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ABSTRACT

A study has been carried out on the variation of velocity , time, re-entry angle and distance along
the horizontal with altitude for a re-entry vehicle diving into the earth's atmosphere, using the
improved version ofM'4Tinescu' s model that accounts for gravity and assuming that the distance along
the earth ' s surface is fIXed. More specifically, after formulating the problem as an isoperimetric one,

its Euler-Lagrange equation, which turned out to be a highly nonlinear differential equation of the
second order, has been solved via Runge-Kutta method and Simpson's rule for some physically
realisable values of the parameters involved.

Marinescu had considered re-entry under the
influence of drag only and had preferred to ignore
gravitational effects. Possibly, this was done for
the sake of simplicity. However, in the present
analysis, the effect of gravity has been considered
and recourse has not been taken to any
approximation. Further, the earth has been regarded
as spherical and not flat.

I. INTRODUCTION

The entry of a space vehicle into the e~rth's
atmosphere is of interest to space scientists,
planetologists and others. There are a number of
satellites moving in near-earth orbit, the eventual
entry of which into the earth' s atmosphere poses
wide ranging problems. Similarly, a large number
of planetary probes during their final plunge radio
back vital information of the planetary atmosphere,
such as temperature, pressure, composition, etc.
With the successful launching of space shuttle, a
versatile hypervelocity vehicle capable of
re-entering the earth's atmosphere, this problem has
acquired additional significance. Besides, the path
of an intercontinental ballistic missile (ICBM) in
the dense atmospheric layers is pertinent to defence
analysts and strategists. The optimisation of the
entry of a space vehicle into the earth' s atmosphere
constitutes a problem which is different from the
general one. The tatter provides an idea of the
variation of various trajectory parameters with
time.

2. EQUA TIONS OF MOTION
.-

The two-dimensional equations of motion2, for
the lifting vehicle entering the earth's atmosphere
(Fig. I ), taking into account the facts stated above,
are ,.
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+In this paper, it is intended to examine the

minimum time model of Marinescu 1 more closely.
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p=poexp(-J3z) (6)

RE-ENTRY p(8IT where the density at sea level, Po = 1.225 kg/mJ and
J3 = 0.0003.95 x m-l. However, Eqn (6) is not strictly

i. = V cos e, valid at higher altitudes, where it

would be more appropriate to use the Standard
ARDC Atmosphere ( 1959) data.

It may be noted that Eqn (4) of Marinescu is
.i = y case which is valjd for flat earth. In the

present analysis, the equation is replaced by

S =( ~ I y cas e , to take into account the
l Re + z )

earth's curvature.

Figure I. Geometry or the re-entry trajectory
Reverting to the differential equations, if

z=-Vsin8 (3)
y'= ~

dz

S Ca = A z

(4) 2m

andwhere m denotes mass of the vehicle; V, velocity;
SA, reference area; Cx, drag coefficient; C:, lift
coefficient; e, inclination of the trajectory to the
horizontal; z, altitude, and S, distance along the
surface of the earth. The dots over V, e, z and s
represent differentiation wrt time.

2

then

As the variation of altitude in the problem is
,

considerable (from 110 km at re-entry to 50 km
finally) in Eqns (1) and (2), the force of gravity is
not taken as a constant mg, where 9 is the
acc~leration due to gravity , but one depending on
altitude, as follows:

apV2
yy'+h

sin 9 =

(7)

For the lifting entry vehicle, the time required
to travel the descending path between initial
altitude, Zj and final altitude, Zj is

2
t= JZi (vv' +b)dz

zf
mg = mg.

apVJ

Re

R +z
e (8)

(5)

Using Eqns (3), (4) and (7), one obtains
where ge is acceleration due to gravity at the

surface of the spherical earth having radius
Re = 6,371,200 m. The dependence of ge on the

latitude of the place can be ignored. (9}

The atmospheric density depends on altitiude
and follows an exponential decrease3.

It may be pointed that at this stage, Marinescu
deviated and instead of making use of the equation
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v"-=(10)
(vv' +b) v:4

., ., 6a-p~V

A
took recourse I to the following approximation

apV

2V'
dz

(II)

The Eqn ( 11) is valid for small values of
apV / V'. There seems little justification for using
Eqn ( 11 ), except perhaps that it simplifies
calculations. Therefore, such.an artifice will not be
resorted to and Eqn (9) , which is a variant of
Eqn ( 10), will be used without change.

The variational problem4 consists in solving
the minimum -of the functional Eqn (8) given the

isoperimetric condition:

where

A =(VV'+b)2 -(apV2)2

For the sake of comparison, when instead of
taking a spherical earth, the simpler case of a flat
earth is assumed, the differential Eqn ( 16) becomes

IIi l Re ) [(VV.+b)~-(apV2)2r'2 - dz-l

II Re + Z apV2

~

(12)

v"The curve that achieves the extremum of the
functional Eqn (8) is an extremum of the functional

J= J ziHdz

zf (13)

where

H=~

apV3

Making use of Euler's equation

d
H" --H", =0

dz (15)

Finally, for the still simpler case of flat earth
and gravityless condition Eqn ( 16) takes the form

one gets the differential equation, after simplifica-

tion, as
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V'3f3
+

2 ., .,
a p-V-

(19)

which follows, as expected, by putting b = O in

differential Eqn ( 17).

3. NUMERICAL SOLUTIONS

The second order differential Eqns ( 16), ( 18)

and ( 19) have been solved by Runge-Kutta5 method
for a re-entry vehicle having Vi = 7.8 km/s, z, = 110

km,z,=SOkm,e,=3°, a=0.00Sandl=400km.

For the three different cases, corresponding to
1 = 400 km(fixed), the variation of velocity with

altitude is shown in curves A, B and C (Fig. 2). The

variation of velocity was initialty slow but became

fast at lower altitudes. For curves A and B it was
noticed that immediately after re-entry, the velocity

of the vehicle increased till an altitude of about

92 km was reached. Thereafter, it decreased

continuously. The initial increase in velQcity was

due to the fact that gravity term dominates the drag

term and only later on, the effect of the denser

atmosphere starts exerting itself and results in

decrease in velocity. In case of curve C: a

continuous detrease is noticed throughout the

descent phase.

In the curves D, E and F (Fig. 2), the variation

of time with altitude is shown. In this case, the

integral given by Eqn (8) is solved by Simpson's
rule. The maximum spread is in the region around
90 km initially and at lower altitudes, the curves

tend to merge. The variation of angle with altitude
is shown in curves A. B and C (Fig. 3). For curves

A and B, it was noticed that the angle decreased
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Figure 2. Variation of velocity and time with altitude for minimum time re-entry trajectory (A & D-gravity plus spherical earth;
B&E-~ravity plus flat earth and C & F -gravity neglected plus flat earth.
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Figure 3. Variation of angle and distance along the horizontal with altitude for minimum time re-entry trajectory (A & D-gravity plus
spherical earth; B & E-gravity plus flat earth and C&F-gravity neglected plus flat earth.

initially but subsequently it increased. In case of

curve C, a continuous increase in the angle was
noticed. The variation of horizontal distance with

altitude is shown in curves D, E and F. The

maximum spread was around an altitude of
90 km. It is apparent that curves A and B (Figs. 2

and 3) are more akin to one another as compared to

curve C. Similarly, curve D and E are close to one

another as compared to F .

that .if the initial values and constants are known

then the differential Eqns ( I) to ( 4) can be solved. In
case ofminimum time problem, one has to choose a

value of C'; such that the variation of parameters V.
z. e, and s with time matches with what has been

obtained earlier.

The minimum time problem cannot be sol.ved
by taking arbitrary values. This fact has been

pointed out in our earlier communication6. For
1 = 40 km (say) cannot be obtained because the

present re-entry angle is very small. Probably a

very high re-entry angle will be required to achieve

the objective. This situation does not have much

physical relevance because it produces excessive
heating. Similarly, a very high value of 1 = 4000

4. DISCUSSIONS & CONCLUSIONS

The solution of differential Eqns ( 16), ( 18) and

(19) indeed provides the minimum of the functional

Eqn (8) because Legendre's condition H v'v' >0 for

a weak minimum is satisfied. It may be mentioned
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permission to publish the paper.

for providingkm may not be realisable as very low re-entry angle
is required and in that case of shallow entry, the
vehicle may simply bounce back in deep space.

The present study may have importance in
planetary entry because of large variations expected
in surface gravity and atmospheric density. In the
present model.. the atmosphere has been considered
as stationary.. i.e,. wind effect has been ignored. It
would be interesting to study the role of head/tail
winds. Besides studying the minimum time
problem, Marinescu also dealt with the total
minimum heat input case. In the same
communication, he gave allusions to two more
cases.. viz~ minimum consumption of ablative mass
and minimum heat yielded in the critical
zone. Besides minimising time, some other
parameter, say, the horizontal distance can be
minimised. The numerical calculations were

carried out using a PC.
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