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ABSTRA cr

The problem of converging spherical detonation waves propagating through a gas with varying
density is discussed. By neglecting the effect of variation of Q on the similarity exponent, both
analytical and numerical solutions for motion of the detonation front have been obtained and are
presented in graphical form.

MGD shock advancing into an inhomogeneous
self-gravitating gas sphere. Kynch6 and
Taylo? obtained closed-form solutions for the flow
variables behind a blast wave produced by a sudden
explosion. The problem of propagation of a
contracting spherical or cylindrical shock front into
a uniform gas at rest was studied by Stanyukovich8.
Welsh9 and Nigmatulinlo studied the propagation of
a contracting detonation shock front into a uniform
combustible gas. The main aim of the present
investigation was to study the problem of
converging spherical detonation waves through gas
with varying density and releasing .a constant amont
of energy per unit mass of the gas. The following
assumptions have been made to study the essential
features of the detonation wave:

1. INTRODUCTION

The problem of propagation of detonation
waves in an inhomogeneous medium is of great
interest in exploring the effects of explosions.
Specially, atomic explosion problems are of .great
interest in S&T. During world war II, a good
number of investigators studied the propagation of
strong shocks. The well-known Taylor-Sedov
solution, based on similarity and dimensional
considerations, showed good agreement with
experimental measurements of a shock trajectory
only up to a few metres, but uniformly valid
analytical solutions of the governing nonlinear
partial differential equations together with moving
boundary conditions could not be found. The
problem of propagation of spherical shock wave
through self-gravitating gases was taken up by
several researchers. Kopall and Sedov2 tried to
solve the problem with constant shock strength.
LidovJ studied the case with variable shock
strength. Purohit4 studied the problem of
self-similar homothermal flows of self-gravitating
gas behind spherical shock wave in a nonuniform
atmo~phere. Rai and Ours obtained analytical
solutions for the problem of propagation of a strong

(a) The detonation front is a Chapman-Jouguet front
i.e. It travels at sonic speed relative to the burnt
gas, which determines the law of convergencelO.

(b ) The detonation wave is strong, Le. the values of
pressure and internal energy in the undisturbed
gas have been negJected in comparison with
their values in the disturbed gas. Self-similar
solutions are used to study the effects of various
physical parameters in a region headed by a
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propagating detonation front. Density distribution
in the undisturbed state of the detonation front PI
is assumed to vary as .an inverse power of radial
distance from the centre of symmetry at time t, i.e.

-K

PI =PO 71 (I)

And D is the velocity of the detonation front.

Suffixes 2 and I refer to conditions immediately

behind and immediately ahead of the detonation

front, respectively. Q denotes the heat release per

unit mass of the gas.

Now, a similarity parameter 11 = r/r2 is

introduced to seek a solution of the form:where Po and K are constants .

The location of the spherical detonation front
which is converging from infinity is given by: u=-~DU(1l)

p =J3p1D2p(f1)r2 =a,,(-t)" (2) (11)

where On and n «1) are constants.
p =(PI /(1-13» G(1l>

2. BASIC EQUATIONS & SIMILARITY
TRANSFORMATIONS
The basic equations for one-dimensional

motion of a perfect inviscid gas are :

Since the location of the detonation front is
given by 'r1=1, the boundary conditions (6) -(8)
assume the following forms:

U(l) = -

P(l) = 1

G(l) = 1(3)

ou ou oP
p- +pu- +- =0

Of or or (4) Applying the similarity transformation in

Eqns (3)-(5) with the help of Eqns (10)-(12),

we get:
(5)

where
(14)

TlU,p,p are the velocity, pressure and density of the
gas and y is the ratio of the specific heats. The

boundary conditions on the detonation front can be
expressed in the forms:

GU'{11+~U} - ~P+(I-J3)P'
11

U2 =~D (6)

P2 =PPlD2 (7)

2yPUJ3 =0

+
PI

P2=~
11(8)

~

13=--1- [1 +

{ I-2(Y -1)(y +1)~ } ~

]y +1 D2

where

GI, UI, and pI, respectively denote the derivatives of
G,U and p with respect to 11.

From dimensional analysis, it is obvious that

the detonation front must travel with a constant

a

y+1 (9)
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l7)p
P2 =

~

Eqn (18.) may be put in the following form:

52V
=a2(r ,V ,oV lor) 02V lor2

Ot2

+b(r ,V ,oV lor)

Then, we can have the equations of the

characteristics and conditions on them as:

dr = +adt, dVt =+ adVr +bdt

where

vt = <5 V/<5t and Vr = <5V /<5r

Using Eqn (11) and the relations (20)-(22) in

Eqn ( 19), we get:

p= r
r+1

velocity, as the similarity exponent n is equal to
one. But propagation of a converging detonation
front with constant velocity is not possible, because
as the front accelerates, its surface area diminishes,
causing its velocity to increase towards the centre of
symmetry, where it becomes infinite. So,
determination of the law of convergence for the
detonation front does not seem to be possible.
Considering Eqn (9), a. = 2 corresponds to a shock

wave without the release of energy and a. = 1

corresponds to the Chapman-Jouguet detonation
regime, where the wave propagates along
characteristics in the disturbed gas. .

The extreme case a. = 1 is being investigated in

the convergence process, which ensures the
Chapman-Jouguet condition and the detonation
front propagates along a characteristic. In this way,
the law of convergence of the front is being saught
as a characteristic dividing the disturbed and
undisturbed media.

The one-dimensional equations of motion in
Lagrangian variables are:

Differentiating Eqn (25) and substituting in
Eqn ( 18), we get:

\2

(l+~ p 1+
oV'

or
PI =

(17)

(18)

(19)
+ 2yD2 { Vr V

}(I +v r )y (I +v / r)2y-l -;- --;2:

w dD

(I +V r )1 (I +V / r)2(1-1) dr

where

V is the displacement of the particle. The conditions

on the detonation wave in the Chapman-Jouguet

regime are: On equating Eqns (23) and (26)

D
y+1u 2 = ::-:-;

a2(r,V,V,)=(20)
-1-

'Y +1

p D2
P2 =-L-

1+1

D2

(I +v r )T+l (I +v / r)2(T-l)
'(21)
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Figure 2. Variation or a

Also, from Eqn (28), we get:

w dD
-

(1 +1) dr

° 0.2 o.~ 0.6 0.8

rzlR

Figure I. Variation of detonation front velocity

1.0
The equation of the characteristic which

bounds the quiescent gas is:

b(r,V,V,)=

u,dt+ur dr=du=O
2 2

Ut +Ur 0 2 =0.2 2

psing the fact that Url is constant, on

substituting Eqn (32) in Eqn (24), we get:dD2D
(l+V,)Y(l+V / r)2(Y-l) dr .

-U, da 2 =b dt
2 2

(28)

Considering Eqns (24), (29)-(31) and (3.3), we

obtain:
It is assumed that the detonation wave travels

along a characteristic. Therefore.

a(r ,o,vr, (r» =a2(r) = D(r) (29)

From Eqns (27) & (29):

where

v =---:
'2

1

m=r/r+l(30)
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Figure 4. Variation of pressure

1.0

With the help of Eqn. (34 ), the foliowing
relationship for the motion of the front can be
obtained:

Integrating Eqn (34) with the condition that
r2 = 0 at t = 0, we get:

r2 =On(-t)n, n =l/(m+l) \.);) }
(DIDo>=(Rlr2>m (37)

Thus, the similarity exponent n is detennined
in tenns of K, of course, for a specific value of y.
After detennining the value of n, the convergence
law for the detonation front can be detennined.

Substituting Eqn (37) into Eqn (9) and using
Eqns (6)-(8), we obtain:

a =1+{I-(r2 /"R)2m}I/2 (38)

3. SOLUTIONS

Taking Q as constant in the convergence
process II, the following approach can be used to
study non-self-similar problem of the converging
detonation front started at a certain initial radius R
and which has initiated its own motion at the
Chapman-Jouguet velocity. (oc=I).

U2 / U2 =a.(R / r2 )m
.

(39)

(40)

(P2/P2.)=
'Y

'Y -(a -I) (41)

where U2o ,P 20 and p 20 are the values of u, p and p in
the Chapman-Jouguet detonation regime for theD~ =2(1 -I) (1 + I)Q o

(36)
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specified Qo. Eqns (37)-(41) are the solutions in
tenns of radius of the front.

From Eqn (34), it is observed that m must be
positive for the velocity of the detonation front to
increase towards the collapsing point.

From Table 1, it is observed that the value ofn
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