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ABSTRACT

I Considering Vielle's law and the new thfnnodynamic model which the authors have developed

recently\ the b"ue dependence of temperature sensitivity ofbuming rate (Op) of ammonium perchlorate

(AP) on pressure is resolved af'.d experimentally verified for bellet bumming. The value of Op decreases

with pressure steeply in regimt!.r (below 20 atm), but gently in regime I (above 20 atm). The Op value

ofpowder AP has ~n detennined and it is observed that °p(ROwder) > Op(pellel), which clearly suggests

that of is influencqi by tl1e surface tempcrature sensitive parameter (aT slaT o)p and hence by the

surfacdsubsurface microstructure. In powder burning, the buoyal1t lifting of the particles into the gas

phase occurs, whic~constitutes the so-called 'free board region' (FER) extending just above the b"ue
I surface. Consequenl to the decomposition of AP particles in FER, the condensed phase heat release

gets curtailed and Op(pow.der) becomes larger. A general relationship for Op in tenns of density and

surface temperature is suggested, which i.s applicable to both pellet and powder .i\P.

.I
1. INTRODUCTIONI a function of pressure- (P). In a majority of cases,

I h d . b d l-3

Ammonium perchlorate (AP) is one of the owever, a ecrease IS o serve .

most extensively ~sed oxidizer in high energy We have determirled the values of 0" and have

formulations. Due to its unique characteristic of attempted here to resolve the p~rplexing
self-supporting d~flagration, AP combustion has dependence of 0" on p, The present analysis is
been studied pri~arily to understand the more based on Veille's raw and our novel thermodynamic
complex combustion phenomena in AP-based model of AP deflagration4, which clearly identifies
composite propellant srstems'. Despite the a hitherto unknown subcritical J::ressure regime
profusion of studies COIfdt\cted, AP deflagration (christened as regime I'), .mechanistically
mechanism still remains elusive in its various distinctive from regime I (20- 70 atm) which
facets, AP is only one of it~ kind that exhibits a

s e d . I ' .,
I ucc e s regime ,

critical low pressure deflagration limit, (LPL: 20
at ) b 1 h ' h ' t ~ t b I b ' t bl Most of the studies on AP deflagration have

m e ow w IC I loes no urn; y SUI a e

augmentation of the initialltemperature (T 0)' it can' been surprisingly done on pellets and single

be made to burn below LPL. I The temperature crystals but not on tIle powder, despite its use as a

dependence of burning rate is expressed in terms of. particulate in the actual propellant systems. We

temperature sensitivity of burning rate (O"p), which. have ~tudied the dcflagration of powder AP and

has been observed to increa.se, decrease, or both as compared it, with its deflagration in pellet form in

-
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increasing T 0.' Let us first consider the followin~

r~latfonship between r and p based on Veille's law

order to understand as to how tHe microstructure of

the burning surface of AP influences O'P"

2. EXPERIMENTAL PROCEDURE

The methods employed for preparation of the
samples, measurement of burning rate (r) as a
function of T o and pressure (P), the temperature
profile imprinting and analyses, etc. have been
discussed elsewhere4. Surface temperature (T s,oK),
at a given pressure (P) was obtained from the

following empirical equation4

p~ (2)r=

where

Qo is a constant, n is ~he pressure exponent and

T ig is the ignition t~perature. From the basic

definition of O'~, we can w~ite Eqn (2) as

- [~ ] =
O'p- :\T

(7 0 p
(3)

T;g-ToloT. = 0.0484 loP + 6.6957 (I)

If T o = Tig, then the value of r will be infinity.

However, in the range T o < Tig,;wlhich is normally

prevalent in propellants, O'p will vary with T 0.

Besides, it is well kno~n that the value of Tig

depends upon sample size ~nd shape. Hence, the, .
value. of O'p obtained from Eqn (2) will be

errdneous. We have. modified Eqn (2) by replacing

Tig 'with Ts

O'p = l/(T s (4)To)

The value of T s thus obtained was verified

experimentally by recording the temperature
profile4 of AP deflagration at different pressures
and T o's. The temperature profile plot of In T vs

time is linear up to the temperature corresponding
to the burning surface, and thereafter it deviates
from linearity. The temperature corresponding to
the point of deviation was taken as T s. The surface
temperature was thus obtained at different T o's in
regimes I' and I and from this data (aT slaT o)p was

computed.
, I

The ;. and T s values of tamped powder at

different values of. T o and p were .obtained from
the;. measurements of AP powder in a glass tube
(diameter: 1.0 cm). About 1.5 g of AP of particle

size 200- 250 ~m was packed in the tube as a

lightly tamped powder accommodating nichrome

ignition wire, fuse wires (5 amp) and chromel-
alumel thermocouple (beed size 0.005 in.). The
packing density was determined from the weight of
AP packed to a certain volume in the glass tube and
was found to be 1 glcm3. Care was taken to
maintain the patking density same in all the

experimental mea~urements.

Since Ts is independent of samp'e size and

shape and rest~ only ~n chemical chdracteristics

and pressure, it )s a preferable parameter to Tjg. The
val~e of T s is also affected by T 0. ,

The variation of O'p with p is ~xamined by
,

differentiating Eqn (3) vJi\h respect tJ P:

, 2 [~ ]= -O"p dp

T

dcrp

ap
(5)

RESULTS & DISCUssIoN3.

o

Since O'p and (dT sldP)T are bot~ positive

quantities in both regimes I' ~nd 1, it i~~ explicit

from Eqn (5) that the value ~of O'p should decrease

with pressure. I 1

In regime I, for instance, at 1 atm, thb critical
I

T o below which tP does not burn is 245 °C; this

critical T 0 will have a unique value at a given
I

pressure in the s~bcritical regime 4. Similarly, T s

3.1 Temperatur~ Sensitivity an~ its Variation
with Pressure

The LPL of AP can be brought down and it can
be made to burn at atmospheric pressure by
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Fig ure 1. Dependence or crp and (aT slaT o)p on pressure

will also have a unique value ~t a giv"en pressure in

the subcritical regime. Accordingly, fqr a given

pressure, the critical T o an.d the corresponding T s

(T o and T s taken from Refr 4) were substituted in

Eqn (3) and crp values. obtained at'various pressures

in the regimes I' and I, .and plotted against p in

Fig. 1; the figure also includes the experimental
data of Boggs and Zurn 1 for regime I. The variation

of (Jp with p shows a steep decrease in regime l'

and a marginal decrease in regime I, which is

comparable with that observed by Boggs and
1Zurn .1
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According to our newly proposed thermo-

dynamic model4, the surface activation energy (Es)

is represented as

O'p = EsI2R~
I S (10)

(6)

which is similar tb the equation obtained on
the basis pf Belayaev-Zel ' dovich model6,

Eqns (10' and (8) are similar and hence it may be
concluded that they ~an be used for calculating

I
values of O"p for AP, but only at,LPL.

, .
Above LPL (beyond 20 ~tm), as seen from

Fig. 1, (aT slaT o)p is almost co~stant having a value
of 0.1 in regime I, O"p can,ther~fore, be written as4:

,

0" =E /10Ril (II)p s,c' s

where

Es.c and Es.g are the condensed and gas phase

activation energies just l?elow and above the

apparent surface respectively; R is the gas constant

and (aT slaT o)p and (aT ;ap)T o are the surface

temperature sensitive parameters related to

condensed and the gas phase, respectively. (Jp was

examined by Irearranging Eqn (6) as follows4

Dependence of (Jp or pre~sure can also be

examined by'differentiating Eqn (10) with respect

to p
I

dcr p E s,c [ d7fs]aP = -5"ji"7; at T
(12)

(7)
1 -0

The quantities Es c' T s and (dT IdP)T are all
I. j o

positive and pence the value of {Jp sHould decrease

with P. This )s yet another evidence to show that {Jp

~hould decrease with P. I

Substituting, the appropriate values of Es.c, T s

and (aT slaT o)p in Eqn (7), {Jp was calculafcd at

various pressures in regimes l' and I. The plots

obtained are shown in Fig. I. It may be seen that

the extent of decrease in regime I' is large, and it

is marginal in regime I. This may be attributed to

a steep decrease in the value of (aT slaT o)p in

regime I' compared to regime I (Fig. I ). Hence, it

is said that O'p s~rongly depends upon (aT slaT o)p. In

the present invfstigation, at LPL, (aT slaT o)p is 0.5

(Fig. I) and heJ1ce Eqn (6) becomes4

,

O'p = Es.c/Ri; (8)

Equation (8) is similar to that obtained from
Belayaev-Zel'd~vich model6. I By applying the

,
condition that at higher pressures, T s~T m' we get

the following equation

~.2 ' C alcul~tions of T s from ap I

j I
In regime I, for copstant To, Eqn (4) suggests

that thF value ,of ap var\es with 11T s' whereas it is

proportional to 1/~ acco~ding to Eqn ( 11 ). To
.I

verify which of the dependence~ is better,

experimental data .of Boggs and Zurn and Cohen

Nir8.9were used and a pl(j)t of ap as a function of

both 11T s and 1/~ was I drawn, The correlation
I I

coefficient for both,lap vs IIT s and a; 'v~ In; plots

was found to be 0.98 for the Bogg-Zurnls data, and

0.99 for Cohr Nir's data. ~Ithough, both the

curves fit well# Cohen Nir's data shows a slightly

better fit tha'n that of Bqggs-Zurn for the
I

dependence of ap with both 11T s and 1/~.

Apparently, the ap data 'are not sufficiJntly precise
,

to decipher the superiority O;f the deperdence of ap

either on l/Ts or I/T2s' Howevet, Eqn (11) can be

used to calculate T s at ,diffe;ent pressures in

(9)

Strunnin and Manelis

simplified equation for (Jp

used the following
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Figure 2. Dependence or Ts on P; T scalculaled.using the Icrpdata,

(8) particle size: 200.~15 Jlm, (b) particle size: >

1000 Jlm,;(c) experlmentalland (d) at T o = 26-150 °C. ,
I I.

regime I where\ Es.c is 35 kcal/mole. A plot ot T .11

(calculated from 13qn (11)] as a funGtion of p is

shown in Fig. 2. From a comparison with the

data8-11 of (Juirao and ~illiamsl0, Lengelle,

et alii, CohenlNir8.9 and Boggs & Zurnl, it may be

seen that Coheq Nir's data8.9 gives a better

dependence of ~ s on P, i comparable to the
experimental curves of Guirab and Williams 10 and

Lengellell. I

Figure 3. q vs T profiles ror AP (a) pellet strand (1.93 glcm3)
.3 (b) powder (I g/cm ) burning at To = 245 °c and p =

I atm.

The. ;. and T s values for powder AP

deflagration were obtained experimentally, as

descriqed tlsewhere4. The identifi?ation of true T s

is much easier in the case of compressed pellets
because of a distinct gas-solid interface. In powder

form, however, such a !!lear surface demarcation is

not possible, because AP particles at tlie surface are

so loosely held that some of them are carried away

bouyantly by the upstream gases from the surface

into the gas phase. In the process, exothermic

decomposition of AP particles continues all along
I

their travel from the surface into the gas phase, thus

adding to the gas phase exothermicity. As a result,

the proportion of the heat of decomposition in the

condensed phase will be curtailed compared to that

for pellet burning. In view of such a deflagration

behaviour, the surface in the case of powder

burning can be best called as 'interfacial region' or

'transition region' .The zone in which the driven

AP particles are present in the gas flame is called

3.3 Temperature Sensi&ivity or AP Deflagraiion

as Tamped Powderj

It is apparent from Eqnl(7) and our analysis of
I.

pellet AP deflagratlon that O'p depends on the
i

condensed phase se~sitive parameter (aT slaT o)p.

This suggests tpdt any variation in the

surfacelsubsurface :microstructure of deflagrating
.,

AP would alter this paramater and, hence O'P' We
I.

have, therefore, examinefl the deflagration

behaviour of AP as tam~ed powder, where the

burning surface will be more: particulate and O'p

different from that observed 'ror the p~llet,form.
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I

pellet and the powder are 1.93 9 cm-3 and 1.0 cm -,

respectively compared to the AP single crystal

density (do) of 1.95 9 cm~3. Hence, the appro~imate

numerators in Eqns (4) and (13) are- 1 and 2
I

respectively.

Thus, the higher, v~lue of O'p for the powder,

obtained from. (..) Eqn ( 13 ), (b) In;. vs T o plot and

(c) Eqn (71) may be attributed to the substantial

decrease id MI 1 value due to t1}e upstream liftingI
of the par,icles inl the g~s phase &s well as to the

surface erosion caused by it, .,esulting ~ in an

apparent enhancement in the vallIe of ;.. Further,
.-1

from T s' (Jp and (aT slaT o)p data,1 the Es.c value,

calculated using Eqn (6), isl found to be
~

10.4 kcallmole for powder AP, which matches with

the Es,g f?r pellet AP in regime IA which suggests

that the burning surface. and tience T s is actually in

FBR in the gas phase. \

I
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condensed phase-related. The large~ value of O'p

observed foq AP burning ~s a tamped powder

compared to its burning as pellet is attributed to the

curtailed surfaceJ(subsurface ',heat release owing to

the bouyant lifting of AP particles into the gas

phase. This study reveals that the O'p value of AP is

influ~nced by the ~urface .microstructur~,
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or particulate form as i~ the tamped powder.
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