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ABSTRACT

This study investigates postbuckling behaviour of laminated composite plates using a
nine-noded shear flexible quadrilateral plate element. The formulation includes nonlinear
strain-displacement relation based on von Karman's assumption. The nonlinear governing equations
are solved through iteration. A detailed parametric study is carried out to bring out the influence of
ply-angle, aspect ratio and material properties on the postbuckling strength of laminates due to
in-plane shear loads.

I. INTRODUCTION

In recent years, fibre-reinforced laminated
composites have found increasing application in
many engineering fields, such as aircraft, missile,
hydrospace, automobiles, etc. This is mainly due to
their high specific strength and specific stiffness.
These structures are often subjected to in-plane
loadings which may cause buckling. The accurate
knowledge of critical buckling loads, mode shapes,
and the subsequent postbuckling behaviour is
essential for reliable and lightweight design of such
structures. Experimental difficulties in obtaining
accurate buckling loads even fot' isotropic
homogeneous plates, are well known. These are
mainly associated with obtaining desired conditions
at the plate edges to achieve the desired in-plane

loading conditions (e.g. uniform stress) and
boundary conditions (e.g. simply-supported or
free ). Additional difficulties arise for composite
plates. Physical discontinuities and exposed fibers
at the plate edges make the desired loadings and
boundary conditions even more difficult to achieve
and internal discontinuities (e.g. .delamination
or debonding) degrade the reliability and
reproducibility of results.

Hence, analytical or numerical approaches
only can predict the buckling behaviour. Among the
numerical approaches, the finite element procedure
is ideally suited for analysis of structures because of
its flexibility in accounting for arbitrary
geometries, boundary conditions, loading and
material property variations. It also has advantage
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strains can be written in terms of mid-plane
deformations as

over the analytical method because there is no need
for apriori assumption of mode shape, and the
solution itself predicts the mode shape based on
chosen boundary conditions.

Postbuckling behaviour of composite platel
due to uniaxial, biaxial, compressive or
compressive tensile loading has been investigated
at large, but only a few investigated the
postbuckling behaviour of composite plates due to
shear loading experimentally 2.3 and analytically4.

But no work has been reported on the postbuckling
behaviour of composite plates due to shear loading
using finite element method. Finite elements based
on field-consistency principle have been developed
recently for the structural analysis of thick as well
as thin plates/shells, and these elements do not
exhibit membrane or shear locking and so do not
require ad hoc techniques like reduced/selective
integrations. They also give accurate results for
linear/nonlinear dynamic analysis of plates6.7. In
the present investigation, a nine-noded field
consistent plate/shell element has been used for
predicting the postbuckling behaviour of laminated

composite plates.

(2)

where, the membrane strains {&~}, bending strains
{& b }, shear strains {& s } and nonlinear in-plane
strains {& ;L } in the Eqn (2) are written as .
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2. FORMULATION

The laminated composite plate element used in

the study is of CO continuous shear flexible type. x

and y coordinates are along the in-plane directions

and z along the thickness direction. Using Mindlin

theory, the displacements u, v and w at a point (x~ y

and z) from the median surface are expressed as the

functions of mid-plane displacements uo, vo, and w,

and independent rotations <I> x and <I> y of normal in xz

and yz planes, respectively as

y

(3d)

Assuming initial membrane in-plane stress
field with a:, a; and 't~, the final state of stress

tij can be written as

0
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u(x, y, z, I) = UO (x, y, I) + z <Pcr(X, y, I)
+=

v(x, y, z, I) = VO (X, y, I) + z q>y(X, y, I)

w(x, y, z, I) = W (x, y, I) (I) (4)

Using Von-Karman's assumption for
moderately large deformation which imply that
derivatives of u and v with respect to x, y and z are
small and noting that w is independent of z, Green's

or abbreviated as { I} = { a} + { a 0}

The strain energy can be expressed as

u) = {a °}T {&} + '/2 {a}T {&} (5)
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Neglecting third and higher order terms for

displacement gradient, U I can be rewritten as

where Ay, Dy and By (i,j = 1,2,6) are extensional,

bending and bending-extensional stiffness
coefficients of the composite laminate given by

u 1 = {crO}T {EL} + {crO}T {ENL} + Y2 {cr}T {EL}

N lIt

[A],[B],[D] ) = L

k~1 ...-«-1

(6)
dz

The incremental strain energy per unit volume
is expressed as

(10)

where [Q ] is the matrix of reduced stiffness

coefficients.

If {Q} represents transverse shear stress
resultant then it is related to the transverse shear
strain through the constitutive relation:

AU. = U. -{<1 °}T {EL}

= {<1°}T {ENL} + ¥2 {<1}T {EL} (7)

Performing integration Wrt z from-h/2 to +h/2,
the incremental strain energy per unit area is

=
+lr12

'I
-Ir12

(II)+h/2

{cr}T {&L}dz+ J {cro}T {&NL}dz

-h/2 (8 a)

.

i\U1A =2

where Eij (i,j = 4, 5) are transverse shear stiffness

coefficients of the laminate given by
and can be abbreviated as

AU lA = Vl(O) + V2 (0) (8 b)

Irk

J[Q]k dz

/Ij;-1

i,j = 4,5

(12)

Fr,r a composite laminate consisting of N
layers with stacking angle e k (k = 1,...,N) and layer
thickness hk (k = I, ..., N ), the stiffness coefficients

are computed as per the details available in
literatures. The strain energy functional VI (0) of
Eqn.' (8b ) is given by

where, VI is the elastic strain energy (for a linear
elastic solid) and V2 is the potential energy of the
in-plane loads due to transverse deflection.

The structural behaviour is modelled based on
shear flexible lamination. If {N} represents the
membrane stress resultants and {M} the bending
stress resultants, we can relate these to membrane
strains, {E ~ +E :L } and bending strains ( curvature )
{E II } , through the constitutive relation as

{ N xr} +h/2 {O' x }{N}= Nyy = f O', dz =[A]{&p}+[B]{&

N -h/2 't
AY AY (9 a)

(13)

where O is the vector of degrees-of-freedom
(DOFs). Following the procedure of Rajasekaran
and Murray9, the strain energy functional VI is
rewritten as
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1
12 [N 2 {0}Vl(~) = {~}T

[ ![k]+![NI

2 6 [ [K]+~[NI
+![N2]+[N3]+Pcr[KG]1{o} =0

3 J (18)

+-

+~{o}T[N 3 ]{o}
" where [KG] is the geometric stiffness and p cr is the

critical buckling load. The above nonlinear eigen
system is solved for p cr for various values of
amplitude-to-thickness ratio.

(14)

3. ELEMENT DESCRIPTION

The laminated plate element employed here is
CO continuous shear flexible element with five-DOF
at nine nodes in QUAD-9 element.

If the interpolations for QUAD-9 are used
directly to interpolate the five field variables u to
<p y in deriving the shear strains. the element will
lock and show oscillations in the shear stresses.
Field consistency requires that the transverse shear
strains must be interpolated in a consistent manner .
Thus u. v. <p x and <p y terms in the expression for Es
have to be consistent with field function w,x and W'Y.
This is achieved by using field redistributed
substitute shape functions to interpolate those
specific terms. which must be consistents.

where [k] is the linear stiffness matrix, [N1] and [N2]
are nonlinear stiffness matrices and [N3] is the
shear stiffness matrix.

The potential energy of in-plane load due to

transverse deflection, V2 {0) is given as

h/2

V ,,(0) = f{cro }T {E NL } dz.

-h/2

-h[ ° 2 ° 2 2 °

-2LcrxW,x +cryW,y+ 'txyW,xW, (15)
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Then

~ 1 [ 2
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(16b)

If p cr is the critical buckling load, then let,

P.E = Pcr n.E, Py = Pcr ny & P.xy = Pcr nxy.

nxy ] { w.x }ny W.y

(16c)

For pure shear buckling, nxy = -I and nx =

ny = 0. Now, the total potential energy can be

obtained by substituting Eqns (14) and (16) into

Eqns (8) and integrating through the neutral surface

as

= JL\U]

4. RESULTS & DISCUSSION

The nonlinear governing equations are solved
using direct iteration technique with a linear
solution as the starting one. The eigen system is
solved using Lanczas schemel0. Since pure shear
buckling analysis needs finer mesh, 6 x 6 uniform
mesh. of nine-noded quadrilateral plate element
have been used based on progressive mesh
refinement, for both cross-ply and angle-ply
laminated plates. The shear correction factor is
taken as 516.

The material used for the study has the
following elastic properties unless otherwise

specified:
E)Ey = 40.0, GxJEy = 0.6, Gy/Ey = 0.5, Vxy = 0.25

L\U,
Before proceeding for the detailed analysis, the

present formulation is validated for buckling
against available results 11,12 by considering an

isotropic plate subjected to shear load. It is seen
from Table 1 that the present results are in good

Equating the variation of the total potential

L\U Ic to zero, one can obtain the governing equation

for the plate as
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Figure 2 (a). Variation of postbuckling shear load Pcr vs
amplitude (w/h) for simply-supported laminated
cases (a/b=I) corresponding to positive shear.

agreement with the available solution.
buckling load is nondimensionalised as

The critical
depend on the direction of applied shear load,
irrespective of isotropic or orthotropic laminates.

For the symmetric angle-ply laminates, the

results due to positive and negative shear loads are

depicted in Fig. 2. It was observed from these

figures that the buckling load is different for

different directions of applied shear load for the

angle-ply case, whereas it does not vary for

cross-ply case wrt the direction of the applied shear

load. Also the critical loads for the angle-ply cases

are symmetric about 450 case, the maximum being

with 450 laminate and the negative applied shear

load predicts more buckling load, compared to

positive load. The influence of increase in the

-2 3

PC'. =Pc,.h IETh

Next, the postl?uckled paths due to shear load
for a single-layered orthtr{)pic and symmetric
composite laminates (cross-ply and angle-ply) are
given in Figs. 1-3. It was observed from Fig. I that
the orthotropic plates have pronounced effect on
postbuckling behaviour and they enhance the
load-carrying capacity with increase in amplitude,
compared to the isotropic case. Furthermore, the
clamped support case increases the critical load in
comparison to the simply-supported case, as
expected. Also, the postbuckling path does not
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Figure 3. Variation ofpostbucklingshear load Pa vs amplitude
(w/h) forsimply-supported laminated cases (a/b = 2).

The effect of aspect ratio on critical is shown in

Figs. 2 and 3. It can be concluded from these

figures that the increase in aspect ratio decreases

the critical load. The increase in modular ratio is

due to increase in the critical load as s~own in Fig.

4. Figure 5 shows the effects of in-plane load along

with applied shear load on critical load, particularly

applied to reduce the load carrying capacity of the

plate.

Figure 2 (b). Variation of postbuckling shear load Pa lIS

amplitude (wn.) for simply-supported laminated
cases (a/b=l) corresponding to negative shear.

number of layers in angle-ply case considered here,

is significant on determining the critical load and it

enhances the critical load when the applied load is

in the positive direction.

Table 1. Nondimensional buckling load for isotropic
rectangular plate for various aspect ratios due to

-2 2shear loading (P" = Pa b 11[ D)

Ref. II Ref. 12a/b

l..0

1.2

1.4

1.6

1.8

2.0

3.0

Present
9.344
8.003
7.308
6.930
6.714
6.576
5.888

934
8.00
730
7.00
6.80
6.60
5.90

CONCLUSIONS5.

Shear flexible QUAD-9 field consistent

element has been utilised to bring out the

postbuckling performance of anisotropic laminated
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Figure 4. Effect or modular ratio (E1IE2) on shear
postbuckling strength[ ( -45°/45°/45°/-45°)
a/b=l, simply-supported].

Figure s. Combined loading effects on postbuckling shear lod
[(-4SO/4SO/4SO,-4SO), a/b=l, simply-supported].
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