Defence Science Journd, Vol 47, Nol January 1997, pp. 27-38
© 1997, DESIDOC

Assuring Quallty ‘& Reliability in Complex Avionics Systems

! . Hardware & Software

, V. Haridas
Centre for Militar)é Airworthiness & Certification, Bangalore - 560 037.
A i

ABSTRACT

itis convcnnonal wisdom in defence systems that electronic brains are where much of the present
and future weapon‘s system capability is developed. Electronic hardware advances, particularly in
microprocessors, allow highly complex and sophisticated software to provide high degree of system
autonomy and customisation to mission at hand. Since modern military systems are so much dependent
on the proper funct:onmg of electronics, the ‘quality and reliability of electronic hardware and software
have a profoynd impact on defensive capability and readiness. At the hardware level, due to the
advances in microelectronics, functional capabilities of today’s systems have increased. The advances
in the hardware field have an impact on software also. Nowadays, it is possible to incorporate more
and more system functions through software, rather than going for a pure hardware solution. On the
other hand, complexities of the systems are increasing, working energy levels of the systems are
decreasin and the areas of reliability and quality assurance are becoming more and more wide. This
paper covers major failure modes in microelectronic devices. The various techniques used to improve
component and system reliability are described. The recent trends in expanding the scope of traditional

quality “assurance techniques are also discussed, considering both hardware and software.

NOMENCLATURE |
Temperature cydling y
Random vibration |

High temperatur'eI |
Electrical stresses'

Thermal shock !

Sine vibration, fixed frelquency
Low temperaturé

Sine vibration, sweep frequency
Combined environment
Mechanical shock

Humidity ‘ |

Acceleration
Altit?de. !

TERS~SNT QMO AT >

Kncavod 28 October 1996

1. INTRODUCTION

1.1 Quality & Reliability

There are many definitions of quality. All
these definitions are somewhat different, but all
these agree that the customer’s satisfaction is the
goal. If the customer can be satisfied for every
aspect of the product (such as performance, user
documentation, field support, availability or
service, etc), the quality may certainly be rated as
excellent.' Reliability, when technically
distinguished from ‘quality’ refers to the expected
span of time that a system or device will meet the
user’s need before ‘failing’. The term ‘failing’
means, exactly how the intervals of good services
are defined to arrive at a mean value. For example,

27

DEF SCI J, VOL 47, NO

in a redundant software-controlled system, a
software bug may produce a few inappropriate
operations, leading to program interrupt and
software recovery action. In this case, the actual
output of the system may not be affected Here, the
statistics of the software reliability are affected but
the system down-time may not be affected.

2. RELATIONSHIP BETWEEN HARDWARE
& SOFTWARE

There are many possible distinctions between
hardware and software. These differences arise
from the fact that a software is essentially an
abstraction and therefore is immune to any
mechanical defect, electrical noise, and physical
degradation that afflict hardware. Many people
concerned with software engineering have pointed
out that the cost of removing quality problems
(normally called ‘bugs’) grows exponentially as
time passes from one stage to another. The same is
true for hardware. However, hardware also suffers
from faults during manufacture or those arising
spontaneously while in use due to stress or aging.
These later problems have become prominent over
decades, and therefore hardware quality control has
been concentrated on manufacturing control rather
than on design. On the other hand, quality problems
in software are primarily design problems. The
methods used to control the quality of software are
through some ‘hygienic’ approaches to the design
process. This is because software problems are
primarily logic related that has no analogous
problem of wearout. On the other hand, lbgical
complexities from hardware are largely eliminated
with the evolution of reliable, low cost memory
devices and by the incorporation of standard
integrated circuits (ICs) from which logical
problems are eventually eliminated.

3. MICROELECTRONIC DEVICE
RELIABILITY
It has been estimated that around 65 per cent
of all aircraft down-time is associated with
avionics. An interesting thing is that 90 per cent of
these avionics system’s components is of

28

JANUARY 1997

microelectronics type. From' the 'above two
statements, one can be sure that the avionics
systems reliability is mostly dependent on the
microelectronics component reliability. It has been
identified that most of the failures are environment
related. These environment-related problems are
more severe in military community. There are three
major types of stresses that can bring failure in a
microelectronic devxce These are environmental
stress, electrical stress ,and radiation stress. The
environmental stress mg:ludcs temperature, press-
ure, humidity,’ corrosive atmosphere, vibration,
acceleration, etc. Th|e electrical stress includes:
excess voltage, extess current, electrostatic
discharge effect, etc. The radiation stress ranges
between low level cokmic radiation from trace
impurities and packages to that resulted from a
nuclear explosion. /

4. ENVIRONMENT-RELATED FAILURES

4.1 Temperature-Related Problems

It has been estimated that 50 to 60 per cent of
the microelectronic device !failure is due to thermal
problems. This problem is' growing exponentially,

|
TRANSISTOR [
PER CHIP ' !
1.000E+07 |} % 80586
! * 80486
.
1,000E+06 80334
! ‘ * -g0286|
1.000E+05 i % 8086
|
{
1.000E+04 * 8085
* 8080
|
.000E+03 | 4004 1
I
70 75, 80 8s! 90 95
| YEAR

! ! [
Figure i Power density trends 'y

{

because, over thé decéde, the component density of
the chips has increased at a faster rate. Figure 1
shows the transistor density of several well-known
microprokessors. The transistor count has increased
at tenfold rate over §ix years, while the component
power density has doubled every three years. On
the other hand, the environment.temperature in a
military environment Lan vary from -54 °C to
+71 °C. Fot an avionics' application, this rate of
change of témperature is very high'and canilead to
two types of detrimental effects: (i) at High
temperature environment, the pqwcr dissipation
capability of the device package decreases leading
to thermal rbrv.eakdown, (i) 'due to rapid temperature
changes, cracks may develop in the package, which
will lead toithe absorption of moisture and
subscquently to the de#elopment of corrosion
processes, increase in leakage current, etc. This is
also true in the case.of plastic packaged dev:ices,
because of the differences in the thermal expansion
coefficients of the package and silicon substrate.

4.2 Pressure-Related Problems

Low pressurg reduces the dielectric strength of
the microelectronic component and air density.
This may not i)roducc complete electrical
breakdown, buAt corona and its undesirable side
effects stimulate the situation that may increase the
losses in microelectronic"componcnts. Besides the
ionisation effect also takes place. As the air density
reduces, the heat conducti?n from the component
also gets affected. Besides thermal, humidity and
pressure stresses, the mechanical 1strelsses, such as
vibration, acceleration ‘and shock, etc can also
create problems in the device package. These
stresses can cause lead breakage which is reflected
in their mechanical integrity, electrical
characteristics, or both. Accurate modelling of
potentially destructive mechanical and thermal
stresses offer enhanced electrical reliability for
both ICs and packages. By devicing models to
simulate the effects of stress on critical structural
elements of a device, manufacturing processes can
be design:jl to reduce stress at sensitive points and
thus minimise IC failures. ,

))
| HARIDAS : ASSURING QUALITY & RELIABILITY IN COMPLEX AVIONICS SYSTEMS

Considerable efforts have been made to reduce
the susceptibility of IC packages to the
environmental stresses. One of the recent approach
is by finite element analysis (FEA). Using this
tecchnique as a computer-aidtd design tool, a
semiconductor package design engineer can
characterise stresses and deformations throughout
the package for any type of mechanical or thermal
load. This method demonstrates exactly where the
excessive stresses occur in an IC package and why?
For example, shear stress parallel to the chip
surface reaches a maximum at the corners and
decreases to zero at the center of the chip.
Similarly, an increase in the thickness of the
package to increase the strultural strength will
have an impact on the thermal characteristics of the
chip. Finite element analysis modelling can also
determine how tight the assembly and packaging
process must be, to increase the package reliability.

5. RADIATION EFFECTS

Several types of radiation are of primary
concern to military and aerospace applications.
Ionizing radiation create electron-hole pairs as they
pass through a material. It can also create defects
in the ‘silicon crystalline structure. The recently
discovered radiation effect on semiconductor is the
single event upset. This is associated with heavy,
high energy ions that create very wide and deep
electron pair tracks with potential energy, high
enough to generate voltage spikes throughout the
circuit. The main sources of this kind of radiation
are solar flares, alpha particles (from radioactive
contaminants in electronic packages) and neutrons
and protons (from the nuclear reactors). In general,
digital devices are mostly unaffected, until the
radiation effects exceed the threshold levels. A
linear device responds quicker but may survive
longer. .

To date, silicon on sapphire (SOS), silicon on
insulator (SOI) and dielectric isolations have been
the best choice for the radiation environment.
These techniques basically reduce the junction
volurhe available for the electron-hole pairs
generaiion in bulk silicon. Moreover, carriers

29

DEF SCI J, VOL 47, NO

generated in supporting silicon substrate are not
collected by the device nodes, because the devices
are electrically isolated. The' dielectric isolation
also eliminates parasitic field devices, which
improve the circuit’s total gama doze hardness.

6. ELECTRICAL ENVIRONMENT

On one hand, working energy levels of today’s
electronic systems are becoming low, enabling the
integration of lakh of transistors inside a chip. On
the other hand, devices are becoming more and
more prone to environment like static electricity,
spikes, transients, etc. Electrostatic voltage may
cause junction burnout in bipolar chips and
dielectric breakdown in MOS and CMOS devices.
Spikes and transients may cause unpredictable
logic states in digital systems. The use of antistatic
materials, surge protection circuits, ctc are some of
the techniques used to protect against these
environment.

7. AREAS OF QUALITY & RELIABILITY

ASSURANCE !

The source of a system failure starts right from
the system requirement specification, hardware
failure, hardware design errors, software coding
errors, softwarerdesign errors, and human errors.
In a complex system, failure can occur due to
unusual combination of any of these. This means
that the efforts for quality and reliability must start
from the early phases of product development to be
continued till the field deployment of the product.

7.1 Applicability to Hardware

At hardware level, one obvious technique is to
use very religble components. The MIL-SPEC
program codifies standards for many kinds of
devices thal the military procures. The
MIL-HDBK- 217E! gives the reliability model to
estimate the failure rates for various kinds of
integrated circuit chips. The MIL-STD- 883E2
gives the screening method and procedures to make
a reliable microelectronic device. Here, the
environment is categorised as: '

30

JANUARY 1997

(a) Physical environment, in which components are
exposed to various physical environment such as
temperature, low pressure, humidity, etc.

(b) 'Mechanical test, in which the mechanical
integrity of the basic, chip with the package is
verified. The device will be exposed to vibration,
acceleration, s’hock,'etc and the lead integrity is

' verified. The visual examination is also conducted
to identifyother mechanical integrity problems.

(c) Electrical stress, %n which the device is subjected
to various static and dynamiic electrical stresses.
All functional tests are carried out in this stressed
environment. |

Above the L:hip level, techniques for building
reliable devices include: compopent burn-in, care-
ful signal routing, shielding, cabinet grounding,
environmental control, and otlfler conservative and
well-established design practices. In a very large
system, it is unreasonable to ‘expect that every
component will be tothlly reliable. In this case,
other techniques that vallow for individual
component failure must be used. For this reason, a
number of techniques have to be implemented that
allow a system to coqtmue functioning ¢ven when
individual components fail. These techniques
involve redundancy management‘, and dynamically
configurable systems. The redundancy techniques
that allow for individual component failures,
themselves alld additional complexity and possible
sources of error into the systerq

{Another problem area in hardware is the
environment in which the systém is working.
Figure 2 shows the pércentage failure rates due to
various environments. "I‘wo methods are used in
mlhtary community to huild confidence in the
system against the envirorimental problems. One is
the environmental qualification testipng, in which
the prototype of the system is subjected to
simulated environment before prdduction to
prevent these common problems in an equipment
that must operate at high reliability in severe
environment. Military applications cfevelopment
engineers use a variety of equipment for

envxronmental stressing. They expose prototypes to
l

‘ :
HARIDAS : ASSURING QUALITY & RELIABILITY IN COMPLEX AVIONICS SYSTEMS

TEMPERA"FURE
| 40 %

|

ALTITUDE 2 %

I

i
VIBRATION 27 %

SALT 4 %

SANDL& DUST
6 %

MOISTURE
19 %

Figure 2. Environment-related failure distribution
)

extremes of tex\npcrature, a,‘ltitudc, and humidity in
specially built chambers. Shakers, shock machines
and centrifuges are used for dynamic stressing3 .
The second one is the environmental stress
screening (ESS) which can be applied to both
prototype design and dctual production units. If the
ESS program is started af the initial stages, defects
in the product design can be corrected before the
production starts?. The ESS identifies most of these
defects at the factory, reducing manufacturing costs
for quality contrc}l and rework, as well as lowering
the warranty and maintenance costs for both the
manufacturer and the user. It tan also lead to
changes in the design it el‘f, based on the result of
screening at the production l]mits (Fig. 3).

The difference betw;eﬁ qualification testing
and ESS however is significant. Tpe qualification
testing process tests a product to uncover defects in
design and does not require every prototype to be
tested because the same design 'flaws will occur in
each protype of the same design that is produced.
The ESS on the other hand requires that every
single unit produced be screened for defects’ that
have occurred prlmarxly during manufacturing.
These flaws may vary from unit to unit. The
effective implementation .of ESS depends on the

i

INITIAL FLAW
LEVEL NO T) NO SCREENING
FEEDBACK ‘
SCREENING WITHOUT
FLAWS FEEDBACK

REMAINING \ |
INITIAL FLAW 1~ SCREENING WITH FEEDBACK
"LEVEL WITH \E&—
FEEDBACK

MANUFACTURING

PHASE

DELIVERY TIME

Figure 3. Effectiveness of ESS on bath tub curve

A - TEMPERATURE CYCLING

B - RANDOM VIBRATION .
C - HIGH TEMPERATURE

D - ELECTRICAL STRESSES

E - THERMAL SHOCK

F - SINE VIBRATION FIXED FREQUENCY

G - LOW TEMPERATURE

H - SINE VIBRATION SWEEP FREQUENCY

| - COMBINED ENVIRONMENT
J - MECHANICAL SHOCK

K - HUMIDITY

L - ACCELERATION

M - ALTITUDE

| Figure 4. Weighted rank effectiveness of ESS
identification of the environment which cause
maximum infant mortality failure in the system.
Figure 4 shows the weighted rank of effectiveness
of typical environmental screens (data from

31

DEF SCI J, VOL 47, NO 1, JANUARY 1997

Institute of Environmental Séience). It is evident
from the figure that most of the failures are
revealed with temperature cycling and random
vibration. That is why, ESS has got another name,
i.e., ‘shake and bake’ for reliability.

Another important area having great
implications is the electrical environment in which
the system is working. Today, the electronics are
more vulnerable to electrical interference, such as
lightning, electrostatic discharge, electromagnetic
interference, electromagnetic pulses created by
nuclear explosions, etc. As the system complexity
grows, it is necessary to incorporate some online

test strategies into the system. This is evident from
thé functional capabilities of today’s
‘microelectronic devices and systems. In a complex
redundant system, isolation of the system faults and
reconfiguration of the §ysteni are necessary after a
component or sub-system fails in the system.
Ideally, test strategy should be mapped out at the
time of product cqnception (Fig. 5). This test
strategy will vary gr'eatly from product to product,
depending upon the sxstl‘.m requirements. Also, in
an ideal environment,'test engineers work side by
side with design engineers, software programmers,
and hardware design engineersi This permits test

C SYSTEM DESIGN)

F

HARDWARE
DESIGN

TEST |
DESIGN i

1

SOFTWARE
DESIGN

J L

[

HARDWARE & SOFTWARE

! |
DESIGN e VERIFY TESTABILITY FLOW CHART |['
CAPTURE e INCORPORATE TESTABILITY MODULES
~— e HOOK INTO

VERIFY
DESIGN

® WRITE CODE |
* ﬁ'FIST MODULES'

® INTEGRATE SYSTEM
® DEBUG PROTOTYPE
® FINALISE DESIGN

» ® FABRICATE
e DOCUMENT
e RELEASE

Figure 5. Design for test

32

HARIDAS, : ASSURING QUALITY & RELIABILITY IN COMPLEX AVIONICS SYSTEMS

features to be incorporated 'at the time of
implementation, rather than adjing components
later, that affects other system features.

{

There are different approaches to design for
testability. Built-in test (BIT), Built-in test
equipment (BITE), and‘ Built-in self test (BIST) are
some of the techniques, Implementation of all these
depend on the complexity of the system and some
other requjrements, such as system efficiency, fault
tolerance, etc. The BIT refers to a component or
assembly having buill‘t—in test capability but that
requires some external source to actually' analyse
where faults occur. The lBITE refers to a system
having a scc':tion dedicated to incorporating test
equipment that can exercise system td locate faults.
The BIST refers to a component or assembly
having circuitry built-in that can actually test itself
with proper pattern sequence cxerciﬁing it.

7.2 Applicability to Software

For large k.computer éystems, the cost and
complexity of the softwa:rc typically dominate
hardwaré. The software programs contain trade-
offs between economy of memory and spced’lof
execution. For example, execution time is lost
when transfers are exe"cuted to reuse code, but at
the cost of memory, straight line coding could be
used at higher speed. So in any software system,
there will dcfinit‘cly be a trade-off between
hardware and software.

Software quqlilty is adequately different from
hardware quality that it warrants separate
treatment. The quality problems in software are
primarily design problems.| Software design is the
creation of detailed description of a logical process
which is perplexing because the evolving products
continually compel enginpex‘s to reset directions
throughout the project. Software designers are
often called redesigners because tf\ey frequently
make improvements in thejr design whenever they'
find a better way. . !

The lack of quality and consistency in
delivered software products is due to lack of
methods, visibility, consistency and resolutiornt of
ambiguities in system and software requirements.

So the basic approach in any software design is to
find and eliminate the errors as early as possible in
the software life cycle, the by-product of this
approach being improved {uality, higher
productivity, and less time wastage during testing.
The experience has shown that the use of high order
languages in coding, once exclusively used for data
processing domain, became acceptable, and infact
are being preferred for embeddetl systems, given
the adequacy of processor performance. The
computer-aided software engineering (CASE) tools
has become very useful during all phases of
software development cycles.

In today’s electronic systems, in addition to
carrying out the main functional operations for
redundant systems, the software also play a key
role in maintaining system integrity in the face of
hardware malfunctioning. In such systems,
software failures can be categorised into the
following: i

* Failure to perform functions as required under
nomal conditions '

Failure to perform as expected under abnomnal
conditions .

Faihire to recover after a hardware-related failure
and

* Failure to diagnose hardware failure

Today’s electronic systems have become
complex. After considering the abovementioned
failure criteria also, the design cannot be said to
have adequate quality unless its performance is
satisfactory in the face of all expected conditions.
A useful measure of software quality is the
mean-time between failures (MTBF). Since failure
come with varying levels of importance, it is
necessary to grade them into several levels ranging
from fatal flaws to cosmetic problems. Also, one
needs to relate the density of bugs to the likely rate
at which bugs will create actual failures in field
conditions. Although software reliability can be
assessed by testing, the mean-time between failure
statistics is very sensitive function of usage. Thus,
if the test séqucnces" are imperfect in the sense of

33

DEF SCI J, VOL 47, NO 1, JANUARY ‘1997

actual field usage, the results are not likely to
accurately reflect reliability. However, experience
has shown that bug density is a useful predictor of
reliability.

7.3 Software Quality Control

The essential elements of software quality
control are: (a) Means of measuring conformance
to requirements and (b) management strategy to
assure corrective action for ensuring that
conformance to requirements is maintained. By
following a well-established design methodology, a
well-designed test plan’ and a well-established
configuration management plan, it is possible to
assure extremely reliable software. To ensure a
quality software, the :bug density’ should be
tracked and an acceptable level should be
established (for complex system application one
bug per thousand line is an acceptable limit). The
system test must include exposure to a stressful
environment' without evidence of fatal flaWs. An
ideal conditjon for testing is impossible to be
achieved. All software designers are fam'iliar with
the sequential approach to debugging in which
modules are tested until they meet module
specification, and then tested modules are
integrated into a complete software for final test.
The final test is more stressful than the module test
because a new set of problems may emerge. There
are two methods to tackle this problem. One is the
check for test coverage. Test coverage is actually a
measure ofi the proportion of the program actually
exercised during a test. Branch points of the code
are tracked during the test to see which portions of
the code are tracked and also to see what proportion
of the altérnative paths have been taken. The
second method is overload. It is intuitively clear
that problems are particularly expected to occur
under stresses which occur when registers go into
overflow, stack overflows, more number of
interrupts, etc. Along with software maintenance,

34

simultaneous software updates are the added
stresses. Software w}lich work well under all these
conditions can be expected to be free from bugs.
As stated éarlier, the reliability cannot alone be
dependent on the| test strategy. This is especially
true in the case bf complex systems. Here, it is
necessary that a well-designed method for a project
control should be invoked with the assumption that
the problems are avoided right from the earlier
phases of the development. 'I-"he importance of this
aspect of quality assurante is evident from the
rapid cost escalation gs' problems remain
undiscovered while development proceeds. No one
can claim that his method is 100 per cent foolproof.
What is needed is a review process to assure that
design does not become entrenched before
requirements are thoroughly clear, coding does not
begin before the d'esign is settled, and the product
is not delivered be'fore the stress testing mentioned
above has been completed. %

8. IMPLEMENTING SOFTWARE QUALITY
ASSURANCE FUNCTIONS _
The ‘software quality assurance (SQA) is a

planned and systematic pattern of all actions. The

minimum subsets of a software quality assurance

. -10, !
function are>"10; } !

(a)) Management

(b) Documentation

(c) Standards, practices and convenlions

(d) Testing, life cycle audits, audii ;:Hccklists, and
(e) Conﬂguration madagement.

8.1 Management "
The main problems associated wnth the failure

of a softwqre product are madequate planning, and
inadequate;requirement specification. The planning
activity i? mainly based on the project to be
executed, the customer s requirements, and the
expenencé of thc managcr Tht': output of the

}
, HARIDAS : ASSURING QUALITY & RELIABILITY IN COMPLEX AVIONICS SYSTEMS

activity is a s.crics of do'cpments, project
management plans, s'chedules, cost planning,
computer program development plans, test-plans,
etc. However, an ideal model forithe process is that
of software life qycle model, which projects that a
good requirement specification will exist by the
end of ajspecific phase. Projection of an inadequate
requirement spc;cifici:ationl is perhaps the most
serious problem in software development. It is at
this level, that the s‘ystems connection with the
outside world is expressed. Human factor plays a
very important role here. We have the inability to
grasp in totality, and also, further inability to
communicate what we have g‘raspedf This is
reflected into the spgcifications that lack
completeness, clarity and consistency. The second
thing is that the user himself may not be fully aware
of the things hk really wants. To, solve this, the
trend appears to be evolving towarjds:

* Recogltn'sing a way of]life that requirements will
confirm to, be incomplete.

* Encouraging schedu]cs; that explicitly recognise
_incomplete requirements.

* Promoting early identification of requirer:ncnt
specifications changes and correct disposition.

Ensuring that sofiware is designed to enhance
change implementation.

8.2 Documentation

As compare'd }with hardware for which both the
document and the product are visible throughout
the product life cycle, the visible element of a
software product is only documentation, without
which there is neither process nor product. Apart
from this, there are more concrete reasons for
documentation. . '

(a) Writing down decisions is esscntia!; only when
documented, gaps and inconsistencies appear and
decisions already made come into clear focus.

I
() Documentation communicates decisions to
others. '

(c) Documentation offers database and checklists for
periodic reviews.

(@ Documentation offers a clearly definable
position, essential to demonstrate to the customer,
.« how requirements and specifications are met.

i
)
Table 1. Document set recommendations

Document IEEE DOD DOD NASA
class 2167 2167A
Management 4 25
Engineering 2 9 21
Testing 4 6
Support 1 7

Table 1 shows document set recommendations
for software development activities in the US. A
review of the efforts made by the three organisa-
tions reveals that there is yet no clear answer to
how much documentation is enough. Instead, each
standard recommends that documentation be
tailored to fit a project need. The IEEE standard
recommends the possibility of addition to the
minimum set while DOD and NASA recommend
the possibility of subtraction frox}1 the maximum
set.

8.3 Standards, Practices & Conventions

The main difficulties with the standards have
not been their existence, but their recommendations
and ability to be implemented. The ability of a
standard to be implemented depends on two
factors.

(a) The environment in which the standards are
embedded and

(b) The ability to determine objectives if standards
are being followed.

Both these factors are inclining more in the
direction of implementation into an overall
programming environment in which the standards,
practices and conventions are human-factored into
the software supporting the development team.

{

35

DEF SCI J, VOL 47, NO

8.4 Testing, Life Cycle Reviews, Audit

Check List

The software testing is recommended as a
primary tool for the software quality assurance.
Testing means not just running the tests, but
designing tests, establishing test standards,
designing correction procedures for discovered
errors, etc.” The activity required to create a test
is a powerful bug preventer but the problem is that
the test design actually begins only after the first
development stage and at this stage, enough
product details are available to allow the drafting
of test design. Another problem is that the tests
must be selected from an infinite number of input,
output values and paths which may lead to errors
in testing. Normally thrée types of errors are
created during a test design: -

!

* Creating too few tests, letting too many bugs get
into the customer.

Creating wrong tests, letting the wrong bug get in
to the customer.

Creating too many tests, doing unnecessary work.
To overcome such errors, the tests must be
comprehensive and should include the following:

JANUARY 1997

e The test must match as closely to the test
environment as that of the customer’s
environment. \ '

Get customer’s ﬁarticipation during testing.

l
Design the test against a history of customers
reported failures oh previous product.

Historical failure information should be recorded
to create a database. L

Life cycle reviews and;audit checklists are
considered the most powerful bug preventer in
contrast to testing. This is because reviews and
checklists run the entire le gth of the product cycle.
Reviews are dynamic as' they ‘deal with the on-
going development of the software system. They
are also preventive, because they are intended to
stop problems befonie these appear as a bug in
software product. Au'dlts in contrast, are designed
to check the state of t,he system bemg developed at
a certain point. They also assure that the current
product is in accordance with th¢ organisation
policies, pr({ceduresand all system requirements.
Audits are'static as they deal with the past
‘dcv.elopment of the system that leads to the current

(CUSTOMER CREDIBILITY AN ISSUE)

|

{ YES
[AWUDITS]

l

NO

| ;

1
(REVIEWS J |
|

—

e FUNCTIONAL
e PHYSICAL

e .IN-PROCESS

|
|
\
(TECHNICAL REVIEWS) (
1

MANAGERIAL' REVIEWS)

SOFTWARE REQUIREMENT REVIEW t
PRELIMINARY DESIGN REVIEW ' !
CRITICAL DESIGN REVIEW

SOFTWARE V%RIFICATION & VALIDATION REVIEW

Figure 6. Review techniques decision tree

36

HARIDAS : ASSURING QUALITY & RELIABILITY IN COMPLEX AVIONICS SYSTEMS

software system product and corrective, because
these aim at correcting faults present in the
supporting materials (Fig. 6).

8.5 Conﬁgflratitl)n Management

The effective impler'npntations t of
configurati[)n mana_'gemeni vary in depth according
to the project parameters. Th‘s is normally
combined with code control, media control and
problem reporting and corrective action as a
discipling. The principle management tool of
software; configuration management is the
‘baselinef-, a formal milcstpne'in the product
system life cycle, usually defined at the end of each
phase of the software life cycle. The baselines are
some documentation representing the approved
configuration identification of the program against
which the software product under development is
compared to ensure thdt it conforms to the design
specification in the baseline documentation. The
following points can bé considered for SQA
recognising a %eries of fundtions to be tailored tp

fit particular ofganisation : ! |

(a) Quality is designed into software, not tested in ‘

(b) SQA should be involved right fronj the beginning
and should participate in each stage of the project.

{¢) SQA should be central and independent.
(d) The minimum efforts for SQA should include

)
*. Eskablishing a library of standards, procedures
and technical publications. . '

* Reviewing document for completeness and
conformance J

* Establishing change control procedures
(e). Mid-level efforts for SQA should include

* Establishing configuration management
procedures :

* Participating in the development of document,
reviews, walkthroughi, and audits.

(f). High level efforts for SQA should include

|
* Preparing comprehensive test plans

* Maintalning a baseline library for all project
documentation and code

* Maintaining a test library of test plans, test
'r_eports, and evaluation of test techniques

* Maintaining concurrency with a state-of-the-
art analysis, design, programming and testing
techniques.

9. CONCLUSION

*The challenges to continue improvement of
quality and reliability come from two primary
trends: advances in hardware and software
technologies. Hardware technology has advanced
by increasing scales of integration. Functional
capabilities of microelectronid devices have
increased. Inspections have beconie difficult. Due
to low energy levels, the errors may be caused by
stray-charged particles. Along with these new
technologics, it is essential that the quality
assurance technologies keep pace with appropriate
ways of monitoring processes, predicting reliability
and carrying out failure mode analysis.

The software technology produces codes in
enorr{lou‘s quantities. A one million line program
may contain thousands of bugs. The challenges to
software programmers are through better design,
effective development tools, sqphisticated test
methods and improved management of
development processes. Improving the quality is
the only way of improving productivity. High
technologies that create challenges \must support
the need of quality and reliability improvement.
Through the use of soﬁhisticated quality assurance
techniques, we can look forward to the day when
quality analysis will celebrate the discovery of each
new defective part or line code as valuable input to
the improvement process.

REFERENCES

Military handbook on reliability prediction of
electronic equipment. US Dept. of Defence.
Washington, DC. MIL-HDBK-217E.

2. Military standard on test meikods and procedures
for microelectronics, US Dept. of Defence.
Washington, DC. MIL-STD-303E.

DEF SCI J, VOL 47, NO 1, JANUARY 1995

Military standard on engineering stress screening
process for electronic equipment, Dept. of
Defence. Washington, DC. MIL-STD-2164.

IEEE standard for software quality assurance
plans, ANSI/IEEE, New York, 10017.
ANSVIEEE STD. 73(3-19|84.

Defence system software development, US Dept.
of Defence. Washington, DC. DOD-STD-2167A.

Software considerations in airborne systems and
equipment certification. Radio Technical
Commission for Aeronautics (RTCA),
Washington, DC. RTCA-DO-178B-1992.

Contributor

38

8

10.

11t

Buckley, Flether J. & Robert, Poten. Software
quality asSurance. /[EEE Tran. Software.
Engineering, 1984, SE-10, (1), 3641,

Alan,”Boming. Computer system reliability and
nuclear war. Communicatio"n of the ACM, 1987,
30(2), 112-29. v

James, Vincent; Albert, Waters & John, Sinclair.
Software quality assuxam:e, Volume 1. Prentice
Hall, Englewood Cliffs, New Jersy, 1988. .

Richard, Hamlet. Special section on software
testing. Communication of the ACM, 1988, 31(6),

662-67. ' |
[

Dr V Harldas is working as scientist in Regional Céntre for Military Airworthiness (Aircraft),
Bangalore. He is BTech in Electronics & Communication Enginecribg. He completed one-year
Electronics Fellowship Course at IAT, Pune, in 1993. His areas of work'are verification, validation,
testing and evaluation of avionic systems and safety critical airborne software. I

