Defence Science Journal, Vo‘ 47, No 1, January 1997, pp. 19-26
© 1997, DESIDOC l

Reliability' Analysis in Design & Development of Checkout Software for

{ " . Aerospace System

J. Chattopadhyay
Research:Centre Imarat, Hyderabad - 500 269.

ABSTRACT

Checkout system is the nerve centre for test, maintenance and launch of an aerospace vehicle.
Real-time software embedded in it plays a vital role in takiﬁg decisions at critical point of time. The
problem of not detecting a fault in the system under test or raising a false alarm due to the
misinterpretation of a parameter will lead to crashing of time, bouncing on safety and crunching on
cost. It is therefore essential to develop and deliver a fault-free software for this system. Software
reliability is defined as the probability that it will work without fail for a specified period. Unlike
hardware, it is difficult to count and predict the failures and thereby generate a figure of reliability. In
case of checkout software, activities are more dependent on the environment and the parameters are
also random with respect to time. This paper highlights the set oi procedures evolved during the process

designing and delivering various reliable checkout software for aerospace system. This has given
an insight into the failure ;analysis and has shown the correctness of software under all foresecable

fonditions?. Basic execution {ime model is Used to measure the desired software reliability.

i

1. INTRODUCTILON .‘ ‘

Checkout system (CS) is an il‘ntegral part of
aerospace system. Flight worthiness|is declared and
assessed using thi's_systcm. Aerospace system
reliability ?hould be as high as possible at the cost
of space and weight., This'dictates onto the
techniques of fault-tolefance adopted to improve
system reljability and also the reliability of CS.
With the aqlvancemcnt in technology, aerospace
system today has a large number of sophisticated
units which are to be tésted with utmost care and
high degree of technical support. Thus, testi‘ng and
clearance of aerospace system has become critical
and complex. Specially-designed CSs with o lurgt
number of hard‘warc and software components l*xavi:
come up to fit intd this requirement. |

System reliability is desired both in hardware
and software. A false alarm or an unnoticed
problem can cause a massive failure in different
perspectives. The sources of failure in software are

" the design faults, while the .prinz:ipal source in

hardware is physical deterioration!. Once a
software (design) defect is properly fixed, it is in
general fixed for all time, except in certain cases
where the defect is due to some unforeseen
environment which was not tested or developed
for®. The probability of hardware' failure due to
wear and other physical causes has usually been
much higher than the one due to an unrecognised
design problem. Thus, hardware reliability has a
specific pattern and can be altered with the usc of
definite redundancy. On the other hand, software
reliability is due to the inherent faults that are not
visible and are very difficult to assess. Moreover,

t

Received 28 Oclqber 1996

!
\

DEF SC1 J, 'VOL 47,. NO 1, JANUARY 1997

it also changes or improves the process of
development and maintenance. Thus hardware and

software reliability follow inverse logic.

This paper concentrates on the software
reliability aspects of CS designed for an aerospace
system. Softwar'e reliability is due to design faults
or environmental problems and is related to
software life cyvcle. The figure of reliability is
improved at every phase, To design a reliable
software, care should be taken at each point of the
life cycle. The best way of addressing this preblem
is to model software reliability with the primary
factors, like fault introductiom, its removal and the
environment2. Data is collected on different

ROOT

INTEGRATED
TESTING

INDEPENDENT
TESTING

syste'ms with a major thrust on a‘particular CS
already deployed. The parameter:s for a basic
cxecution model are ejvaluated and applied to
predict the-system reliabilit'y for given CPU hours,

1
2. CHECKOUT SOFTWARE OVERVIEW

The CS is based on a real-tim¢ operating
system to perform data acquisition, cpntrol and
decision making operatioﬁs. It has the following
main modules: : |

(a) Unit test module (UTM)
(b) Auto sequencer module (ASM)
(c) Checkout libraries module (CLM).

1
|

I
!
!

|

{

!
AUTO i
SEQUENCER

Figure 1. Checkouf software

20

‘ CH).\TI‘OPADHYAY: RELIABILITY A’ [ALYSIS OF CHECKOUT SOFTWARE

)
éach one of these has different sub-modules

and sub-sub-modules as shown in Fig. 1.

. The UTM may have multiple modules
dependmg on the number of sub-systems that can
be electrically checked in an aerospace system.
Each sub-system has built-in self test (BIST) to
indicate its health. The sub-systems are to be tested
both in integrdted and independent modes to repair
the target system by replacement. Each UTM is
capable of exciting the relevant sub-system and
perform its functional tcst at different
configurations. ;

The ASM.is a time-based routine with event
interlock. It performs last minite checks before
take-off and also initialisés some of the systems to
ensure the lift-off, and the selttings that ensure
correct flight. Besides, 'it does surveillance on each
parameter through multiple monitoring points. This
is the most critical part of checkout software.
During this process, if an eventuality is caused due
to a parameter, it can quickly reset the system and
generate ‘hold’. The last minute criticality
determines the fate of the flight. Hence, the
software at this phase has to be highly reliable.

Thcre are software modules known to be CLM,
related to d;fferent input-output link, data
acquisition, engineering conversion, computer
communication and commar|1d actuation. Other
than thnf, there are modules for user interface for
menu, graphics. dlsplay, plot and print. Besides,
there are modules that are embedded within the
flight systems which are to be used for ground
checkout. This is specially applicable to intelligent
units. The CS is required to initiate these routines
and ing%rpret the results. Depending upon the type
of the'system and the numbers of sub-systems,
there will be grow;h in the software modules.
However, many modules are common. Failure data
is genérated on several CSs. The system that is
being p}cscntly considered has 200 modulcs and
about 400 K code nnd data size.

3. SOFTWARE DEVELOPMENT PROCESS

Over the years, several software development

rocesses have been evolved to bring down the
P | g
i

design errors and 'also to make the whole activity
visible so that the change control and quality
control can be implemented. Royce model was
published in late sixties. The Waterfall model and
‘V’ model followed later on. However, these are
strictly for software development process. The CS
has a dedicated computer environment, and the
software has to be designed and developed along
with the hardware. In this case, it is essential that
the approach to reliability takes the total system in
picture. Department of Defence Standard
DOD-STD-2167 and WINGROVE?> developmcnt
cycle fits in this requirement. Reliability is ensured
by maintaining a correct flow which is reviewed at
each stage using the following techniques:

* Management - configuration control

* Specification optimisation

* Structured programming technique

* Segmented or modular program development
* Design reviews and walkthroughs

* Use of flow ‘charts, heirarchial input process
output gHIPO), Pseudo code prior to code

~

* Top-down development

* Visibility of software by documentation and code
I comment

* Testing by designer

* Validation on testing

* Testing in a working environment prior to use
* Use of fail-safe, fault-tolerant software

* Use of effective validation and test procedures,
stage-wise

* Use of numerical techniques and models to
quality software reliability.,

4. FAULT-TOLERANCE IN’ SOFTWARE
DESIGN
The techniques that are 'to be followed to
design the software have already been discussed.
Collectively, these techniques attempt to prevent
the existance of faults in the operational software.
But in case of realistic systems, they are unlikely

21

DEF SCI J, VOL 47, NO 1, JANUARY 199?

to be totally successful and a number of residual
faults still remain. It will be appropriate to supp-
lement fault-ptevention with design approaches
which attempt to suppress the effects of residual
faults. However, this scheme preserves the
structural quality and the coupling requirementsl.

A single abstract model to describe a software
system consxsts of a number of components that
cooperate under the influence of a design to reet
the demands of the system environment (Fig. 2).
The design can be considered as the algorithm
which is responsible for defining interactions

[VOTER SYSTEM
ENVIRONMENT]

Figure 2. Software fault tolerant model

between components and system environment. The
objective of the software fault-tolerance |s to
prevent the software faults from causing system
failure. A component redundancy with a voting
mechanism to determine the system response may
be an answer to this problem. However, this has the
necessary overhead and structural complexity. The
CS in which the response time is a critical issue has
to select a technique that keeps alive its
performance level. To achieve this, the following
two methods are considered.

(a) N-version programming
(b) Recovery blocks.

4.1 N-Version Programming

This is achieved by utilising three or more
versions of a program each of which has been
independently desxgned using the same
specifications and is activated by a driver module
that controls all input-output data and determines
overall output through a majority voting scheme®.
The present version of CS is a two-version
programming. The voting decision is taken by the
operator so that there is no overhead (Fig. 3).'

22

Figure 3 shows the existence of common
modules between ASM and UTM. These are related
to the survelllance of critical pnrumeters which
calls for a HOLD in case of an abnormahty These
modules are duplicated and can be selected on the
operator’s choice. A provxsnon is made to take the
final decision based on the reporting qf both the

'
i SYSTEM DATA

1

UTM SURV;E|LLANCE SUHVéILLANCE ASM
g] =
g WL TN
[oriver | | oispLay | | DRIVER] [D;SPLAY]
!
INPUT/ | VOTER
OUTPUT : (OPERATOR)
HARDWARE DECISION

Figure 3. Two-version checkout program

modules. The efficiency of this scheme has been
appreciated in the fault finding on different
occasions without overhead components.

4.2 Recovery Blocks

In this method, a number of blocks using the
same specifications arfe designed. If primary block
does not function, the job is allotted to the other
block and is thus condnued and the decision is
passed on to an acceptance modul.e However, due
to the large overheads, a scheme like functional
degraded alternates with rollback recovery facility
is chosen. Primary moduvlev provides full
functionality, whereas alternate modules provide
progressively degraded functionality, being an old
version. In case of chéckout software, due to
inherent fault problem, the’re may be a spurious
hold generation at particula'r point. A provision is
extended in this case through (i) multlpomt
monitoring, and (ii) by -pass scheme. |

The multipoint }nomtormg refers to the
monitoring of the same parameter through
telemetry link and alsb through direcf link to the

CHA'ITOPADHYIAY: RELIABII!,ITY ANALYSIS OF CHECKOUT SOFTWARE

Sensors so tpat in case of a problem the acceptance
module can use either link.

The by-pdss scheme is employed through the
provision of manual holdl In case of detection of
incorrett reading of a paramcter it forces the
system to previous best point so that the protess
can continue with the faulty parameters. Decisions
for hold generation. is taken by the operator;
therefore, the system ‘works with degradation. For
example, during a control system check, the allied
parameters are: hydraulic pressure, battery voltage,
battery current anﬂ feedback voltages. There may
be a case, where it iis found that 411 other parameters
are working pormally except the current
monitoring. It generatés hold. It is inferred that the
system health is normal, and thete may be problem
with the current moni}o ing module. Hence, the
launch can continue. This facility is called the
rollback recovery, whnch is the capability of the
system to return to the consnstent:state7 that
existed before it failed. In this case the system
calls for a hold with a provision to lift the hold and
proceed from the same point and the system is
restarted. .

5. TEST & VALIDATION SCHEMES TO
- BUILD RELIABLE CS

Validation, verification and testing are the
three terms which finally, contribute to the removal
of design faults and'thereby generate a reliable
software. A :tcrm often comes out as
ready-to-re}ease to determine when to stop testing
and also the reliability criteria it should meet.
-Several définitioﬁs are 'available for testing by
Hetzel and Myers Howcver,.thc following
definition is the best fitted in the prcsent context.

‘Testing is the process thpt satisfies the
reliability requirement .to be achieved on its
deployment in operation phase’. In general, the
steps foll‘owed in testmg are |

(a) Testing lhruug,h rcvicws
(b) Unit testing '

(c) System testing

(d) Acceptance tcsting.

i

Reviews are part of software life cycle. They
are ,conducted at the completiop of each phase of
the development cycle. Unit testing is achieved
through an external (black box) perspective with
test cases based on the specifications of what the
program is supposed to do, or on an internal (white
box) perspective with test cases developed to cover
or exercise the internal logic. During system
testing, all the modules are brought together,
Mostly, it is the black box. This phase is completed
on the basis of number of errors/faults encountered.
In general, this activity is conducted to perform
functional testing, structural testing and also
testing for the correctness of proof.

In case of CS software design, this is the most
crucial phase where the maximum number of
design faults are eliminated. A specific method is
adopted to achieve a given fault intensity target.
Software validation steps are shown in Fig. 4.

Failure data is collected from Step 3 for
reliability measurement. Necessary data as regards
to failure intensity and the total number of failures
are estimated at this stage. The target reliability is
achieved through Step 4. The design of the
simylator to test the system largely depends on this
activity. A good simulator design is also.a part of
checkout system dcsxgn Normally, 10 hours per
day for 30 days of testing is recommended at this

STEP 1 PDR, WR, CDR
STEP 2 UNIT TESTING

WALK THROUGH, LOGIC CHECK
STEP 3 INTEGRATED TESTING

DATA FLOW, HARDWARE STUBS
STEP 4 SOFTWARE INTEGRATED

WITH HARDWARE

AEROSPACE SYSTEM

SIMULATOR
ST b CHECKOUT SYSTIT‘M

AEROSPACE SYSTEM
)

Figure 4. Software validatidn steps

23

DEF SCI J, VOL 47,NO 1, JANUARY 1997

phase. Finally at Step 5, the checkout system is
connected to the actual hardware and evaluated for
its performance! There may be a cyclic operation
between Step 4 and Step 5. These schemes -are
evolved with a lot of iterations and on application
to different acrospace systems.

6. CHECKOUT SOFTWARE RELIABILITY
MODELLING & PREDICTION

Establishing reliability is a major challenge in
software production environment. A software
product can be released only after some threshold
reliability criterion has been satisfied. The most
useful parameters are : residual fault density and
failure intensity. Software reliability models are a
recent concept. They were brought into effe?t by
Jelnski and Moranda, Littlew’ood5 and Verall,
Shooman & Musa, during seventies and by Musa
and Okumoto, Dale in eighties. Since then, various
models have come up and are being used in
different areas.

For software reliability model, one must
consider principal factors that affect it, viz., fault
introduction, fault removal and the environment.
Fault introduction depends primarily on the
developed code and development process charact-
eristics. The most significant code characteristic is
its size. Code can be developed to add features or
remove faults. Fault removal depends on the
operational profile. Since some of the foregoing
factors are probabilistic in nature and operate over
time, software reliability models are generally
formulated in terms of random process. The models
are distinguished from each other in general terms
by probability distribution of failure times of the
number of failures experienced during a fixed time
interal or by the nature of the variation of rahdom
process with time. The possibilities of different
mathematical forms to describe the failure process
are almost limitless. To choose a particular model,
the following points are to be considered: (i) The

24

model should give, good' predictions of future
failure behaviour, (ii) compute useful éuantities,
(iii) be simple, (iv) widely applicablg, and (v)
based on sound lassumptions. ‘
|

From the literature, it is found that the basic
execution timef model is gen'erally superior in
capability and applicability to other published
modelsZ. It is gqu for the pretest studs', i.e. till it
attains ready-to-release state. For checkout
software, basic execution model {s an ideal
selection from the parameter es’timatio'n point.

6.1 Basic Execution Time Model

The failure intensity A for the basic model as
a function of failures experienced is

A =2Ao[1 = /vo] M
Ao = Initial failure intensity

. -'
p = Failure experienced,

1

vo = Total numPer of failures.

The slope of failure, intensity

/B = ~ho/Vo @

This confirms that thé failure intensity comes
down against tin,lc. Failure intensity at time (z) is
given by .

Me) = Ao exp[—(Ao/Vo)t] 3)

and reliability at t hours for a period of ¢ hours
is given by v

R(¢/t)=exp|- [vo exp [- Ao/ Vo) t]]

' 1

[- —eXP';[-(M/Vo)f']]} @

A figure of reliability and failure intensity of
a checkout software designed and developed is
determined from the above equations. Parameters
to be estimated are initial failure intensity A, and
total failure vo. ‘ |

!

6.2 Computation f
Total cocie size = 300 K.

) Average inherent faults fouhd on similar type
of sdftware 5 3 faults/1K code. |

CHATTOPADHYAY :RELIABILITY ANALYSIS OF CHECKOUT SOFTWARE

I
Inherent fault = 900. i y

Consndcnng fault rcd'.tctnon factor (B) as unity,
total failure, vb = 900. _ | '

A data tzlble is generated during soft'waqe
integration time bhsed on the number of failures vs
CPU hours. It is represented in Tabl? 1.

r’l‘able 1. Time vs l'allure data

Time 1 213 4 5.6 7 8 9 10
(hr) |

Failures 30 42 26 38 22 28. 30 1922 17

3

Initial failure intensity A, can be estimated as
27.4 from Table 1. As discussed in Step 4 of system
validation, a run pf 300 hr is given to obtain the
desired software reliability. Checkout software is
required to function' continuously for 5 hr. Failure
intensity is 0.002959 failures/CPU hour. Software
reliability at the time of actual testing is 0.986368.

6.3 Observations

1 Reliability figure and }ailure intensity can be
improved on further testing. Sincé it was in the
accepted band, the softvdare was released for

operation. |)

2. It shows that the failure intensity decays,
exponentially with time, whereas software
reliability improves. This is shown in Fig. 5 by
generating data at different testing times.

FAILURE Vs RELIABILITY CURVE

[i) FAILURE

RELIABILITY1

|
0 50 100 150 200 | 250 300

Figure 5. CPU time/hour

3. Itis inferred that good simulation aid and testing
methods increase the initial failure intensity rate
and that allows to gain desired system reliability
within the shortest time. Again, on increasing the
testing period, one can achieve higher order of
reliability.

7. CONCLUSION '

Most of the techniques related to software
development are taken care of. It is shown that a
target reliability figure always helps to streamline
the software design techniques, testing metho-
dologies and time to convert it to ‘ready-to-release’
state. An attempt has been made to establish
theories in practice. Some assumptions are made
relating to the test data and their computation. A
better estimation technique has to be adopted.
Basic execution time model has a constant slope,
which contradicts with the practical data.
Reliability increases with the faults repaired, but
the effect of repair on fault growth is not
considered. So there may be a difference of opinion
in reliability prediction. It is recommended to use
the Poisson’s logarithmic process. However, a good
approach" to establish reliability in software and
their measurement at primary level is brought out
clearly and distinctly. This can be used as a
yardstick for future work.

REFERENCES

1. Paul, Rook. Software reliability handbook.
Elsevier Applied Science, London.

2. John, D‘. Musa.; Anthony, Iannino & Kazuhira,
Okumoto. Software reliability, measurement,
prediction, application. McGraw-Hill Book
Company, New York.

3 Bil, Hetzel. The complete guide to software
testing. QED Infomnation Science Inc, Wellesley,
Massachusetts-02181.

4. Anderson, T. & Knight, J.C. Frame work for
software fault tolerance in real-time systems.
IEEE Trans. on Software Engineering, 1983,
SE-9(3), 335-64.

5. Littlewood, B. Software reliability. Blackwell
Scientific Publications, Oxford, Lbndon.

28

DEF SCI J, VOL 47, NO 1, JANUARY l9§7

Robert, N. Charette. Software engineering
environments concepts and technology. Intertext
Publications Inc., McGraw-Hill, Inc. New York.

Yashwant, Malaiya, K.; Karunanithi, Nathimuthu
& Verma, Pradeep. Predictability of software
reliability models. IEEE Trans. on Reliability,
1992, 41(4), 539-46. '

Contributor

26

Norman, i-’ Schneldewmd Software reliability
model with optimal selection of faillire data. IEEE
Trans. on Software Engineering, 1993, 19(11),
1095-104. \ ,

Kitchenham & Littlewood, B. Measurement for
software control and assurance. Elsevier Applied
Science, London.

Mr J Chattopadhyay received AMIE in Electronids from Institution of Engineers and MTech in
Automation and Control from JNTU, Hyderabad. He joined D, dO at Research Centre Imarat in
1986 and has been working in the design and development
IGMDP. At present, he is working as system manager and chief designer of checkout systems for
different missile projects. He has gained expertise in the design of real- um; systems for embedded
applications. Before joining DRDL, he completed one-year Electronics Fellowship Course at I1AT,
Pune. He is member of the Institution of Engineers. !

checkout and launch systems for

1

