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ABSTRACT

An analysisiis presented for the prediction of resonance frequencies (w) and the associated system
loss factors (n;) for all families of modes of vibrations in free-free multilayeted conical shells, which
are frequently used in.aircraft, missiles ahd other allied systems. Because of the spin of a higﬁ order,
missiles and gun-launched shells are subjected to torsional vibrations (axisymmetric). The governing
equations of motion for the axisymmetric vibrations of a general multilayered conical shell have been
derived usiig Hamilton’s vibrational principle. The solution is obtained by utilising simple trignometric
series modal aspumptions in Galerkin’s procedure. The correspondence principle of linear viscoelasticity
for harmonic motions is used for evaluating the damping effectiveness of shells with elastic and
viscoelastic layers. The resonance frequencies and the associated system loss factors for three-, five-
and seven-layered conical shells with free edges are evaluated and their variations with geometric
parameters are investigated. An increase in the number of layers (N) increases maximum obtainable n;s
for most of the modes with proper selection of geometric parameters, but increasing N beyond 5 yields
only, marginal increase in 1, . Uniformly high values of n, are obtained for all modes of vibration for
highivalues'of thickness ratio parameter. For thick shells, more layers are advisable for relatively high

lq of Damping and Vibratory Behaviour of Free-Free Multi-

values of n; for all modes.

NOMENCLATURE 11 and 2 time limits
(Ex)i, (E¢)i  Young’s moduli of ith elastic layer along T total thickness of the shell
the X and ¢ 'directions, in-Phasc Young’s T total kinetic energy
moduli of ith viscoelastic layer along the ui meridional displacement in ith layer of the
X and ¢‘dir<‘=ctions ‘ shell along the X direction,
(Gxo)i, (Gxp)i shear moduli of the ith elastic layer, U total strain energy
_and (chz)iA in-phase components of shear moduli of Ui meridional displacement in ith layer along
ith viscoelastic layer the X direction in the expression for the
L shell slant length _ . assumed approximate solution function
m number of terms in the expression for Vi circumferential displacement in ith layer ~
displadement; modal number along the of the shell along the ¢ direction
meridional direction 1% ratio of thickness of viscoelastic layers to
N « total number of layers in multilayered elastic layers for a constant size
shct:ll symmetric multilayered shell
ri l Roi + x sin a0 + zi cos @ Vi circumferential displacement in ith layer
Roi radius of the middle surface of ith:layer along the ¢ direction in the expression for
boar the small'end of the shell the assumed approximate solution function
ti thickness of ith layerq‘ 4 w transverse displacement of the multi-
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layered shell along the Z direction

w transverse displacement along the Z
direction in the expression for the
assumed approximate solution function

w work done f

X meridional coordinate

Zi distance of a point from the middle surface
of ith layer along the Z coordinate

Z coordinate along the thickness of the shell

o cone semi vertex angle

3 ratio of shear modulus of viscoelastic,
layers to Young’s modulus of elastic layers

ni material loss factor in shear for ith layer

Ns system loss factor

(vx¢)i, (V¢x)i Poisson’s ratios of ith layer in the X—¢
and ¢—X directions

pi mass density of ith layer

0 angular circumferential coordinate
® resonance frequency (Hz)
S‘ubscripts

= differentiation with respect to time ¢
x differentiation with respect to x

0 differentiation with respect to ¢

1. INTRODUCTION I

The growing use of multilayered composite
conical shells in a variety of aircraft and missile
structures has engendered much interest in their
theoretical analysis. Suitable arragngements of elastic
and viscoelastic layers in structural configurations are
used to control vibration response by dissipation of
vibratory energy effected by the deformation of the
viscoelastic materials. If in a structure the viscoelastic
layer is sandwiched between two elastic layers, it is
predominantly the shear deformation in the viscoelastic
layer which is responsible for energy dissipation.
Nakra'™ reviewed the vibration analyses of beams,.
plates and shells in which layers of viscoelastic
materials are used in constrained or unconstrained
arrangements. Extensive review work on the vibration
of shells has been reported by Hu' and Leissa®. An
exhaustive work on free vibrations of layered conical
shell has been reported by Wilkins, et al®. Siu and Bert’
presented an analysis for axisymmetric and
antisymmetric vibrational modes of free-free conical
shells of homogcn'cous isotropic material and of
sandwich construction with specially orthotropic
facings and core. ¢
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In the present work a general r'nultilaycrcd conical
shell consisting of an arbitra'ry number of alltcrnate stiff
elasti¢ and soft viscoelastic layers Has been considered.
The material of the layers has been taken toybe specially
orthotropic. The governing equations of motion have
been derived by variational principles. The present
analysis considers extension,' bending, inplanc and
transverse shear deformation in each of the layers of the
shells. The longitudinal, translatory and rotary inertias
along with the transverse inertia have been taken into
account. The Galerkin method has been applied for

Figure 1. Assumed deformation pattern in t,he,multl-
layered conical shell.

}
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finding the solutian and the (Iiamping cffectiveness in
the form of the system 1bss factor has been evaluated by
applying the correspondence principle of linear
viscoelasticity for harmonic motion. A computer
program lfas been developed for computing resonant
frequencies and assoc';iated system loss factors for a
general layered shelll with alternate c]astic and
viscoelastic layers. Variation of the resonance
frequencies and the associated system loss factors with
geometric pjrameters—thickncss ratio parameter' and
total thickidess parameter for three-, five- and
seven-layered shells are presented. The results prdvndc
useful data for the proper choice of s\hcll parameters to
obtain the maximum possible system loss factors for
different modes of vibration$.

|
2. GOVERN‘JNG EQUATIONS OF MOTION

Thc multilayered shell configuration is shown in
Fig: 1. It is assumed that normal section in each layer
remains plane and continuous before and after
deformation and there, is no slip at the mtcrfaccs "The
deformations take aﬁ:count of bending, extension,
1nplanc shear and transvgrse shear in all the layers of
the shell. The deformations uzi , Vzj at a distance z; from
the mid-plane of ,ith layer along X and ¢ directions
respectively are Agirvcn by

" 1] {t.
i = Y
Al

a{z*e
o I “' ] [1[‘
‘zl‘a["‘mz“'f“"m*"” 2

where u;, vi, ui+1 and vi+|' are displacement at radii Ro;
and Ryi+1 of the ithllaypr along X and ¢ directions
respectively and ¢ is th? thickness of the‘ith layer.
Strains in the ith layer of the shell are given as:

1 L t
(Exx).‘ =:[U,J{—2——Z }+un+lx{2l +Z‘}]

(e”)‘ = i{("w +u,sina){%‘— z, }+(vm', +u, sina)

1
[
-2-+€, +twcosa

I

—

o |

(h/), - f‘ [fW -V, C(;sa{fz——z } } i+l Cosa{ +4H
+{Vi+l—vi}

~

V,y, Sin a)

(}/m), = f'[{u o=V sina){i‘—z‘}+(umm_

e frilfsaprondie]]

4 ( : = \
{ =—=(R,+xsina+z cosa) (3)
I, |

Considering material of layers to be specially
orthotropic, stress-strain relations are given as:

(6\\], (Qu)‘ (Q;z), 0 '(gu),
(G;\ol = (sz)‘ .(‘(‘):“‘)r 0 (EWJ

( T\o) 0 0 (Qes )J (J’w )

r(‘fw‘)‘wl"i—((‘u )" 0 :| (Yo/)‘
‘(1'” ]‘J !L 0 (Cﬁs‘)l (}"l)‘ (4)

where the specially orthotropic material constants are

(Qu), = (EX)i

11=(va) fvec) }

(Vw)[(Ex):(V;ﬁn I(Efp)[ making (Qu),z(Q:x),

;(Qus),‘ =(G;o),. J (C«)i =(G,?)'j ’ (Css)i =(ze),~

where (Ex)i, (E(#)lo (Vx¢)h(V¢x)z; and (Gxdi)i. (Gx2is
(G¢,)., are respectively the Young’s moduli, the
Poisson’s ratios and the shear moduli of the material of
the ith layer.

The strain energy U of the shell is given by
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where N is the number of layers and L. is the slant length
of the shell. Considering transverse, mcri_dional
translatory and rotatory inertias, kinetic energy T of the
multilayered conical shell is given by

ZJ D \x. Py v } ¢ 'dzdodx 6)

The work done W by the external excitation
forces f(x) sin ot is given by

W:LLf@wawdwx (M

Performing the variation term by term and making
use of Hamilton’s energy equation

t2

I (SU- 8T + 8W] dr= 0
ti

and considering the fact that for axisymmetric
vibrations of multilayered tonical shell, the
deformations u1, u2, u3, ......... UN+1, V1, V2, V3, coee. VN+1
and o are independent of angular coordinate ¢, the
governing equations of motion and boundary conditipns
for axisymmetric vibrations of the shell are obtained
{Appendix: Eqns. (12) -(14)}.

3. SOLUTION FOR AXISYMMETRIC VIBRA-
TIONS OF CONICAL SHELL

Although the free-free condition is most easily

achieved experimentally, it is perhaps the most difficult
condition from an analytical viewpoint, particularly in
the case.of a multilayered shell, because of the difficulty
in finding functipns that satisfy the boundary

conditions. |

From the fact that the displacements and the
rotations at the free edges will always be unrestrained,
the series of consine functions having non-zero values
at the free edges are taken as approximate solution.v
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U = ZU,,,, cos =X sinawt '
X t

V,= V,- n COS sin wt v
W= Z W, cos sin wt !

m=1
(m=1,2,3,4,.............. n)

" The excitation may be expanded as

N . max
F = F_ sin sinot

Z ‘ L 9)

' ]

Substituting the assumed solution functions {Eqn.

(8)} in the governing differential equations [Eqns.
(12)-(14)], one sc;t of m {N+2) algebraic equations in
terms of the meridional displagements {Um1, Um2, Um3,
«.Um(N+1)} and the transvcﬁ‘se displacement (W) and
another set of m (N+1) algcbralc equatxons in terms of
the circumferential displacements (Vw, Vm2, Vm3, ...
Vm(~¥+1)} are obtained. Replacing the teal moduli of the
layer materials by their complex moduli according to
the correspondence principle of linear viscoelasticity,
the first set of equations form a c'ox'nplex eigenvalue

problem of the type. | '

[\f(u B|{X}=0

'wherc the column matrix {X} = {Um1, Um2, Um3,

, U,,.(Nﬂ), W,,.}T, A an&d B are square matrices of

order m(N+2) and the eigenvalues w14 give resonance

frequencies and associated system loss factors for
coupled meridional and radial modes of vi?rations.

Similarly, the second set of equations form a
complex eigenvalue problem as:

[c-wib]{v}=0 (1
where the co}umn vcctl)r {Y} = {Vm1, Vm2, V3,

» Vm(N+1 )}T, C and D are square matrices of order
m(N+1) and the eigenvalues w2 give resonance
frequencies and associated system loss factors for

torsional and other circumferential shear modes.

The elements of the matriges A, B, C, andl D are the
functions of the geometric and the material properties
of the shell. The real part @ of the ¢omplex elgenvalue

is the resonance frequency and the ratlo of the
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imaginary part to the real part is the z&ssocxatcd system
loss factor 31s (Rao and Nakra® ). It can be shown that n,
is the ratid of the imaginary to the real part of the
generalised complex stiffness and also the ratio of
energy dissipated per cycle to the maximum strain
energy during a cycle (Unlgar and Kerwing).

The above procedure has been programmed to
compute the resonance frequencies and the associated
system loss factors for ail the modes of the families of
modes of axxsymmetnc vxbrauons of a ,general
multilayered conical shel] with free edges. In the
present analysik, five-term solution (m = 0,1,2,3,4) is
taken. Vibrating modes consist of one family of 5 (N+2)
coupled modes having meridional and fadial
deformations, and !the other family of‘ 5(N+1) modes
having torsional and circumferential shear
deformations, Though the modes of thé first family are
coupled, dczormations occulr predominantly along
meridional or radial directjon and they are named
accordingly. | ‘

|
|

4. COMPARISON WITH REPORTED RESULTS

The results of the natural frequencies with the use
of Rayleigh-Ritz solutlon, given by Siu and Bert! for a
free-free homogeneous qomcal shell are computed with
the present analysis for theldata:
0=14.200 L=17.3 in,,

.t=0.005 in., R, =2.72 in

E,=E, =0.295x10"1b/in?
p=0.773%x10"Ib 'sec’* / in

G,, =G,, =G, =0.113x1Q" lL/in.z

The minimum natural frequency is, found to be
17.86315 Hz, whereas the reported on is around 20 Hz.

The natural frequencies of a sandwich conical shell
with free edges consisting of elastic layers have been
determined with the préscnt analysis and have been
found to be in good agreement (Table 1) with the
results reported by Wilkins et al® for the data =

o =5.07, L=72.5in.
R,=22.290in., R,=22.450in., Ry, =22.609in
t,=0.02lin., ‘'t,=0.3in., t,=0.021in.

=3.64%10° 1b/in?
)

E,, = E,= Em = Eﬁ
G,,=3.2x10*1b/in?,

G,,, =1.83x10'1b/in?, ,

i
G =Gy =Gy =Gyyy = Gy = G,y 51.0x10° Ib/in ?

Vx‘l = vx;] = V¢x| = Vox.'l =0.2 [}
p,=p,=0.265x10"Ib- sec’/in.*, '

=0.3368x107* Ib.sec*/in.*

where suffix 1 is for inner face layer, 2 for core and 3
for outer face layer of the sandwich conical shell.

The resonance frequencies and the associated
system loss factors for three- and five-layered
cylir{drical shells (two elastic face layers sandwiching a
viscoelastic core) have been computed with the present
analysis by taking zero apex angle and these have been
found to be in close agreement with results reported by
Alam and Asnani!®

Table 1. Comparison with analytical frequencies (Hz)
for free-free sandwich conical shells reported by
Wilkins, e al

Lowest Second Lowest
0.207 736.8

(0.26) (724.7)

There aré torsion modes

31.96 407.8

(324) . (408)

Values in (...) are from table reported in Ref. 6

5. MULTILAYERED CONICAL SHELL

The multilayered conical shell considered in the
present analysis consists of alternate elastic and
viscoelastic layers sich that the face layers are always
elastic. All of the elastic layers are assumed to be of the
same thickness and of specially orthotropic material, as
are all of the viscoelastic layers. The ratio of thickness
of the viscoelastic layer to that of the elastic layer is
denoted by thickness ratio parameter V. Total thickness
parameter (T/R1) denotes the ratio of total thickness of
the shell to the radius of the first layer of the shell. The
ratio of mass density (p) of viscoelastic to that of elastic
material is taken to be 0.5. The loss factor n of the
viscoelastic core in shear as well as in extension is taken
to be 0.5. Length parameter (R1/L) is defined as the ratio
of inner radius of the first layer at the small end of the
shell to the slant length of the shell and is taken to be
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0.1. Poisson’s ratio (v) of the elastic material is taken to
be 0.3 and the ratio of Poisson’s ratio of the viscoelastic
material to that of the elastic material is taken to be
1.33. Cone apex angle, o, is taken to be 5.07°. The shear
parameter, §, defined as the ratio of the inphase
component of the shear modulus (Gyxy) of the
viscoelastic cores to the Young’'s modulus (E) of the
elastic layers is taken to be 1074,

6. RESULTS & DISCUSSION

Variation of the resonance frequencies ® and
associated system loss factors n; with thickness ratio
parameter V and total thickness parameter (T/R1) have
been discussed for axisymmetric vibrations of thiree-,
five- and seven-layered conical shells with alternate
clastic and viscoelastic layers.

Results have been presented for the shell with data
for the face elastic layer as follows:

Young’s modulus : E; = Eg = 3.64 x 10° Ib/in? =
0.252874 x 10'! N/m? ‘

Shear modulus : G = Gyz = Gx; = 1.399994 x 108
Ib/in? = 0.972591 x 10'° N/m

Density: p = 0.265 x 10j‘},-at?-sec2/in4 = 0.28535327
x 10 NsZ/m?*

Thickness : ¢ = 0.03 in. = 0.762 x 105m

Radius : R1 = 7.2 in. = 0.18288 m

In the analysis, the designation m; denotes the
lowest resonance 'frequency and its corresponding
system loss factor‘; m2 denotes the second lowest
frequency, etc. For a three-layered sandwich shell,
families of modes have been shown for mj and ma,
whereas for the sake of clarity in figures for
multilayered shells the curves have been drawn for the
first lowest frequencies only and their corresponding
system loss factors for families of modes.

Variation of resonance frequency o and associated
system loss factor 15 with V for axisymmetric vibrations
of three-, five- and seven-layered conical shells with
free edges has bcep shown in Figs. 2-4 for (7/R}1) = 0.5.

For multilayered shell o for radial mode increases
for lower values of v, reaches a maximum (900 Hz) at
V =35 and then decreases with further increasing values
of V as the stiffness of the shell reduces with further
increase in V. For this mode n, increases with V. Similar
trend is observed for resonance frequency ® and
associated system loss factor s for meridional and
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torsional modes for multilayered shells. There is only a
marginal increase in ny for these modes with more
layers. Thus for getting high wvalues of m; for radial,

, M, .- CIRCUMFERENTIAL 1.0
5000 /. CORE SHEAR
i S o] 05
=T Tm, - -7
m== MERIDIONAL
2 CORE SHEAR
4000 r
— (1)
-——m, ' 0.1
' [ 7 0.005
RADIAL
3000 | m, m,
= m,
- m,
] /,J;,E:’T’ MERIDIONAL <
< 20007 " CIRCUMFERENTIAL |- 0,001
3 I CORE SHEAR
MERIDIONAL'
CORE SHEAR
1000 1 'TORSIONAL
—
IHWIONAL RADIAL 1 0.0001
T T T - .

T
0 5 10 , 20 + 30 40
v
Figure 2. Varlation of © and R, with V for axisymmetric
v vibrations of a free-free three-layered conical

! shell.
_— 1
CIRCUMFERENTIAL 1.0
CORE SHEAR F
=FEx= T e 05
!
‘ CIRCUMFERENTIAL |
4000 — MERIDIONAL ~ CORE SHEAR
CORE SHEAR
\ MERIDIONAL L 0.1
| MERIDIONAL 7 0,005
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) e
I
3 | - RADIAL
2000 -7 i i
TORSIONAL :—0‘001
/ — — — TIS :
J1 MERIDIONAL | r
1000 | i
RADIAL
0 TORSIONAL 6.0001
T T T T .
05 5 10 20 20 Tl 40

Vv |
Figure 3. Variation of ® and n; with V for ahsymmetrlc

,vibr‘atiogns of a free-free five-layered conical

shell. ;
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Figure 4. Varlation of ® and Ws with V for axisymmetric
vibrations of a free:-free seven-layered conical
! shell.
) }
meridional and torsional modes, one should go for higher

[l

of V.- . .

For meridional and (circumferential caore shear
modes ® increases with V. For these modes 1 increases
marginally with V and reaches a maximum, equal to the
material loss factor: of the core. ns is more for these
thickness core shear' modes with more number of layers
in the multilayeréd shell for a particular value of V.
Thus it is observed that uniformly high values of n, for
all families of modes of vibrations ‘are obtained if V >
5. |

Figures 5-7 show the | variation of ,resonance
frequency ® and associated system loss factor iy with
total thickness parameter T/R1 for axisymmetric
vibrations of three-, five-' and seven-layered conical
shells with free edges for V = 1-0'.

For three-layered sandwich shell @ for radial mode
increases with- T/R). A considerable increase in o for
this mode is observed in the high range of T/R1. Similar
trend is noticed for @ for this mode for five-and
seven-layered conical ‘shells with T/R1. The n; for radial

m,
| 05
10,000 m,
9000 1
8000
0.1
7000 >
J.005
6000 i &
. i
5000 1 i
4000 T~ ~ 0.001
3000 7 ’t
] —i—¢
A
. \
r L} L T T T T T T T T T T ”I' T 11'1:
. .001 0,005 0.01 005 0.1

/R,

Figure 5. Variation of w and n; with (T/R)) for axi-
symmetric vibrations of a free-free three-
layered conical shell.

e e —————— — == ——mz =05
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6000 | .
=
5000 | MERIDIONAL
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8 Fee . e T -
00 e A - 0.001
I TORSIONAL* MERIDIONAL
3000 | CORE SHEAR
CIRCUMFERENTIAL CORE SHEAR|
2000 -
o
1000 ¥
TORSIONAL
: 1 ' 5 0.0001
' oot 0005 001 R~ 005 01

Figure 6. Variation of ® and n; with (T/Ry) for axi-
symmetric vibrations of a free-free five-
layered conical shell.
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S ol 0 >
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&
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8000
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Figure 7. Variation of ® and s with (7T/R1) for axi-
' symmetric vibrations of a free-free seven-
layered conical shell.

mode for three-layered conical shell remains nearly
constant for the lower values of T/R), that is, for thin
shells and decreasés marginally in the higher range of
T/R1 whereas mn; for this mode for fivet and
seven-layered shells first increases up to T/R1 = 0.005,
then remains almost constant upto T/R; = 0.01, and
again increases marginally for the further increase of
T/R1. Also n; increases with the number of layers in the
shell.

For meridional and torsional modes for
multilayered shells w increases with the increase of
(T/R1). There i§ no appreciable change in n; for
meridional modg for three-layered sandwich conical
shell up to T/R1 = 0.01 an increase in ns for this mode
for three-layered shell is opserved with the higher
values of (T/R}1). For this mode for five-layered shell ns
decreases at th‘e lower values of T/Ri, reaches a
minimum at (T/I\h) = 0.007 and 'then increases with
further increasing values of (7/R). For meridional
mode for seven-layered shell s follows the same trend
as that for five-layered shell but the rate of decrease and
increase in the lower and higher ranges of (T/Ry)
respectively is comparatively reduced. For meridional
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mode 1 is small for a three-layered shell which
increases subétantially for a five-layered shell. There is
‘a decrease in s for this mode in the higher ranges of
(T/R1) when the number.of layers in the shell is
increased from five to seven. 'There is no substantial
.change in 1y for torsional'mode with (T/Ry) for free-free
multilayered conical shell; 1|5 for this mode increases
with the number of layer's.

Resonance freguencies for meridional and
circumferential core shear modes for multilayered shell
remain almost constant 'n'the chosen range of (T/R1),
that is, @ for these modes is same for thin and thick
shells. There is no change in associated system loss
factor ns for core shear modes for 'multilayered conical
shells and it is observed to be equal to the material loss
factor of the viscoelastic core la’yc‘r of the shell.

The vibration and damping analysis of general
multilayered conical shel'ls of constant thickness with
free edges presented here shqws that increase in number
of layers increases maximum obtainable system loss
factor for most of the modes of vibration with proper
sglection of geometric pz{rameters-thickness ratio
parameter and total thi?kncss parameter. It is observed
that there is a considtrable increase in system loss
factor when the numi)er of laye'rs in the shell is
increased from three to five but the increase is only
mariginal when the 'number of lajers is further
increased to gcven. It is noticed that uniformly high
values of systém loss factor for all families of modes of
tibration are obtained for high values of thickness ratio
parabeter. For a thick shell, more la)*ers are advisable
for getting relatively high values of s'ystem loss factor
for all families of modcs4

\ !
7. CONCLUSION 'v

The vibration and dam'ping analysis of general
multilayered conical shells of constant jhickncss with
free edges presented here shows that incredse in number
of layers increases maximpm obtainable system loss
factor for most of the modes of) vibration with proper
selection of gcomcfric parameters—thitkness ratio
parameter and total thickness parameter. It is observed
that there is a considerable increase in'system loss
factor when tlic number of layers in the shell is
increased from :three-to-five but the increase is only
mariginal when the number 'of layers is further
increased to s_e!/cn. It is noticed that uniformly high

val'ues of system loss fact{)r for all familids of modes of
|
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i
vibration are obtaincd for high values of thickness ratio

parameter. For a thick shell, more layers are advisable
for getting relatively High values of sy‘stem loss factor

for all families of modes. ‘I .
i
t

ACKNOWLEDGEMENTS i

This work is based on a topic in a Ph.D. thesis. The
author wishe‘s to express his sincere appreciation of the
advice and guidance given by Prof. N.T. Asnani of the
Mechanical Engineering Departmént, LL.T., New Delhi.

|
REFERENC“ES |

1. Nakra, B.C. Vibration control with viscoelastic
materials, Shock Vibr. Dig., 1974, 8(6), 3-12.

2. Nakra, B.C. Vibratipn control with viscoelastic
materials-II, Shock Vibr. Dig.,1981, 13(1), 17-20.
3. Nakra, B.C. Vibration rontrol with viscoelastic
materials-II‘I, Shock Vibr. Qig., 1984, 16(5), 17-22.
4. Hu, W.C.L.'A survey of literature on the vibration
of thin shel\s, South West Research Institutej San

©

10.

} )
Antonio, Texas Project C2 1504, Technical Report

No. 1, 1964.

Leissa, A.W. Vibration of shells. NASA-SP-288, 1973.
Wilkins, D.J. (JR), Bert, C.W. & Egle, D.M., Free
vibration of orthotropic sandwich conical shells
with various boundary conditions, J. Sound Vibr.,

1970, 13(2), 211-28. .

Siu, C.C. & Bert, C.W. Free vibrational analysis of
sandwich conical shells with free edges, J. Acoust.
Soc. Am., 1979, 47(}), 943-45.

Rao, Y.VK.S. & Nakra, B.C. Vijbrations of unsym-
metrical sandwich beams and plates with viscoelastic
cores, J. Sound Vibr.,, 1974, 34(3),‘ 309-26.

Ungar, E.E. & Kerwin, EXM. (JR.) Loss factors of
viscoelastic systems in terms 'of energy con-
cepts, J. Acoust. Soc. Am., 1962, 34(7), 954-57.
Alam, N.& Asnani, N.T. Vibration and damping
analysis of multilayered cylindrical shells, Part-1I:
Numerical results, AJAA.J., 1984, 22(7), 975-81.

67



}
DEF SCI J, VOL 46, NO 2, APRIL 1996

APPENDIX
Governing Equations of Motion and Boundary Condjtions for
Axisymmetric Vibrations of Multilayered Gonical'Shell
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The boundary conditions obtained at x =0 and x = L are
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