nitramine douple ba~e (DB) sotid propellants are 'NO2
advanced ~nergetic propellants and produce high value I i

of specirlc impulse (Isp). The addition of cyclic -<N.~N ~

nitramine~, such as jRDX; and HMX in the DB matrix ~.-J(,
(DB and CMDB), improv~s not only the energy output NO ,

but also the thermal stability of the propellants. The

major contribution in the energy output by this class of

propellants ~s attributed to the high heat of combustion ~O2

of RDX and HMX an!) formation of low molecular N~
weight gaseous product~ during combustion. The heat < ~ N
of formation of HMX and RDX is about +17.9 N Ii

~k cal!mole and,+ 14.7 k cal!~ole, respectively and major J-HON -NO2

decomposition species during their combustion are N I N I

NO2, N2O, C~2, HCN and H20, etc. I However, the < ~N -~~N
different routes predicted for their decompositicin are N .1 I

given in Fig. 1. I I

\
j

Further.1 the detailed studies of flame chemistry

indicate that the thermal degradation of RDX and HMX

produces more\ or less sini,ilar products as in the

combustion of conventional OB propellants (in primary

and .secdJndary flame zones)l. Besides, this class of

p.ropellants shows low signature and low vulnerability1 .
to the spall of fragments. However, major problt:Ul1s

associated with these pr()pellants are the low burn rates
..

and high pressure index.! Slow burning is related to Ihe
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melting of cyclic nitramine (RDX/HMX) before active

pnrticipntion in Ihe comhllslion renclion. Thc hurning
-
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rate of nitramine CMDB ,propellants is found to be
2-15 mm/s 3;t 70 kg/cm2 and the pressure index between
0.35 and 0.60. However, ~hc tcmperaturc coefficient
lies between 0.15 and 0.35 per centf'C similar to

conventional DB propellants. Furthermore, the bum
rate of DB as well as CMDB propellants can be

I
enhanced by the addition of energetic binders~.3. These

propellant formulations are prepared by adopting well
known techniques, viz., casting and extrusion
techniques. ,

A review on nitramine solid propellants presented
by Fifer4 broadly covers the research work conducted
on nitramine mono propellants. However, a few
references are also related to important observations on
ballistic performance of nitr'Jmine DB solid propellants.
The main findings in this review are: (i) combustion
mechanism of nitramine propellants is similar to the
conventional'DB propellants; (ii) there is no significant
effect on bu~n rate by the addition of catalysts; (iii)
nitramine DJ3 propellants exhibit relatively superior
thermal stability; and (iv) no concrete evidence has,
been found regarding N-~ or C-N bond breaking. Apart
from this, other two reviews on nitramines presented by
Bogg and Cook5.6 exclusively deal with th~ thermal
behaviour of cyclic nitram~nes, particularly with
reference to'RDX and HMX. Keeping in ~iew, the
Fifer's review findings and scattered literature. available
on extruded nitramine DB propellants (EDB), an
attempt has been made in this review paper to broadly
cover all information related to this class of propellants
with emphasis on their catalytic effect and combustion
behaviour.

2. FORMULATIONS & EVALUATION

Nitramine propellants (EOB, CMOB, AP-CMOB )
are prepared by well-known techniques viz., (i) slurry
cast method I; (ii) slurry screw trchnique 7,8; and (iii)
extrusion technique as adopted in the manufacture of
conventional EOB and CMOB propellants. In the
slurry cast technique, cyclic nitramines (ROX/HMX)
are incorporated along with other additives into pre-
mixed casting liquid, whereas in the slulrry screw
technique it is added during NC/NG slurry mixing. But
in the case of extrusion technique, ROX/HMX is
incorporated during kneading of NC/NG mix with other
ingredients9. The addition of ROX/HMX (more than
20 per cent) in OB propellant poses exudation problem
in the propellant grain during long storagelO. Some of
the typical nitramine formulations based on EOB and
AP-CMOB along with their important characteristics
are summarised in Table I.

t
I

.The evaluated results on ROX-based EOB

'propellants containing RpX (2-10 pt) in the NC/NG
fmatrix proccssed.by solvcnt EOB tcchniquc show low
burn rates and better irsensitivity towards ~niritentional

mechanical stimuli ~friction and impact). However,
,

thermal stability is fpund to be ~he same as that of

conventional EOB propellantsll. On the other hand,

formulations containing ROX (30 pe~ cent) in CMOB

propellant4 have shown less impact and friction

sensitivity than the AP-CMOB as well as PETN- CMOB

propellants. Lowering in sensiti{,ity is attributed to the
oxygen b~lance of the compositio~12. However, the
inclusion of nitramine increases the shock sensitivity

appreciably as comp~1d to the con-Ventional ones.

, Asthana, et all have studied a composition

containing ROX (I2 per cfnt) in the CMOB propellant
matrix along with differ,ent combustion instability

suppression additives, such as alumini r m (3 per cent),
AP zirconium silicate (2-9 per cent to assess their

effectiveness for the Flimination df combustion

instability. Ballistic eva,luation data indicated that the

addition of alumi~ium (3 perlcent) increased the burn

rate by 7 per cent and eliminated combu~tion instability

considerably owing to its melting and 'formation of a

thin layer on regressive propellant surfat.e. Inclusion of

AP (9 per c~nt) in the nitramine CMOB increased the

burn rate by 20 per cent but yields no change in

combustion fnstability. Howe'ver, a combination of AP

& Zr SiO3 in the proportion of 3: I effectively removed

, the combustIon instabIlity. I I

Kubota N. 14 studied a nitramille OB propellant

containing HMX ( 23 per cent) add lead stearate

(3.2 parts) as catalyst and fo"nd that the burning
b~haviour was similar to I that of the I conventional OB

I
propellants, but the burn rate was faster than that of the

non-catalysed propellant. ,

The generated data on AP-CMOB propellant

containing ROX (7.5-15 per cent), GAP (? .2 per cent),

2NOPA (0.8 per cent) shows that GAP reduces the

impact and friction sensitivity considerably due to the

interaction of GAP with an oxidiser or cyclic
..15 ,

nltramlne .

NENA~16 (nitrat6 ethyl nitramines) and their azido

derivatives have been found to be promising energetic
r

plasticisers on account of their positive heat of
formation and low I molecular weight gaseous products.

These are used alon; with ROX in OB propellants.

I
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Table I: Typical compositions with their characteriMics

Formulation Isp Thermal

decomp-
osition

(oC)

Impact Ht. of
50%

Explosive

Friction
not exploding
up to (kg)

Ref
No.

Burning rate

(mm/s) Pressure

(kg/cm2)

Type
of
propellant (5)

EDB N CIN OlD EP IS O AIH M ~lpbSt

43119/718/23

IS~26 16-36 14

EDB 43/19/07/08/23/3.2 24 16-36 14

EDB NC/NG/DB Pla,ddilives/RDX

5113515.518.511.10p~.

4.4-9.0 35-90 226-229 197-194 23.1-27.5 14.4-16.0 II

I 204CMDB OB malrix/ROX

(88/12)

8.6-10.6 50-70 209 13

CMDB DB matrix/RDXIAI

(85/12/3)

9.2-10.7 50-70 212 193 13

CMDB 9.8-11.5 50-70 211

CMDB 10.4-12.5 50-70 221 190 13

192 13CMDB

OB matrix/ROX/AP/ZrSiOJ
(80/12/6/2) I

OB matrix/ROX/AP/AI

(79/12/6/3)1

OB latrix/Rox/AP

(79/112/9 I

NCING/Stab./GAP/ROX/AP
60/32/0.8 /7 .2/7.5/-

10.4-11.7 50-70 219

CMDB 22.0 12.0

16.9 11.2CMDB 45/32/0.8/7 .2115.01-

8.'4
4.8

CMDB
CMDB

45{32/0.8/7 .2nl.5 /7 .5
30732/0.8/7.2/15/15

17.4
r3.0

15
I';

lead and chromium have not shown any improvement
, -I

in the burn rate. Borohyi:lrides, although reported to
catalyse nitramine propellantsl8, a~e found to be

incompatible and pose processing probfems due to their

hygroscopic nature, as reported by Aslhana,et aL19,

The detailed study conducted Ion the burning
behaviour of OB propellants containing HMX (23 per

cent), and lead stearate (3.2 per cent) showed a
plateau effect between the pr~ssure region of 16-36
kg/cm2 and the super rate burning at pressure less
than 16 kg/cm2 (14)

However, a systematic investigation, conducted

by Ast~ana, et aLl9 on the role of catalysts like organic

lead and copper salts, metal oxides (PbO. CU20) and
their combinations with or without' carbon black in
AP-CMDB propellants, primarily containing DB matrixI
with AP, AI and RDX illustrates that most of the
catalysts enhance the burn rate at 40-50 kilcm2. The
combination of basic lead salicylate, cuprous oxide,
and carbon black (3: I: I j shows best synergetic effect.,
This catalytic system indicates temperature sensiti vity

3. CATALySIS I

From Fifer's re~iew1 it is obvious that catalysts
are not significantly effective in the nitramine

monopropel!ants in the lower pressure region and thus
a distinct c4rrelation is not established during the

combustion of the nitra~ine propellants. However,
limited studies on nitramine DB propellants after

,
incorporation of catalysts, such as lead qnd copper salts
reveal that catalysts do h~ve significant effect in
enhancing the fate of reaction during combustion of
nitramine DB pfopellants in the lower Pfessure rang~
and also give ptateau effect in higher pressure rahge,

similar to conventiohal DB propellants. I
Raman, et al17 have found that the use of lead

methylene 1isalicylate (L¥DS}, basic copper
salicylate, cobaltic oxide and lead stannate increases the
burn rate of RDXi-based CMDB propellants by 10-16
per cent in the pressure region I of 35-105 kg/cm2, The

addition ?f carbon black alJng with lead salts or
metal1ic oxides further enhances the burn rate

,
appreciably. However, the addition of fluorides of ~ro?,
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i ,

CO2, lI20, N2, 1/2 with n littlc amount of co II lid NO.
1

These products have .been experi~entally identified by

mclln!l of DSC nn<t shock tul)e technique27. A

schematic 'diagram showing decompositiull species ill

differeRt zqnes is sh6wn in Fig. 2. I
\
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Figure 2. Sc1:1ematlc diagram or the name structure

(cor'bustlon wave) nltramine double base

propellant.

, s. COMBuSTION'MODELLING'
I

Taking into consideration the ~ame chemistry of

nitramine-based OB propellants, 'wo m:1thematical
models have been pfoposed. Bizot, et al28 have

proposed a mathema,tical relation for calculation of
burn rate, combus'tion species and temperature

profiles in condensed and gas phases. The combustion

products. as a res:ult of thermal degradation of
; HMX/ROX in these phases are assumed to be HCHO,

HCN, NO2 and N2. The absence of dark zone in the
nitramine combustion is attributed to the reduction of
N2O to N2 ocpurring in gas phase. very close to the

burning surface. However, this reaction is very

effective at higher te,rnperature.
I

Another model exclusively based on the presence
of dark zone regi<rn of nitramine propellant combustion
has been ~uggestcd by Yanderhoff, et a129. This model
assumes that dark zonr- occurs when the conversion of
N2O to N2 throu&h NO takes place after attaining
temperature, as a r'esult of delayed thermal ignition.
However, slight modifi,cation 1 in the reaction from the
earlier ones predicted by different coworkers as shown
below has indicated 25 per ~ent enhancement in the

.I
reactIon rate. I

coefficient of the order of 0.3 per centf'C and burn rate
of 10.4 mm/s at 50 kg/cm2, respectively.

Li Slluilg WeJJ2() studied II le iJJnIICIil.~ Ilf l:lIrllOII

black oli burn~ng rate and pressure index of high-heat

RDX-CMDB propellant. The particle size of carbon

black (24 to 30 nm), exhibits positive effect for the

improvement of pressure index (n). This work entirely

differed from Preckel21 who suggested that in high-heat

propellants aromatic lead sal~s having higher

decomposing temperature more than 750 °c is

necessary to achieve plateau.

Catalytic effect of basic copper chromite, copper

chromite pyridine complex in the nitramine CMDB

propellant was studied by Ma Xieqi and Sou Syuing22

and observed that there is a tendency for the emergence

of plateau ~nd mesa combustion at low pressure
(3 to 5 kg/cm2).

The work of Joseph23 on DB propellants,
containingjRDX/HMX (54-56 per cent) and lead
stannate-as ballistic modifier along with lead beta
resorcylate and carbon black has shown considerable
reduction in pressure index (n) and temperature

sensitivity coefficient (7[ r)p values, when fine HMX

(20-25 micron) is used in the formulations. Further, a

remarkable reduction in pressure index value has been
observed when HMX is taken in bimodal form ( 180 and

25 micron) in the ratio of 75/25.
I

Kawasaki, et al24 found the burn rate of
2-10 mrn/s in the pressure range of 5-15 atm when
EDNA ( 13 per cent) was used in DB matrix. Further
stud15 of the flame structure of E~NA DB propellants
by the same author led to th~ several conclusions; viz.,

I
(i) flame structure of EDNAIDB propellants was of two
stage similar to that of DB base propellants exhibiting
a dark zone between luminous flame and burning
surface, -'(ii) these propellants showed mesa tendency,
(iii) the thermochemical properties of EDNA were
between NQ and HMX, (iv) the burning rate was found
to be independent of concentration, and (v) slope break
phenomenon was absent.

4. FLAME CHEMISTRY OF NITRAMINE DB

PROPELLANTS

The combustion flame of nitramine OB propellants

is similar to that of the conventional OB propellants. It
mainly consists of foam, fizz, dark, and luminous zones

respectively26. The combustion products found in

successive zones are: (i) HCHO, NO2, (ii) HCN, CO2,
HCHO, NO, H2, (iii) COt CO2, HCN, NO, N2O, and (iv)
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as = Th6rmal diffus~vity at burning surface
(cm2!s) I

<I> = Gas phase temperature gredient ( dt!dx)g

'II= Condensed phase temperature (K)

and

as = A.g I Cp x pp (3)

where

Earlier equati'ons

HNO + NO = /l/Q.O + OH
I

CO2 + N = NO J+ CO

Modified ,
HNO + NO';' N2O + OH

I
CO2 + N + N = N2 + cr + o

Taking into consid~ration the above modified

equations the predicted time (I",) from this model is 3.6
ms for OB propellants which is well in agreement with

.I.the experimental value of 3.2 ms. However, the

predicted values of tm f?r nitramine oB propellants are

found to be lower than the efperimental values. Beside,
a correlation has been. suggested f~r cylindrical type of
propellant burning in cigarrette fashion, between dark

I
zone length and time duration, i.e.,

tm = Ldlv and V = r. x ps/pg

A.g = Thermal conductivity in gas ( kW/mK)

pp = Density of propellant (kg/m3)

'I' = Ts- To- QslCp (4)

where T s = Temperatute of burning surface (oK) .

T o = Initial propellant temperature (oK)

Qs = Heat of reaction of burning surface (cal/g)
\
Cp = Specific heat (kJ/kg.k)

Now I

O"p= +'I'
where

(5)

where

= Temperature sensitivity of gas phase

"' 1= Temperature sensitivity of condensed phase

1 -
(-.!!-.I!- ) (6)

OTo p

\jI=
Ts -1';; ( Q¥cp )

Where

~( 3T sl3T o)p = Es

\
The burn rate of the propellant a~ 243 and 343 °K

are datermined. Temperature sen~itivity parameters
such as <p. T s. and Qs. are determined from thermal

profile and 'I' from Eqn ('6). Temperature sensitivity of
gas phase is calculated from Eqn (5). I Experimental data

obtaincd with nitramine propellant is i~ good agreement

with predicted values. Besides. .it alsd reveals that the

temprature sensitivity at constant pres~ure is dependent

60 per cent on gas phase temperature sensitivity and 40

per cent condensed phase temperature sensitivity.

6. COMBUSTION MECHANISM

The burning process of the propellant is largely

dependent on the propellant composition. The

propellant generally produces heat and high

temperature gases by the phenomenon of combustion.

'l'JIc IICilllccJIJill'k 11(1111 IluI !::il~C!i filiiiC~ tllc tclllpcrillurc

of unburnt propellant surface to its decomposition

tempJmtllre, A~ a re~ult. the unhurnt portion gasifie~

v = Flow velocity of gases(m/s)

(t)m = Maximum time (s)
I

Ld = Len g th of the dark zone in cin
I.

r = Burn ,rate of the propellant

i's = I Solid densi ty
I

Pg l Gas de~sity I I I

A mathematical'model proposed Py MeliusJO.JI.J2

suggests that cycli\= nitramines (ROX/HMX) form

dominantly HCN in non-luminous flame zone which

gets converted into N2. CO. CO2. etd in the luminous
flame zon9 subsequently. Further, b~ employing this

model he J has calculated the length of non-Iuminous
and luminous flame zones as 20 and 80 micron
respectively. I I I

Kubota33 has proposed a mathematical combustion

model based on heat Ifeedback process in the

combustioh wave and the chemical reaction on the

burning sur~ce and gas phase for nitramine OB. CMOB

and azidopolymer propeUants.

A correlation has b~n found out between burning

rate of the propellant and terprature s~nsitivity.

crp=[olnrb/oTo]p ~ (I)
I

where r"b = Bur rate m/s I

T o = Initial propellant temperature (oK)
I

crp = Temperature sensitivity at constant pressure

rb = Us ,x 1j>/", 1 (1)

where
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and binders,\ their physical structure variation, change

in burning surface and chemical ~ctivation variation of
, N~O with ~ressure.

and produces heat by exothermic chemical,rcaction
which is ultimately responsible for the successive heat
fccdback proccss, occuring continuou.'ily to .'iu.'ilnin n

steady state burning.

The flame structure analysis of nitramine OB
propellant based on the quenched propellant
microscopic analysis has clearly indicated that the
crystalline ROX/HMX particles mixed with OB matrix
melt first anti decomp'ose subsequently into gaseous
products at tlJe burning surface of the propellant. The
decomposeq ROX gas is then diffused into the
decomposed gfis of OB matrix just above the burning
surface (fizz zone); anq thus a homogeneous gas

mixture produces a luminous flame in luminous zone

above the burning surface. gesides, it is also found that

stand-off dist~nce26 is decreased as compared to that in.
conventional OB propellants owing to fast heat

feedback transfer from luminous zone to propellant

surface.

To understand the combustion mechanism of
nitramine CMOB propellant (catalysed and
non-catalysed), Kubotal4.34 measured the temperature
profiles in different zones and found that catalysed

propellants exhibited super rate burnidg in lower
pressure region and subsequently plateau effect in the

higher pressure region. This is attributed to inhibiting
reactions of gaseous products with Pb in fizz zone. In

addition, other findings are: (i:) appreciable reduction in

the stand-off distance in catalysed' propellant (ii)
insignificant effect of particle size of nitramine for both
catalysed and noncatalysed propellants. (iii) d'ecrease in
the burn rate with increase in concentration of

nitramine, and (iv) similarity offlame structure for both
propellants. Another systematic study carried out by

Zhao, et al35 on the combustion characteristics of
ROX/CMOB, AP-CMOB propellants including thermal

studies over a wide range of pressure has indicated: (i)

increase of ROX/HMX content in the basic propeliant
composition decreases the burn rate at lower pressure
range and increases at higher pressure range, (ii) there

is a significant effect of particle size of ROX in higher
pressure region, and (iii) incorporation of

nitroguanidine in nitramine CMOB propellant improves
the physical structure and thermal behaviour thereby

eliminating pressure exponent shift considerably.
,

On the other hand thermal studies conducted by

means of OSC and SEM reveal that the pressure

exponent shifts are related to the decomposition of ROX

I

7. CONCLUSION f I

This review clear~ indicates that the studies on

extruded DB' propellants containing nitramine appears

to be limited and the scopJ for further work in respect
,

of processing, evaluation' and ballistic performance

exists. Although, a number of papers bppeared in the

literature exclusively dealt with processing, burning

behaviour, sensitivity,'etc. for nitramine CMDB

propellants, the field is st~1I open for further studies on

the assessment of ~helf life, ballistic characteristics and,
mechanical properties essentially needed for their
application ill rockets/missiles! ,

I
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