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ABSTRAC'T

Track pin, an important component in the tracks of heavy annourrd vehicles, is made of steel
surrou~ded by rubber bush. This construction enables the pin to transmit the torsional loads. As the
failure of track pin makes the vehicle immobilised, it is important to ensure a specified life for these
pins. As the :pin is made of rubber and steel, the theoretical studies become difficult. An attempt has
been made to find out the parameters that influence the life of track pins. A finite element method is
ustd to estimate the stresses in the rubber. The temperature rise due to the torsional loads, computed
using the energy equation, is found to be 64.86 °c for l8()0 s at a speed of 30 km/hr, close to that
obtained from actual field measurements.

!

IN~ROD~CTIONI.

An armoured vehicle, whibh generaily weighs
I

about 550-600 kN, is designed to travel on hard and

cross-~ountry terrains. A suiiabIe drive for this type

of terr~in condition is an endless chain fixed to a

set of ~prockets as shown ,in Fig. I.

A schematic diagram of track link is shown in

Fig. 2. The track link block has two bores separated

by a distance. Two such blocks are connected by

means of track pins and the,end connectors. A
typical pin is I shown in Fig. t3. It consists pf a

circular steel rod. The rubberised bushes are

embedded on to thelsteel pin with intervals between

the bushes. When this pin is ir\serted into the block

hole, the compression of bush 'takes place and the

rubber fills these intervals anh transforms into a

full cylindrical shape.

The rel.ltivc movemcnt betwccn the blocks is

accommodated by twisting of rubber bush. The life

of the track is mainly dependent on the rubber bush.Figure IJ l'ruck chuln
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Figure 2. 1rack chain with pads

The life of rubber bush is dependent on the stresses

due to the filling of rubber into the block, the

external load due to track tension, the shear load

due to the blocks relative movement and the

temperature rise due to the hysteresis of these

loads. In trials, it was noticed that these track pins

were failing at 30 per cent of the expected life.

The understanding of possiple causes for the

premature failure by analytical methods willI

I
greatly help in modifying the design, with reducedI ,
experimental cost. The pin construction and

assembly into the housing is a complex one. A
,

numerical method, such as finite e\el'nent analysis,
,

is well suited for estimating the stresses in the
,

rubber. Energy equations, are employed for

evaluating the rise in temperatqre.
,

The .pin and 'the bush are' made of steel and
,

rubber, respectively. Rubber is 'a non-linear elastic
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material with lower Young's modulus and higher

Pois'son's ratio as compared to steel. A firite

element analysis (FEA) package ABAQUS is tJsed

for stress analysis.

2. FINITE ELEMENT MODEL

The insertion ot rubber bushe,s into the track
block bore is shown in Fig. 4. The load due to
insertion is axisymnietric in nature akin to internal
pressure. The stress-strain relationship of the
rubber is nonlinear5-8. The external loads or the
displacements are given as the input in increments
for such materials. When the bushes are inserted
into the bore, they elongate in the axial direction
till two adjacent bushes get in touch with each
other. The load is applied in terms of
displacements. As the displacements are large,
they are divided into a number of steps and are
given as the input by increment. Within the
increment, iterations are done to bring the model to
equilibrium before the next increment is applied.
This process is continued till the final displacement
is obtained. The algorithm used for this step is
RIKS 1 which is well suited for large elastic defor-

mation problems.

The following assumptions are made in the

anatysis:

(a) Rubber behaves as an incompressible material.

(No thange occurs in its volume during the

in~ertion),
Figure 4. Insertion or th,e track pin into the track block bore
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Figure 5. Discrctisation or the bush modcl
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(b) 'l'llc illllCr Nurful:c of tllc bUNII iN rigiJly lixcJ to tllc

steel pin irrespective of the axial forces developed

during insertion,

,
(c) '1'116 coclficlclll of fiictioll bclwccll IJIC oulcr

surface of the rubber and inner bore of the block
,

sllrface is equal to the corresponding faIlles of the
met.ll-rubber contllct.

(d) Only one bush is conStidered in the ~alysis to

estimate the amount of ~xtrusion.
I

3. MODELLING I 1

An axisymmetric finite element nlesh using
I

quadrilateral elFments is shown in Fig. 5. The

inside surface of the rubber bush is in contact with
I

the rigid steel pin; hence the displacements on this

surface are re~trained. During the insertion of
I I

rubger bushes into the block bore, the bush expands

in the axial direction. As the inner lay~r is rigidly

fixed, the side faces of the bush make ~ontact with

the steel pin. This makes the elemhnt d~storted. The
I

outer face of the bush i's allowed to slide and a

suitable friction coefficient is specified for both, I

stick (0.7) and sliding (0.4). Assumption of

sticktng fricti'on at the track pin-rubber bush

interface, constitutes the worst possible case.
I

The deformed mesh of'the compressed bush is

shown in Fig. 6. A, noniinear formulation

d'eveloped by Mooney-~ivlin2,6 for large

deformations of, hyperelastic material is used in the

present a~alysis. The, constants for rubber
incorporated in the a*alysis for COl and C1O are

0.55 Nlmm2 and 0.22 Nlmm2, respectively. The

rubber material chosen lis 'extremely strong under

compressive and ~h.ear loads.

,
4. PRECAUTIONS IN ANALrSIS

As the rubber bush undergoes a. large defor-
,

mation, the element distortion isl to be monitored
,

carefully, The large distortidn may result in

unfavourable element geometties leading cto

inaccuracies in the elerhent stiffness and stress

values. To overcome thik situation, rez.oning
.,

tec~ni.que has been applied at intervals, to tune the

fin\te element mesh to an acceptable geometry, In

this analysis, the rezon \'ng .is done after altJProx 65

per cent of the disp acement is applied. The

remaining displacemenf is applied\ after rezoning.

BUSH
OUTER

SURFACE

TRACK
PIN

---INITIAL MESH

-DEFORMED
MESH ,

Figure 6. Deformed mesh of the compressed bush
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822 VALUE, MPa

1 .60.0

2 .48.2

3 .36.1

4 .24.1

5 .11.0

6 + 0.12

7 + 12.0

compressed" bush are shown in Fig. 7. It can be

noted from the figure that I the stresses are

compressi ve in bonded zone and tensile at the

junction of the pin and end face of rubber bush. The

stresses developed due to insertion of bushes into

the block are compared with the ailowable tensile

strength (27 MPa) a..d found to be within limits. In

Fig. 7. the tensile stress value is maximum at

contour No.7 due to the assumption of sticking

friction at the track pin-rubber bush interface

compared to that of lany other non-sticking case.

The dri ve load on the pin is asymmetric in

nature. The stresses developed due to this load are

not presented in the current analysis and the work

in this direction is under progress.

5.2 Calculation of Temperature

In addition to the stresses developed in the

rubber, another cause of failure could be due to

temperature rise in the rubber3 because of the

hysteresis characteristic of the m aterial. For finding

out temperature rise, axial stiffness is evaluated by

giving a unit displacement in the axial direction.

The axial stiffness is connected to the torsional

stiffness as shown in Section 6.

TEMPERA1;'URE CALCULATIONS FOR

RUBBER BUSHES

6.

Torsional stiffness of the bush, Kt (Nm)1

All;\ ".1/ .'A',
I

where,

III )

The analysis continued till outw~d diameter of the

bush is tqual to the bore diameter of the block.
2.

A = Area (m1

J =Polarmomentofinertia (m4)

Ka = Axial stiffness of the bush (N/m)

~ = Poisson's ratio

Number of cycles/s of the bush (f<p)

j

AN!ALYSIS5.
, v = Vehicle speed (m/s)

1 = Length of the travel by the bush for one

revolution (m) j
I, = Numher of torsional cyclfs, the bush

llllti.:f~().:1i for OIIC fcv()llllioll.
I

V* it
I(j) = I cycles/s

5.1 Calculation or Stresses
I

Tlld ui~rlllC.:clIlclll llIIU 1Iic ~Irc~~c~ Ilrc

compute1 using the procedures explained in the

earlier sections. 1;he stress contours of the
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Nlilllb~r uf l.:'YI:I~s fur tllilll~ or I HOO s V;,) llystcrcsis CIICI-gy pluy u grl!utcr rulc a!; culllparcd

to the initial stresses that are developedl because of
thc il!~crtiol! of thc hll~hc~ ,il! thc hlock. I
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in =i<p 1800jcycles
I

Straill t:llt:rgy uf tJlt: l>usll furl;, cyclt:s (U) (N III)
!

* * *
U = 1/2 Kt 9 in (Not)

9 = Twist angle of the bush in radians

Kt = Torsio~al stiffness of the bush (N m)

5, Heat generated in the bush (q) (N m)

q = u tan a (N m).

tan a = Heat generating factor4

U = Strain energy of the bush (N m)

Heat generated/unit volume .<Q) (Jlm3)6.

Q = q/V ~

q = Heat generated in the bush (N m )

V = Volume of the bush (m3)

Temperature rise in the bush,(~T) (oC)

.*
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7. RESULTS & DISCUSSION

The finite element analysis is a suitable

method for computing the stress values, and it is

found that the stresses are well below the accepted

values. The temperature rise due to the torsional

load is 64.86 °c for 1800 s at a speed of 30 kmlh.

This temperature was verified in field and found to

be nearer to the analytical values. It is found that

there is a considerable degradation of rubber

properties above 60 °C. Hence the properties of

rubber are changed by appropriate variations in

chemical composition. The modified material is

being used in the Services and it is found that the

life of rubber has gone up by 100 per cent.
I

, From the above studies, it is concluded that in

the design of tracks, the temperature rise due to the
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