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ABSTRACT
I

An analysislis presented for the prediction of resonance frequencies (0» and the associated system
loss factors (T\s) for all families of modes of vibrations in free-free multilayeted conical shells, which
are frequently used in.aircraft, missiles abd other allied systems. Because of the spin of a higfi order,
missiles and gun-Iaunched shells are ~ubjected to torsional vibrations (axisy~metric). The governing
equ3;tions or motion for the' axisymmetric vibrations of a general multilayered conical shell have been

derived usirlg Hamilton's vibrational principle. The solution is obtained by utilising simple trignometric
serie~ modal as~umptions in Galerkin's procedure. The correspondence principle of linear viscoelasticity
for harmonic motions is used for evaluating the damping effectiveness of shells with elastic and
viscoel,astic layers. The resonance frequencies and the associated system loss factors for three-, five-
and ~eyen-Iayered conical shells with free edges are evaluated and their variations with geometric
parameters are investigated. An increase in the number of layers (N) increases maximum obtainable T\s

Ifor most of the modes with proper selection of geometric parameters, but increasing N beyond 5 yields
only:marginal increase in T\s .Uniformly high values of T\s are obtained for all modes of vibration for
high;values 'of thickness ratio parameter. For thick shells, more layers are advisable for relatively high

values of T\s for all modes.,

tl and t2

T

T

NOMENCLATURE

(Ex);, ( E~); Young's modu1i of ith elastic layer along

the X and 4\I'directions, in-phase Young's

moduli of ith viscoelastic layer along the
I

X and 4\I'directions
j

(Gx~)I, (Gxl)i shear,moduli of the ith elastic layer,

and (G4\1z)i in-phase components of shear moduli ofI ,
ith viscoelastic layer

L shell slant length

m number of terms in the expression for

displacement; modal number along the

meridional direction

N total number of layers in multilayered
j

shell
I

r; Ro; + x sin a + z; cos a

Ro; radilfs of the middlb ~urface of ithllayer

at th,e small'end of the shell

t; thic~ness of ith layerl

Uj

u
Ui

Vj

v

time limits

total t-hickness of the shell

total kinetic energy

meridional displacement in ith layer of the

shell along the X directiop.

total strain energy

meridional displacement in ith layer along

the X direction in the expression for cthe

assumed approximate solution function
.

circumferential displacement in ith layer c;'

of the shell along the 4> direction

ratio of thickness of viscoelastic layers to

elastic layers for a constant size

symmetric multilayered shell

c~rcumferential displacement in ith layer

along the 4> direction in the expression for
the assumed approximate solution function

transverse displacement of the multi-
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Figure I. Assumed deformation pattern In ~he.multl.

layered conical shell.
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KHATRI: DAMPING AND VIBRATORY BEHAVIOUR OF MULTILAYERED CONICAL SHELLS

I
finding the solutidn and the damping effectiveness in

the form of the system Ibss factor has been evaluated by

applyinB the corres~ondence principle of linear

viscoelas~icity for harmonic motion. A computer

program "as been deyeloped for computing resonant

frequencies and asso~iated system loss factors for a

general layered she!11 with alternate elastic and

viscoelastic layers. Vrriation of the resonance

frequencies ~nd the associated system loss factors with

geometric p~rameters-thickness rat,o parameter' and

total thickrless param~ter for tbree-, fi~e- and

seven-layered sh~lls are presented. The results prdvide

useful data for the proper choice of shell parameters to
\

obtain the ~aximum possible system loss factors for

different mbdes of vibration~.

I { t
tW..-vcosa -!.-Z.

, ..., 2 ,

{V;+I-V;}
+

t .,

I

where

( I
2. GOVERNIING EQUArIONS OF MOTION

T~e multilayered shell configuration is shown in

Fig; I. It is assumed that normal section in each layer

remains plane and continuous before and :after

deformation and there, is no slip at the interfaces. The

def.ormations take a~count of bending, extension,
inplane shear and transvqrse shear in all the layers of

the shell. The deformations Uzi , Vzj at a distance Zl from

the mid-plane of ,ith layer along X and «!I directions

respectively are ,gi~en by

where the specially orthotropic material constants are
( "

} (Ex} QII j = -

( ) (: ) }J vxf v...
, I

uti = ~

I

{ ti :
u; 2-;z;

(01)
(Q22),=

where Ui, Vi, Ui+l and vi+l are displacem.ent at radii Roi

and Roi+ 1 of the ith lay~r along K and C/I directions
I

respectively and ti is thf thickness of the. ith layer.

Strains in the ith layer of the sh.ell are given as:

( E xx )j = t [ UI.x { ~ -Z; } + U~+I.X { ~ + Z; } ]

+( Vi+l,f +'Ui+l sin a )

.{~+fj}+tiwcosa ]
I

{Ezz}; =0

(Q66);=(G~f); ;:(C44);=tGfz); ; (C~~);=(GKZ)i

where (Ex) i, (E+)i; (vx+H.(V+x)i; arid (Gx~H, (GxzJi,
(G~x)i, are respectively the Young's moduli, the

Poisson's ratios and the shear moduli of the material of

the ith layer.

The strain energy U of the shell is given by
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-,
u L u m1tx .

.= .cos- smrot
J I.m L

m=1

L-m1tx .
v. = V, cos- slnrot

, I.m L
m=1 --L-

W m1tx .
W = cos- slnrot.m L

m=1

(m=.1.:2.3.4, n)

.The excitation may be expanded as
,

(5)

where N is the number of layers and IJ. is the slant length

of the shell. Considering transverse, mer~dional
translatory and rotatory inertias, kinetic energy T ofithe

multilayered conical shell is given by
m1tx

L

sin'rot
(9)

(6)
I

Substitut\ng the assumed solution functions {Eqn.

(8) } in the governing differential equations [Eqns.
I

(12)-(14)], one set of m 1(N+2) algebraic equations in
1

terms of the meridional displa<fements { Uml, Um2. Um3,

...Um(N+l)} and the transve'rse displacement (Wm) and
1

another set of m (N+ I) algebraic equations in terms of

the circumferential displacements { v~ 1, V m2, V m3; Vm(N+l)} are obtained. Replacing the teal moduli oflhe

layer materials by their complex ~oduli according to

the correspondence principle of linear viscoelasticity,
,

the first set of equations form a complex eigenvalue

,

problem of the type.

The work done W by the external excitation

forces j'(x) sin rot is given by

w = I. I. i(x)sinwt w dcl>dx (7)

Performing the variation term by term and making

use of Hamilton's energy equation

t2

J

ti

[~U- ~T + ~W] dt= 0,

f
where the column matrix {X } = {Uml, Um2 UmJ

I. .

, Um(N+l), Wm} T, A a* B are square matrices of

order m(N+2) and the eigenvalues (J)12, give resonance

frequenc.ies and asso.ciatbd system Ibss factors for

coupled meridional and rapial modes of vi~rations.

Similarly, tpe second set of equations form a

complex eigenvalue problem as:

and consider.ing the fact that for axisymmetric

vibrations of multilayered conical shell, the
.

deformations ui. u2. U3. uN+I. VI. V2. V3. VN+I
and (I) are independent of angular coordinate III. the

governing equations df motion and boundary conditipns
for axisymmetric vibrations of the shell are obtained

{Appendix: Eqns. (12) -(14)}.

3. SOLUTION FOR AXISYMMETRIC VIBRA-
TIONS OF CONICAL SHELL

Although the free-free condition is most easily

achieved experimentally, it is perhaps the most difficult

condition from an analytical viewpoint, particularly in

the case of a multilayered shell, because of the difficulty

in finding functi~ns that satisfy the boundary

conditions.
f

From the fac~ that the displacements and the

rotations at the free ~dges will always be unrestrained,

the series of con sine functions having non-zero values

at the free edges are taken as approximate solution..

(II)

where the column vectbr { y ) = { V m 1, V m2, V m3T ' .

".,' Vm(N+'t)) , C and D are square matrices of order

m(N+l) and the eigenvalue~ (1)22 give resonance

frequencies and associated system loss factors for

torsional and other circumferential shear mddes,

The elements of the matriqes A, B, C, and D are the

functions of the geometric ancJ the material properties

of the shell, The real .pa~t (I) of' the tomplex eigenvalue
is the resonance frequency and the ratio of the

1
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imaginary Dart to thel real part is the Associated system E ~ E = E = E , = 3.64 x 106 Ib / irt2
'I 8 xi x:l .1 ."1

loss factor ~s (Rao and Nakra ). It can be shown that 11s G -3 2 164 Ib / " 2 ,
is the ratid of the imaginary to the real part of the zx2 .., .x 10. ,

generalised comple~ stiffness land also the ratio of "0;,,2 = 1.83x 1041b/ in: , I

energy dissipated per cjcle to the maximum strain

energy durijng a cycle (U~gar and Kerwin9). Gzxl =Gzx:l = G.ZI = G",:I
.

The abpve :>rocedure has been programmed to v x;1 = v x.:I = v .xi = v ..:I

compute the resonance frequencies and the associated I
system loss factors for all the modes of the families of PI = P:I = 0.265 x 10-:1 Ib- sec2 / in.4 ,

modes of axisymmet~ic vibratio~s of a ,general P2 = 0.3368x 10-~ Ib.sec2,( in.4

multilayered conical shelf with. free edges. In the

present analysi~, five-term sQlution (m = 0,1,2,3,4) is

taken. Vibratin~ modes consist of one fal11ily of 5 (N+2)

coupled moUes having meridional and ~adial

deformations, and Ithe other family of 5(N+ I) modes
I

having torsional and circumfefential shear

deformationsi Though the mo~es of th~ first family are

coupled, deformations occur predominantly along

meridional or r~dial direct\on and they are named
accordingly. I I

I j
4. COMPARISON WITH REPORTED RESULTS

f
The results of the natural frequencies with the, use

of Rayleigh-Ritz solution, given by Siu and Bert7 for a
I

free-free homogeneous qonical shell are computed with

the present analysis for theldata:

=G.fl =G.f:l ==;1.OxI06Ib/in!

=0.2 I

where suffix I is for inner face layer, 2 for core and 3

for outer face layer of the sandwich conical shell.

The resonance frequencies and the associated

system loss factors for three- and five-layered

cylirldrical shells (two elastic face layers sandwiching a

viscoelastic core) have been computed with the present
analysis by taking zero apex angle and these have been

found to be in close agreement with results reported by
Alam and AsnanilO.

Table I. Comparison ~Ith analytical frequencies (Hz)
for free-free sandwich confcal shells reported by

6Wllklns, et al.

Lowest
0.207

(0.26)

Second Lowest

736.8

(724.7)

a: 14.20° L=17.31 in., .t=O.005 in., R,,=2.72 in There are torsion modes

31.96

(32.4)

407.8

(408)Ex = E. = O.295x I:OKJlbl in:

Values in (...) are from table reported in Ref. 6

p=O.773)(IO-:llb Isec2/in 5. MULTILAYERED CONICAL SHELL

The multilayered conical shell consi.dered in the
present analysis consists of alternate elastic and

viscoelastic layers "such that the face layers are always
elastic. All of the elastic layers are assumed to be of the

same thickness and of specially orthotropic material, as

are all of the viscoelastic -layers. The ratio of thickness

of the viscoelastic layer to that of the elastic layer is

denoted by thickness ratio parameter v. Total thickness

parameter (T/Rl) denotes the ratio of total thickness of

the ~hell to the radius of the first layer of the shell. The

ratio of mass density (p) of viscoelastic to that of elastic

material is taken to be 0.5. The loss fac~or 11 of the

viscoelastic cQre in shear as well as in extension is taken

to be 0.5. Length parameter (Rl/L) is defined as the ratio

of inner radius of the first layer at the small end of the

shell to the slant length of the shell and is taken to beI

a.. = a.. = a.. = O.113x 1OH 16/ in:

I
The minimum natural frequency isl found to be

17.86315 Hz, whereas tpe reported oJeis around 20 Hz:
.

The natural frequencies of a sandwich conical shell

with free edges conSisting of elastic layers have beeQ

determined with the pr~6ent analysis and have been

found to be in good agreement (Table I) with th e

results reported by Wilkins el al6 for the data ~

L=72.

Ro2'
I t2 =0

a=5.07°,

Roi = 22.29Q in.,

ti = 0.021 in.,

RcJ3 = 22.609 in

t3 = 0.021 in.

63
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0.1. Poisson's ratio (v) of the elastic material is taken to

be 0.3 and the ratio of Poisson's ratio of the viscoelastic

material to that of the elastic material is taken to be

1.33. Cone apex angle, a, is taken 10 be 5.07°. The shear

parameter, ~, defined as the ratio of the inphase

component of the shear modulus (Gx.) of the

viscoelastic cores to the Young's modulus (E) of the

elastic layers is taken to be 10-4.

,
torsional modes for multil,ayered shells. There is only a

marginal increase in 1ls for these modes with more

layers. Thus for getting high IValues of 1ls for radial,

IV
I

Figure 2. Varla.tlon or 00 and ~. with V ror axlsyinmetrlc

vibrations or a rree-rree three-Iayered conical
shell. ,

6. RESULTS & DISCUSSION

Variation of the resonance frequencies 0) and
associated system loss factors 11s with thickness ratio

parameter V and total thickness parameter (T/RI) have
been discussed for axisymmetric vibrations of three-,

five- and seven-layered conical. shells with alternate

elastic and viscoelastic layers.

Results have been presented for the shell with data

for the face elastic layer as follows:

Young's modulus: Ex = E. = 3.64 x 106 Ib!in2 =

0.252874 x 1011 N!m2

6Shear modulus: Gx. = G~z = Gxz = 1.399994 x 10
Ib!in2 = 0.972591 x 1010 N/m

Density: p = 0.265 x 10-~~b-sec2/in4 = 0.28535327x 10-4 Ns2/m4 ' ,

Thickness :1 t = 0.03 in. = 0.762 x 10-5m

Radius: R1 = 7.2 in. = 0.18288 m

In the analysis, the designation m I denotes the

lowest resonance 'frequency and its corresponding

system loss factor,; m2 denotes the second lowest

frequency, etc. For a three-layered sandwich shell,

families of modes have been shown for m1 and m2,

whereas for the sake of clarity in figures for

multilayered shells the curves have been drawn for the
first lowest frequencies only and their corresponding

system loss factors for families of modes.

Variation of resonance frequency 0) and associated

system loss factor 115 with V for axisymmetric vibrations

of three-, five- and seven-layered conical shells with

free edges has bee~ shown in Figs. 2-4 for (T/R1) = 0.5.

For multilayered shell 0) for radial mode increases

for lower values of IV, reaches a maximum (900 Hz) at
V = 5 and then decreases with further increasing values

of Vas the stiffness of the shell reduces with f~rther

increase in V. For t~is mode 'I1s increases with \.I: Similar
I

trend is observed for resonance frequency 0) ~nd

associated system loss factor 11s for meridional and

Figure 3. Variation or (I) and Tls with V ror aklsymmetric

vibratio~s or a rree-rree five-layered conicai

shell. ;
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Figure 4. VariatIon or (I) and "I with V ror axlsymmetrlc

vibrations or a rreerrree seven-Iayered conical
I shell.

CIRCUMFERENTIAL CORE SHEAR m.

TO~~::~~MERIDIONAL (\"1- ~
RADIAL :«\

TORSIONAL 1.

ml, , , , , , , r "T
.001 0.005 0.01 0.05 0.1

T/A1

Figure S. Variation oC (I> and Tls with (TIR1) Cor axl-

symmetric vibrations oC a Cree-free three-

layered col)lcal shell.

I

meridional and torsional modes, one should go for higher
of v. ' .

0.5

~

10,000-

For meridional and I circumferential core shear

modes {1) increases with v. For these modes 1ls increases

marginally with V and reaches a maximum, equal to the
I

material loss fact~r of the core. 1ls is more for these
.

thickness core she;ar! modes with more number of layers

in the multilayer~d shell for a particular value of V.

Thus.it is observe" that uniformly high values of 1ls for

all families of modes of vibrations lare obtained if V >

5. I

9000

8000
0.1

7000
0.005

6000
.:::'

5000

9

4000

~

0.001

Figures 5- 7 show the I variation of .resonance

frequency 0) and associated s~stem loss factor "s with

total thickness parameter TIRl for laxisymmetric

vibrations of three-, five-' and seven-Iayered coni~al

shells with free edges for V = 10.
, I

For three-Iayered sa'qdwich shell 0) for radial mode

increases with TIR1. A considerable increase in 0) for

this mode is observed in the high rang~ of TIR1. Similar

trend is noticed for 0) for this mode for five-and

seven-Iayered conical 'shells with TIR 1. The ,,~ for radial

3000

2000

1000

.001 0.005 0.01 T/R 0.05 0.1
I

Figure 6. Variation of 0) and 1ls with (TIRl) for axl-

~ymmetr.lc vibrations of a free-free five-

layered conical shell.
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s

Figure 7. Variation of (I) and ~. with (TIR1) for axi-
symmetric vibrations of a free-free seven.
layered conical shell.

mode for three-l~yered conical shell remains ,nearly

constant for the lower values of TIR1. that is, for thin

shells and decreases marginally in the higher range of

TIRI whereas 11s for this mode for fiveL and
seven-layered shells first increases up to TIRI = 0.005.

then remains almost constant upto T/RI = 0.01, and

again increases marginally for the further increase of

TIR1. Also 11s increases with the number of layers in the

shell.

For meridional and torsional modes for

multilayered shellls (1} increases with the increase of

(TIRl). There i~ no appreciable change in 1ls for

meridional mod~ for three-Iayered sandwich conical
shell up to T/Rl = 0.01 an increase in 1ls for this mode

,
for three-Iayered shell is opserved with the higher

values of (TIRl). For this mode for five-Iayered shell1ls
decreases at the lower values of TIRl, reaches a

,
minimum at (TIR1) = 0.007 and '1hen increases with

,

further increasing values of (TIRl). For meridional
mode for seven-layered shell1ls follows the same trend

as that for five-layered shell but the rate of decrease and

increase in the lower and higher ranges of (TIRl)

respectively is comparatively reduced. For meridional

mode 11$ is ~mall for ,a three-Iayered shell which

inc(eases substantially for a five-Iayered shell. There is

"a decrease in 11$ for this mode in the higher ranges of

(TIRl) when the number .of layers in the shell is

increased .from five to seven. 'There is no substantial

,change in 11$ for torsional'mode with (TIRl) for free-free

multilayered c?nical shell; r\$ for this mode increases
with the n\lmber of layers.

,
Resonance fre~uencies for meridional and

circumferentiaq core shear modes for multilayered shell
remain almost constant ~n 'the chosen range of (TIR1),

that is, 0) for th~se modes is same for thin and thick

shells. There is no change,in as~ociated system loss
factor 11$ for core shear modes for :multilayered conical

shells and it is observed to be equal to the material loss

factor of the viscoelastic core la1e.r of the shell.

The vibration and damping analysis of general

multilayered conical shells of constant thickness with

free edges presented here Ish~WS that increase in number

of layers incr,eases maximu;m obtainable system loss

fa,ctor for most of the modes of vibration with proper

sqlection of geometric p~rameters-thickness ratio

parameter and total thi1kness parameter. It lis o'bserved

that there is a consid~rable increase in system loss

factor when the num~er of laye~s in the shell is

increased from three to five but the increase is only

mariginal when the' number of la~ers is further
increased to .even. It is noticed that uniformly high

values of system loss factor for all families of modes of

vibra.tion are obtained for high valhes of thickness ratio

parabeter. F<;>r a thick shell, more lay\ers are advisable

for getting relatively high values of srstem loss factor

for all families of modesi
, ,

7. CONCLUSION
,

The vibration and damping analy~is of general

multilayered conical shells of constant ihickness with

free edges presented here shows that increase in number

of layers increases maximpm obtainable system loss

factor for most of the mod~s of, vibration with proper

selection of geometric parameters-thitkness ratio,
parameter and total thickness parameter. It is observed

that there is a considerable increase in'system loss

factor when tHe number of layers in the shell is
, I

increased from Jthree-to-five but the increase is only

mari~inal whfin the number 'of layers is further

increased to se~en. It is noticed that uniformly high

values of system loss factbr for all familiJs of modes of, ,
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for all families of modes. I 6. Wilkins, D.J. (JR), Bert, C. W. & Egle, D.M., Free
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APPENDIX

I
Governing Equations of Motion and Boundary Cond~tions for

Axisymmetric Vibrations of Multilayered' ~onicallShell

1 .t. 1 t: cos a 1 t: COS2 a
-'+-+-
3 ( Rlli + X sin a) 12 ( R(li + x sin a )2 48 ( Rfli + X sin a ) (Q22);U;sin2a+

x( Q22 };U;+I sin2 a +

Ii , t. i I t~ COS2 a

6 (Roi + x'sjna ):I ~48 (~0:+ x sina):I

,

I t. I t: cosa I ti COS2 a } (Q ) ..I. -'+-+- 22 O)slnacosa ,

2(R"i+Xsina) 12(R,Ii+xsinaJ 24(R..i+xsina):I i " ,

+( C~~);(RCJi + X sina )
I I ,

-u.--u -wt I tj 1+1 ..
.,

I t;-1 COIS a I t~1 COS2 a
+-

+xsina) 12 (R,I/-I+"'sina)2 48 (Roi-l+xsina)

'tQ22);-,ui-1 sin2 a

~

{ :I t 1 .

,1 t;-1 ; I t;-ICOS a I

.1+ -.+- ..

l ,6(.R1,;-.,+xs;na).48(R,oi-l:xsina)"

{ 1 t;-1
+ -.

3 (R"i-1

1 t ' 1 2 ] } 1
-;-1 .--ti-1 <;osa+.-!.- ti-, COS2 a .

2 (~Oi-I+XSJna) 12
( R .+xsina )2 24 (R . )3 (Q22);-lwSlnaCOSa

'IJ-I CI;-I +xslna

+ (C~~) ( R"i-1 +xsina )..I-I 1 -.:.-u.--=-u +wt ' t I-I.
j-( j-(

~

x{ Ui.x sin a +

x{ U;-I.x sin a + ( R.Ii-1 + X sin a )U;-I.X.

(12)

,
1 t I t~cosa ] t:COS2a

3~+p (Ro;+xsina)+48 (R.,;+xsina):I

.Vi{ ( Q6(, )j sin2'a -( C44)j COsZ a }

t
.Vi+1 { ( Q6(1 ); sin2 a +( C44 )j COS2 a }+

1

6 ( R,1i + x sin a ) 1
I

, 1 t~ COS2 aI
.+- I.

48
(R.+xsina ):I

II/

-~ ti( Q66 )i( Roi + X ~ina -~ti cosa) \(;... -~t;( Q66 ):(~"i + X sina ) V;+I...

{ I ti-1 1 t;-lcosa 1 t;~ICos2a
+ 3 (R"i-1 + X sina )-l2 (R,,;-I +x sina r+48 (R"i-1 +x sina)

I
I

1
1 t;-1 1 t;~1 CpS2 a

-+- ,
6 (R,Ii-1 +xsifJa) 48 (R,Ii-1 +xsina}

sin2 a + ( C44 )i-i COS2 a} +
XV;{(Q66);-1 VI-I

x{ ( Q66 );-1 sin2 a + ( C44 );-1

v
I,"
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{For i = 1,2,3, (N+l), these are (N+l) equations.
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1-!

o=[{'n-I+'n+ r.M'J}(XJU!SX+"'H)'(~~.J)]1
N

JO O = M J~q1!~ pU1!

'£"l'I=!lOd}

X'I-'A( DU!SX + I-'OH) x

JO

r
O = A J~q1!~

'£"l'1 = !JOd}

J-'I~)1-'( J'D)x 0=

1-'(I'() )1-'lf+{VSO.? Mf+ VU!S 1+'nf+vU!S 'n }x

'( ll() )'If+ r.I+'n( VU!S X + !('H)'( II() )'IT+ r.'n{ vso.? 'If- VU!S x + !('H } '("D )'If

JO O = ~n Jaq1!;}

aJU 7 = x pue O = x 1e paU!e1qo. SUO!1!PUO.? ,(JUpunoq ;}~

0 = ( l)ff( i/J.x ) J+,:,:\( XJU!S X + !c'H )!id+

{ x.!n( XJU!S x + 'c'H )+ ~U!S !n} '(~~:J )+{ x.I+!n( XJU!S X + '('H)+ XJU!S I+!n }X

.!( ~~:J ) -{ XX.M( XJ U!S X + !('H ) + XJU!S x.M }'l!( ~~:J )-

.t:(XJU!SX+!('H) v'l t(XJU!SX+!C'H) 'l1 (XJU!SX+'I'H) 'll -+-+ -
XJ tSO" :1 1 XJ so" il ( 'l ( I

'XJ SO:J 'XJU!S 'n'( ZZ()I,,+

.(DU!S X + '('H) vZ
1; -

+ ,
D ZSO.? (1 I

DSO.')DU!S I +'n '(zzD)'

I:('DU!SX+'(~) 'll ('DU!SX+'(~)
-+ ,

'D!O"':1 I '1
1) ~so:) M '( ~~D )-

{'SUO!1Bnb:} (I+N.) aJBasaq1 '(I+N)"

{.sUO!11!nb~ (I+N) ~JU~S~41 '(I+N) 'XJSo.,) M ~ + 'XJU1S 1+'" ~ + 'XJ U1S '"

}1-'(ll")1-'1 ~ + r'.-,"
('XJU1S X + £ .I. U I.

{ suo!}~nb~ (I + N) ~m ~s~q1 ,( I + N ),
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