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Surface Displacements under Harmonic Concentration
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ABSTRACT

Expressions are obtained for the surface displacements over a thermodiffusive elastic half space
in which the concentration is assumed to be a harmonic function. As expected, these expressions are
found to be extensions of the classical results. Some special cases are also included and various simpler
expressions for the displacements are obtained, with plausible applications to defence science.

Vibrational amplitude of TT'

Displacement vectoru

Velocity of propagated wavev
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Greek Symbols

A,J1 Lame constants

Density of the materialp

.Stress tensor0"

Tangential stresscrxy

Normal stress
{Jyy

Notations

2
= (A.+2~)/pa

b = IJ./p

Dk
= k+dToD,

NOMENCLATURE

a Compressional wave velocity

b Shear wave velocity

C Concentration at a subsequent time

C* Vibrational amplitude of C

d Rate of change of chemical potential wrt
absolute temperature at constant strain
and concentration

dc Coefficient of linear diffusive expansion

d, Coefficient of linear thermal expansion

Dc Fick's diffusion coefficient

F Scalar displacement potential

F* Vibrational amplitude of F

G Vector displacement potential

G* Vibrational amplitude of G

k Coefficient of thermal conductivity

K Bulk modulus

n Wave number

s Specific heat at constant strain

t Time

T Temperature perturbation of the absolute
temperature from T o

T o Initial reference temperature

Received 29 July 1997, revised 29 January 1998

351



DEF SCI I. VOL 48, NO 4, OCfOBER 1998

f 2

9 2

G

J

role in the diffusive patterns of common materials,
and (ii) Fick's diffusion equation is not adequate
to yield a model having properties that fit into a
realistic .situation. For example, to satisfactorily
model the diffusion phenomena in semiconductors,
one can use a nonlinear generalisation of the linear
Fickian diffusion equation3. Irreversible processes
like thermodiffusion can be described with the help
of modern nonequilibrium thermodynamics4.
Various similar theories of practical interest are also
available in the literature5-13.
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In this paper, a new diffusion model based on

thermoelasticity has been proposed, by considering
a thermodiffusive elastic half space, initially
maintained at a constant temperature and in which
the concentration is assumed to be a harmonic
function. It was observed that, in general, the
diffusion of concentration was mainly due to the
presence of pores or voids in the elastic material,
that would help to smootheJl the equilibrium
solutions. Unlike hyperbolic problems, the
parabolic problems smooth discontinuities in wave
propagationl4 and because of this, a generalised
version of the parabolic Fick's diffusion equation
was used in the present study.
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2. GOVERNING EQUATIONS

A rectangular cartesian coordinate system

(x,Y'.Z) is set up with the origin on the surface of the

thermodiffusive elastic half space in such a way that

the lialf space occupies the region y ~ O in R3 and
y = O corresponds to the free surface. The medium

is initially maintained at a constant temperature T o

and the concentration is assumed to b'e a harmonic

function. All the quantities considered are assumed

to be independent of the z-coordinate so that the

problem reduces to a two-dimensional plane strain

problem. The governing equations are then given by

p2 = n2- iwslDk

" = grad F +curl G; div G = O or

"x = F,x-G,y

"y = F,y+G,x

" = Oz

with Commas indicating partial differentiation

v=w/n

INTRODUCTIONI.

Over the years, multiple uses of diffusional
problems in soil mechanics, defence science and
polymers have been discovered. However, very few
mathematical models are readily available to
describe such realistic situations. This is mainly
because the complex physical mechanisms involved
are not yet settled by chemical engineers or material
scientistsl,2. However, there is consensus on two
main points: (i) viscoelastic stresses playa major

V2F-F/a2 = mtT+mcC

V2G = (; / b2

Dk V2T= st

V2C = 0
(I)
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It was noted from Eqn (I) that F, T and C are
coupled, while G remains uncoupled, thereby
implying that shear waves are neither influenced by
temperature nor concentration.

= 2pb2 (G,xy -F,xx)+pF",

= pb2 (2F,xy +G,xx -G,yy )

0" yy

a x }1
(5)

3. Eqns (3), (4) and (5) together yield

(2b2n2 -w2)Fo -2 ing b 2 Go =L

2inf b2 Fo +(2b2n2 -W2)GO =M

SOLUTIONS

To solve Eqn (1) the solutions are assumed as

(F, G, T, C) = (F ,G*,r* ,C*) exp[i(nx-wt)] (2)

(6.1)
Eqn (I) then reduces to a set of ordinary

differential equations which can be solved to obtain

expressions for F.,G.,T.,C.. These are then used in

Eqn (2), and keeping in mind. that F, G, T, C

describe surface waves, the following solutions are

arrived at:

All = To; Bo = Co
(6.2)

which on solving will give

Fo =J-1 l {2b2n2 -W2) L+2ing b2M J

Go =J-Il{2b2n2 -W2) M-2inf b2L

(7)

F= [ Foe-fY +m,Aoe-PY
p2 -f 2

mcB e-"Y ]+~ exp[i(nx-wt)]
In the absence of temperature and

concentration, Eqn ( 6.1) is consistent and yields a
non-trivial solution only when J = 0. It may be

noted that J = 0 is equivalent to

G = Go exp [ -gy + i (nx-wt) ]

T = Ao exp [ -py + i (nx-wt) ]

c = Bo exp [ -ny + i(nx-wt) ] (3) =4 [1- ~ J i
I

V2
J i

1--

b2

l V2 2--

b2where Re (/) ~ 0 , Re (g) ~ 0 , Re (P) ~ 0, Re (n) ~ 0
and F 0, Go, Ao, Eo are constants to be determined by

imposing stress-free boundary conditions.

(8)

This. is clearly the.classical equation derived by

Rayleigh for surface waves over an elastic

half space, the boundary being stress-freeI5-16.

I
4. BOUNDARY CONDITIONS

Over the free surface y = 0, one sets:

O'yy = 0 = .O'xy
,.

DISPLACEMENTS5.

and The displacements within the solid are given

by(T,C) = (T °,CO) exp [i (nx-wt)] ; Co :;t 0 (4)

Ux = F, x- G, yThe stress tensor is given by

0" = J.l (V u + v u T) + [A. (V. U )

-3K(d, T+dc C)]I

Uy = F, y + G, x

which implies that Eqn (3) will then yield
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x (02 -,,2)2 exp[in(x -vI)]

Eqn (10) gives the surface displacements over

a thermodiffusive elastic half space, wherein the

concentration is harmonic.

5.2 Case Studies

Case 1

In the absence of temperature and

concentration, Eqn (9) will be reduced to the

classical equations of Rayleigh.

Case 2

In the case of high frequencies, taking n also to
be large such that v = win remains finite, Eqn (10)

is reduced to

m,ToDk I

J 2 +2abv2(b2 -V2 )2

.2
la

u =-
x --r J1 -(2b2 -V2u =

.r

I

~),

+2abv2(b2 -V2 )~ll-
mcCo

+~
nv

J) -(2b2 -V2).T2

+2abv2(b2 -V2 )2 exp[in(x -vi)]

mcCo

nv
+

1

~),

Case 3

In case of small wave numbers, v = win

becomes large but the displacements become

vanishingly small.

6. CONCLUSIONS

Expressions for the surface displacements over
a thermodiffusive elastic half space are obtained. It
is concluded that when the additional effects of

-v2(2b2 -V2(2b2 J 2 -J.x
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