
I

Defence Science Jo~al, Vo~ 47, No I, January 1997, pp. 19-26
~ 1997, DESIDOC I I

,
I

ReliabilityIAn31ysis i~ Design & Development of Checkout Software for
I
I Aerospace System

J. Chattopadhyay

ResearchlCentre lmarat, Hyderabad -500269.
I

ABSTRACT

Checkout.system is the nerve centre for test, maintenance and launch of an aerospace vehicle,
Real-time software embedded in it plays a vital role in takihg decisions at critical point of time, The
problem of not detecting a fault in tl*- system under test or raising a false alarm due to the
misinterpretation of a parameter will lead to crashing of time, bouncing on ~fety and crunching on
cost, It is tl1erefore essential to develop and deliver a fault-free software for this system, Software
reliability is defined as the probability that it will work without fail fbr a specified period, Unlike
hardware, it is difficult to count and predict the failures and thereby generate a figure of reliability .In
case of checkout software, activities are more dependent on the environment and the parameters are
also rarlck>m with respect to time, This paper highlights the set 0(procedures evolved during the process
of designing and delivering various reliable checkout softwarJ for aerospace system, This has given
ab insight into the failure lanalysis and has shown tre correctness of software under all foreseeable
fondition~, Basic fxecution time model is used to measure the dtt;sired software reliability,

I. INTRODUCTION I System reliability is desired both in hardware

Checkout syst~m (CS) is an integral part of and software, A false alarm or an ~!1noticed

aerospace system, Flight worthinesstis declared and pro~lem can cause a massive failure in different
d ' h 'l t A I t perspectives, The s.ources of failure' in software are

assesse ltslng t IS sys em, erospace sys em, I, ,

, , the d~sign faults, while the prIncIpal source In
reliability ~hould be as hIgh as possIble at the cost h d ' h ' I d t ' t ' 1 Or , , I' ar ware IS p yslca e erIora Ion. nce a
of s~ace and weIght., ThIs dIctates o,nto the software (design) defedt is propefly fixed, it is in

technIques of fault-toletance adopted to Improve general fixed for all time, except in certain cases

system reliability .and a~so the reliability of cs, where the defect is due to so+e unforeseen

With the a~vancement in technology, aerospace environment which was not tested or developed

system today has a large number of sophisticated for2, The probability of hardware' failure due to

units which are to be t~s~ed with utmost care and wear and other physical causes has usually been

high degree of technical sqpport. Thus, testi1ng and mu~h higher than the one due to an ,un~~cognised
clearance of aerospace sys~em has become critical desIgn problem. Thus, hardware relIabIlIty has a

t I SI i II .1 i I .1
CS ' I I I. !ipecific pllllcrn Ilnd cl\n he 1\I1crcd willl Ihe lI!iC of

un< camp ex. PCC" y-ucs gl1Cu SjWlt 1 " UI-gc

j ,1 definite redundancy, On the other hand, software
number of hardware and software components nav f I ' b ' I ' t ' d "t th .

h t f It th t t., , , re la I I y IS ue o e In eren au S a are no
come up to fit Intd thIs requIrement. I vi~ibl~ u1ld urc very difficull lo usscs~, Morcovcr,

Received 28 Oct~er 1996

I
f \

DF.F sa I, VOl 47, NO I, JANUARY 199'7

it also changes or improves the process of

dcvcJopmcnt Ilnd mllinlcnnncc. Thll~ hnrdwnrc nnd

software reliability follow inversc logic.

This paper concentrates on the software
reliability aspects of CS designed for an aerospace
system. Softwa~e reliability is due to design faults
or environme~tal problems and is related to
software life cycle. The figure of reliability is
improved at evbry phase., To design a reliable
software, care should be taken at each point of the
life cycle. The best way of addressing this problem
is to model software reliability with the primary,
factors, like fault introduction, its removal and the
environment2. Data is collected on different

s);'ste~s with a major thrust on a Iparticular CS

already deployed. The parameterB for a basic
execution model Ilre e~ulullted ulid upplled tll

predict 'the-system reliability for given CPU hours.
I
,

2. CHECKOUT SOFTW~RE OVERVIEW

The CS is based on a real-tim~ operating

system to perform data acquisition, cpntrol and

decision making operatiohs. It has the following
main modules: I

(a) Unit test module (UTM)

(b) Auto sequencer module (ASM)

(c) Checkout l~~raries module (CLM)

~~D~~

I

~~

Figure I. Checkout sortware

20

-f--~~

I
~TfOPADHYAY: RELJABILnY A

I

, Each one of these has different sub-modules
and sub-sub-modules as shown in Fig. 1. I

I
The UTM may have mu'ltiple modules, I

depending on the number of sub-systems that can
be electrically checkcd in an aerospace system.
Each sub.,system has built-in self test (BIST) to
indicate its healt1h. The sub-systems are to be tested
both in integrat~d and independent modes to repair
the target sys,tekn by replacement. Each UTM is
capable of exciting the relevant sub-system and
perform itsi fun'ctional test at different
configurations. I I

The ASM. is a time-based" routine with event
interlock. It performs la~t min~te checks before
take-off and also initia,ises some of the systems to
ensure the lift-off. and the se,ttings that ensure

correct flight. Besides. 'it does surveillance on each
parameter through m ultiple monitoring points. This

is the most critica~ part of checkout software.
During this process, if an eventuality is caused due
to a parameter. it can quickly reset the sys~em. and

generate 'hold.. The last mi-nute criticality
determines the fate of the flight. Hence. the

l'
software at this phase has to be highly reliable.

There are softward modules known to be CLM.
,

related 'to different input-output link. data

acquisit\on. engineering conversion. computer
communication and command actuation. Other

I
than thif. there ,are modules fo, user interf~ce for

menu, graphics. display, plot and print. Besides,
there are modules that are em~edded within the
flight systems which are to be used for ground

I
checkout. This is specially appl~cable to intelligent
units. The CS is required to initiate these routines
and in~rpret the ~esults. Depending upon the type
of thel system and the numbers of sub-systems,
there wilt be growfh in the software modules.
However. many modules ,are common. Failure data
is genbrated on several CSs. The system that is

being p~esently considered has 200 modules and
about 400 K code and data size.

!

3. SOFTWARE DEIELOPMjENT pROCESS

Over \he years, sev~ral software development
processes ~ave been evolved to Ibring d~WI\ the

21

fAL YSIS (F CHECKOur S<FIW ARE

design errors and 'also to make the whole activity
visible so that the change cobtrol and quality'
control can be implemented. Royce model was
published in late sixties. The Waterfall model and
'V' model followed later on. However, these are
strictly for software development process. The CS
has a dedicated computer environment, and the
software has to be designed and developed along
with the hardware. In this case, it is essential that
the approach to reliability takes the total system in
picture. Department of Defence Standard
DOD-STD-2167 and WINGROVE2,6 development
cycle fits in this requirement. Reliability is ensured
by maintaining a correct flow which is reviewed at
each stage using the following techniques:

* Management -configuration control

* Specification optimisation

* Structured programming technique

* Segmented or modular program development
I

* Design reviews and walkthroughs

* Ust of flow charts, heirarchial input process

output ~IPO), Pseudo code prior to code

* Top-down development

* Visibility of software by documentation and code

Icomment

* Testing by designer

* Validation on testing

* Testing in a working environment prior to use

* Use of fail-safe, fault-tolerant software

* Use of eff~tive validation 'and test procedures,
.I

.stage-wlse
* Use of numer,cal techniques and models to

quality software reliability. i

4. FAULT-TOLERANCE IN SOFTWARE
DESIGN I

The techniques that are tto be followed to
dc:iigll tllc !ioft~urc lluvC ulrcudy l>ccn dilil.:lililicd.
Collectively, these techniques attempt to prevent

the existance of faults in the operational software.

But in case of realistic systems, lhey are unlikely

OFF sa J, VOL 47, NO 1, JANUARY 1997
/

to be totally successful and a number of residual
faults still rem~in. It will be appropriate to suPP-
lement fault-pieventlon wIth c.lesIgl1 npprullches
which attempt to suppress the effects of residual

faults. However, this scheme preserves the

structural quality and the coupling requirementsl.

A single abstract model to describe a software
system consistsj of a number of components that

,
cooperate under the influence of a design to meet
the demands of the system environment (Fig. 2).
The design can be considered as the algorithm
which is responsible for defining interactions

Figure'3 s~ows the bxistence of common
modules between ASM and tJTM. ThesF are relat~d
to thc surveIllance of crltlcnl pnrnll1ctcrs which
calls for 8.HOLD in case 9f an abnorm~lity. These

modules are duplicated and,can be selected on the

operator's choice. ~ provision 'is made to take thei
final decision based on the reporting qf both the

Figure 3. Two-ver.lon checkout program

between components and system environment. The
objective of the software fault-tolerance is to
prevent the software faults from causing system
failure. A component redundancy with a voting
mechanism to determine the system response may
be an answer to this problem. However, this has the
necessary overhead and structural complexity. The
CS in which the response time is a critical issue has
to select a technique that keeps alive its
performance level. To achieve this, the following
two methods are considered.

modules. The efficiency 0! this scheme has been
appreciated in t4e fault finding on different
~ccasions without overhead components.

(a) N-version programming

(b) Recovery blocks.

4.1 N -Version Programming

This is achieved by utilising three or more
versions of a program each of which has been
independently designed using the same
specifications and is activatetl by a driver module

that controls all input-output, data and determines
overall output through a majority voting scheme4.
The present version of cs is a two-version
programming. Thf voting decision is taken by the
operator so that there is no overhead (Fig. 3).'

4.2 Recov~ry Blocks

In this method, a, number of blocks using the
same specifica~ions are designed. If primary block
does hot function, the ~oH is allotted to the other
block and is thus continued: and the de.cision is
passed' on to an a~ceptance modulel. However, dueI.
to the large overheads, a scheme like functional
degraded alternates with rollba~k recovery facility
is chosen. Primary modulel provides full

!

functionality, whereas alternate modules provide
progressively degraded functiona:lity, being an old
version. In case of chbckout software, due to

inherent fault problem, thdre may be a sp~rious
ho\d generation at particular point. A provision is
ex~ended in this. case through (i) multipoint

monitoring, and (ii) byjpas~ scheme. I

The multipoint Jnonitorin& refers to the
monitoring of the s'ame parameter through
telemetry link. and alsp through direct link to the

22

mA TfOPADHY A Y : RELIABILrrY ANALYSIS CF CHECKOm SOFIW ARE
I I

sensors so trat in case of a problem~ the acceptance
module can use either link.

The by-p¥s scheme i,s employed through the
provision of manual hold.1 In case of detection of
incQrrect reading of a pjarameter, it forces the
system to previous bC?st point, so that the process
can continue with the faulty parameters. Decisions
for hold generation: is taken by' the operator;
therefore, the system Iworks with degradation. For
example, during: a contrJl system check, the allied
parameters are: hy,draulic pressure, battery voltage,
battery current anti feedback voltages. There may

I
be a case, where ,it lis found that all other parameters

are working .normally except the current

monitoring. It generates hold. It is inferred that the

system health is normal, and thete may be problem
with the current monifoiing module. Hence, the
launch can continue. This facility ls called the

I
rollback recovery, which is the capability of 'the

r .7
system to return to the consistent Istate , that
existed before it fai~ed. I In this tase, the system

calls for a hold with a prQvision to lift the hold and
proceed from the 5ame point and th~ system is
restarted.

Reviews are part of software life cycle. They
are ,conducted at the completion of each phase of
the development cycle. Unit iesting is achieved
through an external (black box) perspective with
test cases based on the specifications of what the
program is supposed to do, or on an internal (whiteI
box) per~pective with test cases developed to cover
or exercise the internal logic. During system
testing, all the modules are brought together.
Mostly, it is the black box. This phase is completed
on the basis of number of errors/faults encountered.
In general, this activity is conducted to perform
functional testing, structural testing and also
testing for the correctness of proof.

In case of CS software ~esign. this is the most
crucial phase where the maximum number of

design faults are eliminated. A specific method is
adopted to achieve a given fault intensity target.
Software validation steps are shown in Fig. 4.

Failure data is collected from Step 3 for
reliability measurement. Necessary data as regards
to failure intensity. and the total number of failures
are estimated at this stage. The target reliability is
achieved through Step 4. The design of the
sim\llaior to test the system largely depends on this
activity.. A good simulator design is also .a part of
checkout Isystem design. Normally, 10 hours per
day for 30 days of testing is recommended at this

POR, WR, CORSTEP 1

S1rEP 2 UNIT TESTING
WALK THROUGH, LOGIC CHECK

STEP 3 INTEGRATED TESTING
DATA FLOW, HARDWARE STUBS

SOFTWARE INTEGRATED
WITH HARDWARE

STEP 4

I
AEROSPACE SYSTEM

SIMULATOR

:;1 LJ' [)

5. TEST & VALIDATION SCHEMES TO

BUILD RELIABLE 'CS

Validation, veiification and testing are the

three terms which finallyi contribute to the removal

of design faults and' thereby generate a reliable

software. A'term often comes out asI
ready-to-reJease to determine when to stop testing

and also the reliability criteria it should meet.

Several d~finitiorts are lavailabl~ for testing by

Hetzel and Myers. However,1 the following

definition is the b~st fitted in the present context.
I

'Testing is the process th~t satisfies the
reliability requirement .to be achieved on its

deployment in operation phase'. In general, the
I

steps foll'owed in testing are I
I ,

(a) Tcstlng through rcv;ows.

(b) Unit ~esting I

(c) Syste"l testing

(d) Acceptance testing.

CIII:CK~IJT fJVgTI:,M

l
AEROSPACE SYSTEM

I

Figure 4. Software valldatlJn steps

23

DFF sa I, VOL 47, NO I, JANUARY 1997

phase. Finally at Step 5, the checkout system is
connected to the actual hardware and evaluated for
its performance! There may be u cyclic operallon
between Step 4' and Step 5. These schemes .are

evolved with a lot of iterations and on application

to different aerospace systems.

model should give I good' pre(Jictions of future

failure behaviour, (ii) compute usefui ~uantities,
(iii) be simple, (iv) widely applicablCf, and (v)

,
based on sgund lassumptions.

I
From the literature, it is found that the basic

execution tim~ model is generally superior in
capability and applica~ility (0 other published
models2. It is gbod for the pretest study, i.e. till it
attains ready-t~-release state. For checkout
software, basic execution model is an ideal
selection from the parameter estimation point., ,

6. CHECKOUT SOFTWARE RELIABILITY
MODELLING & PREDICTION

Establishing reliability is a major challrnge in

software production environmept. A software

product can be released only after some threshold

reliability criterion has been. satis~ed. The most

useful parameters are: residu~ fault density and
I

failure intensity. Software reliability models are a

recent concept. They were brought into effert by

Jelnski and Moranda, LittlewoodS and Verall,

Shooman & Musa, during seventies and by Musa

and Okumoto, Dale in eighties. Since then, various

models have come up and are being used in

different areas.

For software reliability model, one must

consider principal factors that affect it, viz., fault

introduction, fault removal and the. environment.

Fault introduction depends primarily on the

developed code and development process charact-

eristics. The most significant code characteristic is

its size. Code can be developed to add fea~'Jres or
,remove faults. Fault removal depends 0" the

operational profile. Since some of the foregoing

factors are probabilistic in nature and operate over

time, software reliability models are generally

formulated in terms o f random process. The m odels

are distinguished from each other in general terms

by probability distribution of failure times of the

number of failures experienced during a fixed time
,

interal or by the nature of the variation of rahdom

process with time. The possibilities of different

mathematical forms to describe the failure prpcess

are almost limitless. To choose a particular model,

the following points are to be considered: (i) The

6.1 Basic Execution Time Model

The failure intensity). for the basic model as

a fun,ction of failures experienced is
,
~) = ~[l -Jl/vo] (I)

Ac = Initial failure intensity
,

~ = Failure experienced,
,

Vo = Total numper of failure's.

The slope of failure, intensity
I

~'A/~~ = -~/Vo I (2)
I

This confirms that the failure intensity comes

down against time. FaiJure intensity at time (I) is
.,

gIven by

A(I) = Ac exp [-(Ac/vo) I] :

and reliability at t hours for a period of I hours

is given by'

R(I' /1) = exp I--i

(3)

[Vo e~p [- (Aoo(vo) t]J

--exp~[-(Ao/Vo) :]} .(4)

, A figure of reliability .and failure intensity of

a ~heckout software designed and developed is
determined from the sbove equations. Parameters
to be estimated are inhial failure \intensity ~ and
total failure vo. 1

6.2 Comput~tion
Total code size = 300 K.

I Average inherent faults fouhd on similar type
of sdftware T 3 faults/1 K code. \

24

I

i

~

qIA 1TQP A DRY A Y : RELIABILnY ANAL YSIS OF CHECJ(OUT SOF1W ARE

3. It is inferred that good simulation aid and testing

methods increase the initial failure intensity rate
and that allows to gain desired system reliability

within the shortest time. Again, on increasing the

testing period, one can achieve higher order of
~liability .

j
Inherent fault = 900. / I

Considering fault redJction factor (B) as unity,
I I

total failure, Vb = 900. J ,

A data tJble is generated during soft'wa~e

integration time based on the numbe~ of failures vs

CPU hours. It is represented in Table I.
~

I Table I. TIme VI r~lure data
7. CONCLUSION

Most of the techniques rel~ted to s.oftware
development are taken care of. It is shown that a

target reliability figure always helps to streamline
the software design I techniques, testing metho-
dologies and time to convert it to 'ready-to-release'
state. An attempt has been made to establish
theories in practice. Some assumptions are made
relating to the test data and their computation. A
better estimation technique has to be adopted.

Basic execution time Imodel has a constant slope,
which contradicts with the practical data.

Reliability increases with the faults repaired, but
the effect of repair on fault growth is not
considered. So there may be a difference of opinion
in reliability prediction. It is recommended to use
the Poiss.on's logarithmic process. However, a good
approach to establish reliability in software and
their mea~urement at primary level is br<?ught out
clearly and distinctly. This can be used as a
yardstick for future work.

REFERENCES

Failures 1130 42 26 38 22 28. 30 1922

Initial failure; inten$ity Ao can be estimated as

27.4 from Table I. As discussed in S tep 4 of system

validation, a run pf 300 ~r is given to obtain the
desired software reliability. Checkout software is, .
required to function' continuously for 5 hr. Failur.e
intensity is 0.00295'9 failures/CPU hour. Software

reliability at the ti:me of actual testing is 0.986368.

6.3 Observations

1

2.

Reliability figure and failure intensity can be
improved on further testi~g. Since it was in the
accepted band, the softvJare was released forI
operation. I

I
It shows that the' failure intensity decays,

exponentially with trme, whereas softwareI
reliability improves. rhis is shown in Fig. 5 by

generating data at different testing times.
1

FAILURE Vs REL~ABlLITY CURVE 2.

3

4,

Paul, Rook. Software reliability handbook.
Elsevier Applied Science, London.

John, D. Musa. ; Anthony, Iannino & Kazuhira,
I

Okumoto. Software reliability, measurement,
prediction,1 application. McGraw-Hill Book
Company, New Yorlc.

Bil, Hetzel. The complete guide to software
testihg. QED Infonnation Science Inc, Wellesley,
Massachusetts-O2181.

Anderson, T. & Knight, J.C. Frame worlc for
software fault tolerance in real-time systems.
IEEE Trans. on Software Engineering, 1983,

SE-9(3),335-64.

5 Littlewood, B. Software reliability. Blackwell

Scientific Publications, Oxford, Lbndon.

?~

DFF sa I, VOL 47, NO 1, JANUARY 199-7

8. Nonnan, F. Schneidewind. Software reliability
model witrl optjmal'selectidn of failure data. IEEE
Trans. on Software Engineering,/1993, 19(11),
1095-104. I

6. Robert, N. Charette. Software engineering
environmentS concepts and technology. Intertext
Publications Inc., McGmw-Hill, Inc. New Yorlc.

Yashwant, Malaiya, K.; Karunanithi, NOChimuthu
& Verma, Pradeep. Predictability of software
reliability models. IEEE Trans. on Reliability,
1992, 41(4), 539-46.

7.
9. Kitchenh~ & Littlewood, 13. Myasurement forI

ooftware control an4 assurance. Elsevier Applied

Science, London.

Contributor

Mr J Chattopadhyay received AMIE in Electronic's from Institution of Engineers and MTech in
Automation and Control from JNTU, Hyderabad. He joined Df{do at Research Centre Imarat in
1986 and has been working in the design and development 0/: checkout and launch systems for
IGMDP. At present, he is working as system manager and chief designer of checkout systems for

,
different missile projects. He has gained expertise in the design of real-tim~ systems for embedded
applications. Before joIning DRDL, he completed one-year Electronics Fellowship Course at IAT,
Pune. He is member of the Institution of Engineers. r

,

26

