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ABSTRACT 

A mixture theory has been developed to model equitemperature metamorphism of snow. This 
formulation is a volume fraction theory which models the interchange of mass between the constitueats 
making up the mixture. The formulation has been developed so that the microstructure of the material 
is included to correctly describe the mechanical and thermal processes. The second law of thermodynamics 
is used to impose restrictions upon the various constitutive relations. These constitutive relations 
are then described in terms of microstructure of the material. The micsostructure of each constituent 
is represented by constituent size (mean grain size, intergranular bond size), intergranular neck 
geometry, specific free surface area and dispersed density. The resulting formulation is then used 
to model equitemperature metamorphism of snow by determining the time-dependent changes in the 
distribution of grain size, neck size and dispersed densities of each of the constituents. The results 
obtained show that the formulation can describe how the material changes under equitemperature 
conditions. However, it is noted that since microstructure significantly affects the rate of metamorphism, 
an accurate determination of the microstructure (including grain and neck size distribution) is 
necessary for this approach to accurately predict changes in the material due to metamorphism. 

NOMENCLATURE - Da Rate of deformation tensor 

"a Velocity vector ' a  Velocity gradient 
' a  Partial density or dispersed density ' a  Deformation gradient 

@a Volume fraction ' a  Diffusion, velocity 

*a Absolute temperature ea Thermal energy 

qa Heat flux ya Holmholtz free energy 

?a Piola stress qa Entropy 

' a  Couchy stress tensor ma Chemical potential 

' a  Boly force c a  Snternal state vector (to describe internal 

' a  Lagrangian strain tensor 
inelastic deformation processes) 

- 
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'a Mass interaction 

Fa Momentum interaction 
A 

e a Energy interaction 

1. INTRODUCTION 

Since the early work of such pioneers as Truesdell' 
and Muller2, mixture theories have slowly become 
recognised as a practical method for analysing complex 
materials composed of interacting constituents. Bowen3 
provided a comprehensive review of the advances 
in mixture theory up to that time. Since then, mixture 
theories have taken different forms and 
refinements5-14. 

The work presented here is a mixture theory 
based on the work of Hansen12, et al. and Reid and 
Jafari13, but i s  one  that utilises the material 
microstructure to determine the manner in which 
the constituents interact, both chemically and 
mechanically. The examples provided here are 
restricted t o  the problem of equitemperature 
metamorphism, although the formulation can be 
applied to more general problems also. Equi- 
temperature metamorphism represents a situation 
in which no external loads or temperature gradients 
are applied to the material. Under such conditions, 
the ice grains and the necks connecting the grains 
interchange mass. The necks acquire mass from all 
ice grains, and the small ice grains lose mass to 
the larger ice grains. The interchange of mass is 
facilitated by some ice surfaces losing mass to the 
pore vapour, while other surfaces simultaneously 
gain mass by deposition from the vapour. This 
process is driven by the surface energy and free 
surface area differences between various ice 
constituents. 

This study is aimed to determine the specific 
details of this process. A properly constructed mixture 
theory can provide a clear picture of just how this 
complex array of grains and bonds interchange 
mass and how the internal material structure evolves. 
It will also provide a basis for further studies of 
the more complex problems of TG metamorphism. 

Equitemperature metamorphism is an important 
process which affects the properties and longevity 
of snow roads and landing strips in polar regions. 

It also has applicability to snowmobile trails in 
alpine regions and vehicle mobility on natural 
snowcover. In addition, equitemperature metamorphism 
plays an important role in determining how an 
antarctic firn slowly consolidates into ice to form 
polar ice caps. It also has relevance to studies on 
how the ice caps will respond to global climate 
change. Finally, this process is relevant to thermal 
sintering of powdered metal compacts at elevated 
temperatures. 

2. DEVELOPMENT OF MIXTURE THEORY 

It is assumed that the mixture consists of N 
constituents. The index a will denote the a'" constituent, 
a = 1 ,..., N. Later, as one makes a specific application 
to a particular material, in the case of snow, the 
notation will become more specific. Since a volume 
fraction formulation is being psed, the velocity of 
the mixture, v, is given by the following relaticn: 

The volume fractions l a f o r  all the constituents 
must sum to unity 

For each constituent, the principles of balance 
of mass, linear momentum and energy are: 

pav Y,' - div (pava)  - paba = jbr 

The principle of balance of angular momentum 
has not been discussed, since it is assume that the 
material does not possess measurable couple stresses. 
The mass interaction (t,), momentum interaction 
(be) ,  and energy interaction (z,) represent the rates 
per unit volume at which the ath constituent is 
exchanging mass, linear momentum and energy, 
respectibly with the other (N-1) constituents. 
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The second law is assumed to have the following 
form for the mixture: 

In what follows, the temperature gradient, grad(e,), 
will be denoted by g,, when the gradient is taken 
wrt the deformed coordinates. The Lagrangian 

counterpart will be denoted by GRAD(6,) = Ga. 

It is assumed that there are no point sources 
in the mixture. This assumption requires the following: 

In what follows, the independent variables will 
be taken to be the set (Fa, u,, ea, G,, Xu, e,, la, 
t ) ,  while the dependent variables are assumed to 

be the set (T,, q,, e,, qal  y a ) .  The term 1, is called 
the extent of reaction and measures the extent to 
which the dh constituent has gained or lost mass 
by chemical interaction or phase change. The dependent 
variables have the general form: 

(Tap qajea, qay Wa)(XPt) = 

At the same time, dependence of interaction 
terms is assumed to have the general form: 

The procedures for developing the restrictions 
imposed by the second law are now well recognised5. 
Direct application of Eqn (6) gives the following 
results: 

The second law can be reduced to: 

(14) 
The term 6 represents the value of entropy 

production. By defining thermomechanical equilibrium 
to be the state where all temperature gradients, 
interactions and velocities vanish, one can determine 
that the entropy production vanishes. One defines 
equilibrium to be the condition as 

Thermomechanical equilibrium essentially 
requires that when a material reaches an equilibrium 
state, the dissipation 6 vanishes. Let s-epresents 
the set of variables in Eqn (15) at an equilibrium 
state, and let ESP be an arbitrary perturbation away 
from this equilibrium state, where E is an arbitrarily 
small scalar quantity, and sj' is an arbitrary vector 
perturbation in the independent variable vector. 
For any perturbation of the independent variables 
from an equilibrium state, one must have the following 
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restrictions: I r O  P=1 ,  ..., N (19) 

6(se)  = 0 

4, =o, [Z(ea -pa)d".]e 
6' = + E F P )  2 0 (16) aua 

This condition implies: =O P=1,  ..., N (20) 

d 
S=O 

- [ " ~ a ~ a  dEaQ at a JE& + [ ~ ~ @ a * *  dEakidt a ~ [ i ] '  
d 2  

- 6 ( s e + a p )  2 0  
ds2 S=O =O ( i j  # kl) (21) 

(17) 

These two relations collectitrely allows one to 
impose the following restrictions on the constitutive 
relations for each of the constituents: 

a -  1' = o  ( i j  # kl) 
- I 1  \ 3 

.r 0 - (ij + kQ (22) 

=o p= 1, ..., N =o ( i j  = kl) 

[ d i a  1 - [d2.aVa . a i ; I e + [ d 2 R a V a  
= o 9  X ( e a  - p a ) - -  

% dEmj JSa  d E a ~  dEa k l d t  a dEa~,  

=o p=1 ,  ..., N 2 0  ( i j  = kl)  (23) 

Y' 

d ia d d Za 
( ) Eakl [ ( e a  dEa kt -pa)-[ Ea y 

=o  P=1, ..., N 20  ( i j  = kl)  

Y' 

5 0  e:#o, e;=o 

(24) 



BROWN, er al: MIXER THEORY BASED UPON MICROSTRUCTURE I 

t 1 a;, 2 a2p,y, 6 2 a ----- +--I 
e: as, e, dead(, ' ae, e, 28, 

By observing Eqns (18)-(26), one can see that 
the expression (&,pa) is a central feature of the 
restrictions imposed by the second law. This difference 
between the internal energy (E,) and the chemical 
potential (pa) is denoted by A, and will be referred 
to as the potential difference. 

A,=(e,P,) (28) 

The chemical potential6 is given by the expression 

The extent of reaction 1, provides a measure 
of the interchange of mass that has occurred between 
the arh constituent and the other (N-1) constituents. 
The extent of reactions is defined to have the form: 

where p, is the initial dispersed density of the arh 
constituent. The extent of reaction reflects how 

much mass the arh constituent has lost or gained 
from the other phases due to chemical reactions 
and/or phase changes. The determinant of the 
deformation gradient reflects how the density changes 
due to deformation processes. For instance, if there 
is no net gain or loss of mass due to chemical 
interaction of the arh constituent with the other 
constituents, the density obeys the relation 

pa,lp, =detl~,I. Therefore, if there is no mass 

exchaqp, 1, will remain unity, as determined by 
Eqn (30). Any change from unity implies the relative 
change in density due to chemical interactions. 
The time rate of change is given by the expression: 

The potential difference A, can be shown to 
have the form: 

so that A, is completely expressible in terms of 
free energy. 

3. APPLICATION TO EQUITEMPERATURE 
METAMORPHISM OF SNOW 

The material is now represented as a collection 
of constituents consisting of ice grains andlor 
intergranular necks with specific geometries, an 
air phase and a vapour phase. The last two constituents 
occupy the pore space in this bonded granular 
material. Each ice grain constituent will be identified 
as having a grain size (m). a denotes an ice grain 
constituent ( a =  1 ,... N). Each of the neck constituents 
will also be identified by its geometry which in 
this case will be the bond radius, (rho,  where b 
will denote a neck to differentiate between a neck 
property and a grain property. Each neck will have 
its own length, lbc,, which is determined by the size 
of the bond radius and the radius of the grain to 
which it is attached. The vapour and air phases 
will be denoted by the subscripts v and a, respectively. 
Therefore, the mixture is considered to be composed 
of a set of ice grains with specified initial sizes, 
intergranular necks with specified initial sizes, a 
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vapour phase and an air phase. The grain and neck The term y, is the density of ice (917 kg/m3). 
dispersed densities are denoted by r a and rha, The free energy for the vapour is: 
respectively. For this particular problem, it IS assumed 
that no external loads are applied, no temperature vv = vw + hl (ev -en) + vv2(pv - P ~ R )  + vv? (1" - lVn) 
gradient exist and that only the slow, steady process 
of redistribution of mass within the material is 
taking place due to differences in surface energy 
of various constituents. The purpose is the evaluation 
of many details relating to changes in microstructure 
during this  important thermomechanical process. 

/ 
/'helmholtz free energy for each of constituent 

,is' the central function. In this study, the free energies 
are represented by second-order Taylor series 
expansions and the relations presented in the preceeding 

, /" section are used to write the constitutive relations. 
The free energy expansions for the ice constituents 
are : 

( 3 5 )  
With the coefficients v,, ..., yv,, having the 

values: 

vv5  = Rs 
R e ,  

v v 6  =- 
I 

P VR 

c v  
vv7 =- 

R e ,  
3 v v s = -  

O R  p2vR 

+Y a7 (ea - 8,)' + 2 ~ a g ( e a  - - 1 , )  The constitutive relation for the vapour as 

+ 2 ~ a , ( l a  -1R)trEa + ~ a , o ( I a  I determined by Eqn (10) becomes: 

The coefficients ya0 ,  ..., va,, can be shown to 
have the forms: 

a 
Wa4 =-9 

P 
Wa5 =-* This constitutive relation for the vapour can 

PaR Pa R be shown to represent the behaviour of a compressible 
ideal fluid. The constitutive relation for the ice 

a(3A + 2p)  2Cie constituents becomes: 
Wa6 = 9 '!'a7 = - 9  

PaR O R  
I !fa = d e t l ~ , I { ~ , l , z  + l , ( t r ~ , ) I  + 2paEa 

Wag = Val0 Y ~ P  = 0 0 a  
(38) 

(34) +aa(3Aa + W a ) ( 0 a  - 8 n ) l I  
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The coefficients 2, and pa are the usual Lame 
constants for a linear elastic material and aa is the 
coefficient of thermal expansion. For small 
deformations, the determinant of the deformation 
gradient for each ice constituent is approximately 
equal to unity, so that Piola stress is closely 
approximated by Cauchy stress. The term ooais an 
internal initial stress that is generated by the surface 
tension within the material. 

The mass interactions can be shown to have 
the forms: 

These potential differences then govern the 
ratt5'at which mass exchanges take place. The above 
expression is a direct result of the restrictions 
imposed by the second law of thermodynamics 
and, therefore, will be observed. 

By examining Eqn (39),  one can see that each 

This is a form similar to that used earlier by 
Adams and Browng and is essentially Newton's 
law of cooling and will account for the interchange 
of thermal energy between constituents. Here, the 
direct interchange of energy between ice grains 
was neglected and it was assumed that energy-is 
interchanged directly between the ice constitqents 
and the vapour phase. This is reasonable if the 
intergranular bonding is typical for snow of low- 
to-medium density. For such snow, the intergranular 
bonds are often less than one half the grain radius, 
so the necks represent a severe constriction which 
negatively affects conduction of heat between grains. 
One can verify that the second law of thermodynamics 
is satisfied by Eqns (39) and (40). 

The balance equations shown in Eqns (3)-(5) 
reduce to simplified forms, since the velocities, 
temperature gradient and heat conduction vanish. 
These simplified forms are then solved after substituting 
for the constitutive relations to determine the rates 
at which the constituents exchange mass. Before 
doing this, one needs to specify the geometry and 
the microstructure that will be used to study 
metamorphism. 

ice constituent is assumed to exchange mass only 
with the vapour phase, while the vapour phase can 

4. SPECIFICATION OF MICROSTRUCTURE 

exchange mass simultaneously with all ice constituents. 
This assumption is a realistic one, since mass is 
sublimated off an ice surface into the pore space 
occupied by the vapour, while other grains may be 
acquiring mass by having vapour condensed onto 
their ice surfaces. It is, therefore, the vapour phase 
that indirectly provides for mass leaving one ice 
surface and eventually being deposited upon another 
ice surface. This representation of the mass interaction 
process precludes transfer of mass from one grain 
directly to another by volume diffusion or surface 
diffusion through the necks from one grain to another. 
Maeno and ebinumaI5 demonstrated that vapour 
diffusion dominates most situations. 

The energy exchange is assumed to have the 
form: 

The microstructure of the material determines 
the nature of metamorphism of snow under 
equitemperature conditions. Consider first how the 
microstructure affects the deformation and internal 
stresses. It is well understood that the surface tension 
in the ice grains will attempt to compress the material 
to a higher density to reduce the surface energy 
within the material. One starts by considering the 
special case when the strain is maintained at zero 
and the stress that must be developed within the 
material to keep Ea = 0. Equation (38) gives the 
following value for the stress tensor, i f  there are 
no deformations, temperature changes or mass 
exchanges. 

;a = Kav(6v - 0,) 
Piola stress will approximate Cauchy stress 

whenever deformations are small. In this case, they 
N 

(40) will be equal, since strains are held at zero. Also, " -6,) 
a=l the extents of reaction ( l a ) ,  will have initial values 
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Figure 1. Inner surface of an ice grain exposed by a cutting 
plane through grain. 

of unity but will change as the constituents exchaslge 
mass. 

Figure1 illustrates conceptually the internal stresses 
within the ice grains that will be developed due 
to surface tension on each grain. If the internal 
stress must balance the surface tension (a,), one 
must have for the internal stress (poor) within each 
ice grain: 

Assuming homogeneous and isotropic 
microstructure, surface fractions on any plane cut 
through a material are proportional to the mass 

fractions. One can then verify that a,, = (pa /p)poa, 

so that 

The free energy, entropy, chemical potential 
and internal energy are all reckoned per unit mass, 
whereas the surface energy (4) is reckoned per 
unit area of ice surface. Let Cia be the surface 
energy per unit mass, then, an approximate relation: 

where '): is the mass density of ice. One can show 
that in the reference configuration, one has 

for the difference between the potential differences 
for the vapour and the Crh ice constituent. Therefore, 
in the reference configuration one will have mass 
exchanges takipg place, since the potential differences 
Av and A,are not equal. What will happen is that 
one starts with an initial state consisting of a collection 
of ice grains of different sizes and a vapour phase, 
the iee grains will lose mass to the vapour until 
its energy begins to exceed the energies of some 
of the ice grains. Then the vapour will begin to 
supply mass to grains with lower energies, while 
the grains with higher energies will continue to 
lose mass to the vapour. The vapour will reach a 
stable configuration with an energy level where it 
is continuously acquiring mass from some grains 
while at the same time giving up mass to other 
grains. 

To characterise the geometry of the necks, consider 
two ice grains in direct contact with each other, 
as shown in Fig. 2. In this figure, the neck will 
have two surface curvature rba and rra, where rba 
is the positive radius of curvature describing the 

Figure 2. Basic neck geometry 

bond radius. The other curvature, rca, is the concave 
curvature seen in the figure and forms even in the 
absence of pressure sintering due to vapour diffusion 
to the neck. The concave radius (rc) will always 
represent negative curvature, but is given a positive 
algebraic value. Therefore, the mean or effective 
curvature (ma) of the neck is given by the following 
relation, where the minus sign reflects the negative 
curvature: 
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1 
As can be seen, the concave radius (rca) is 

I determined by the requirement that the neck surface 

I be asymptotic to the grain curvature. The ends of 
the neck are determined by the point on the ice 
surface where the surface curvature goes from a 

I concave outward to a convex curvature. The neck 
length is denoted by lba (later by la), which is 
always positive. From Fig. 2, the following relations 

, can be found: 

The surface area of the neck will be approximated 
by the following relation: 

An important factor that determines how rapidly 
the various ice constituents'interchange mass is 
the free surface area (S,). These values are determined 
by the density and the radii of curvature. Approximate 
values can be found from the relations: 

3Pa, grains sa =- 
Yira 

3pba, necks sa =- 
Yirba 

The density of the necks is determined by both 
the neck size and the three-dimensional coordination 
numbr, Na3, which gives the mean number of bonds 
p q  graio. The coefficients ma, and Kav in Eqns 
(39) and (40), respectively, for the mass and energy 
exchanges are assumed to depend on the free surface 
area and the equilibrium vapour density for the 
surface. This is determined by the surface curvature 
and the temperature. The relation adopted is: 

In these two equations, the radius r is either 
the grain radius (r,) or the neck effective radius 
(r,,,), depending on whether the constituent is a 
grain or a neck. The exponential terms reflect the 
dependence of equilibrium vapour pressure on surface 
curvature and temperature. In above relations, L 
is the latent heat of sublimation; o, the surface 
energy; and R, the universal gas constant. These 
coefficients reflect the fact that mass and energy 
exchanges are facilited by the availability of free 
surface area and vapour available at the surface 
for exchange of mass and energy. 

5. APPLICATION 

Several examples are considered to have some 
insight into the process of equitemperature 
metamorphism and to demonstrate the formulation. 
The governing equations are solved numerically 
by a standard numerical integration procedure. Since 
metamorphism can result in large changes in the 
mass density of the constituents, Taylor series 
expansions of the constitutive relations cannot be 
considered to remain valid over the entire integration 
period. Consequently, whenever any constituent 
density was changed by more than I per cent of 
its original density, the reference configuration 
was updated to the current configuration, the Taylor 
coefficients were recalculated, and the integration 
process was then restarted. 

5.1 Material with Five Grain Sizes & Five Neck Sizes 

As a first application of the theory, grain size 
distribution is approximated by five discrete grain 
sizes. It is assumed that initially all five grain 
sizes, each considered to be a constituent, have the 
same initial number densities (number of grains 
per unit volume). In addition, it is assumed that 
the ice grains are interconnected by a distribution 
of necks with bond radii which equal 10 per cent 
of the grain radii. This would represent a material 
with a weak initial intergranular bonding. The purpose 
is to then determine the time-dependent growth of 
the bond and grain size distribution. Information 
relevant to this problem is given in Table 1. The 
three-dimensional coordination number N ,  (number 
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Table 1. Microstructure 

Grains Wain size Density Free surface area Number density 
constituent No. (mm) (kg/m3) (m-') (m '1 

1 , a cy 5 .OOOO 2.00 x lo2 1.31 x lo2 4.2 x lo5 

2 S* 2.5000 2.50 x lo1 3.27 x 10 4.2 x lo5 

3 + " *  1 .OOOO 1.60 x lo0 5.23 x lo0 4.2 x lo5 
4 ,  0.5000 2.00 x 10-I 1.31 x lo0 4.2 x l 05 

0.2500 2.50 x I@' 3.27 x 10-I 4.2 x lo5 
0.5000 3.56 x 1.59 x 10.' 1.05 x 10" 
0.2500 4.56 x 10.' 3.98 x 1.05 x lo0 
0.1000 2.92 x 6.36 x 10.' 1.05 x loh 
0.0500 3.65 x 1.59 x 10.' 1.05 x loh 

0.0250 4.56 x 10." 3.98 x 1.05 x 10h 

of bondstgrain) is assumed to have a value of 2.50, 
so that the number of bonds is 250 per cent the 
number of grains. A value of 2.50 is slightly higher 
than what has been measuredI6 for snow with densities 
of approx. 250 kg/m3. Since each constituent has 
approx. 420,000 grains per cu meter each neck 
constituent will have 1,050,000 grains per cu meter. 

The size distribution could have been so chosen 
that each grain size had equal dispersed densities 
(p,), or grain size with a log normal distribution 
could have been chosen. Until quantitative stereology 
methods are used to make accurate determinations 
of grain and neck size distributions, ideal models, 
such as above will have to be used. Recent results 
indicate that progress in quantitative stereology 
may soon yield the ability to accurately determine 
these distributions. 

The mass, momentum and energy balance relations 
are solved to find the changes in constituent densities 
and temperatures with time. The initial temperature 
was set at -10 OC, but the constituent temperatures 
will not be discussed, since changes in constituent 
temperatures were so small as to not be of interest. 
Only the interchange of mass between the ten 
constituents (five grain constituents and five neck 
constituents) has been discussed here. The balance 
equations were solved numerically after substituting 
the appropriate constitutive relations into these 
equations. The results obtained are demonstrated 
in Figs 3-5. 

As may be observed, the smallest grains lose 
mass fairly rapidly. The smallest-grained constituent 
is almost eliminated by the end of 30 days. The 

largest-grained constituent gains mass very slowly, 
while the other' four lose mass, the rate of mass 
loss increasing with decreasing size. After the two 
smallest constituents are eliminated, the process 
becomes very slow. 

Time-dependent changes in bond size for the 

0 0'2 2 0 5 10 15 20 25 30 

TIME (DAYS) 

Figure 3. Variation of grain size for case where grains are 
bonded by necks with bond radii equaling 10 per 
cent the grain radii. 

neck constituents are depicted in Fig. 4. The smallest 
necks (constituent No. 10) grow very quickly until 
about 10 days, after which the growth rate decreases; 
it begins to decrease dramatically after the twentieth 
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day. These are the necks which interconnect the 
smallest grains (constituent No. 5). These necks 
begin losing mass, because they are overtaking 
their grains in size, and their geometry changes so 
that their surface energies begin to exceed those 
of some of the other ice constituents and hence 
their subsequent loss of mass. However, they still 
continue to grow relative to the grains to which 
they are attached. 

The variation of bondlgrain size is depicted in 
Fig.5. As can be seen, the bonds demonstrate 
considerable sintering with time. The smallest grain/ 
neck combination is of particular interest. The ratio 
r,/rm for this combination (constituent Nos. 10 and 

( 

0 5 10 15 20 25 30 

TlME (DAYS) 

Figure 4. Variation of bond dimensions with time 

5) shows that the bond radius exceeds the grain 
radius as the thirtieth day is approached. By this 
time, the fifth grain constituent is essentially eliminated, 
and two grains interconnected by a bond have for 
all practical purposes merged into one griin due ' 

to growth of the neck connecting these two grains. 
Equation (46) may be used to show that the effective 
radius is still larger than the grain radius even 
when bond radius r, reaches the value of the grain 
radius rg. At this point, rc becomes infinite and one 
has r,, = erg,  so that the effective curvature of the 
neck is still larger than that of the grain. Consequently, 
the neck will lose mass more slowly than the grains 
that it interconnects. The two grains will merge 
into one grain. But in this case, by the time this 

TlME (DAYS) 

Figure 5. Variation with time of ratio of bond radii to 
grain radii. 

occurrs, they are practically eliminated 

5.2 Effect of Mean Grain Size 

As another example, the case where the snow 
is modelled as a mixture of five grain sizes was 
considered, but this time the presence of inter- 
granular necks was not included. In addition, it 
was assumed that the initial grain distribution is 
such that all grain sizes have equal initial mass 
densities (pa) of 50 kglm? As an added feature, 
the rates at which metamorphism proceeds were 
compared for two different snows, one large-grained 
and the other small-grained. The large-grained snow 
was assumed to have a size distribution which is 
ten times as large as that of the fine-grained snow. 
The grain size for the five constituents in the fine- 
grained snow was assumed to be 0.025, 0.05, 0.1, 
0.25 and 0.50 mm, while'the large-grained snow 
had a size distribution 0.25, 0.5, 1 .O, 2.5 and 5.0 
mm. Obviously, the free surface area available for 
mass exchanges was much larger for the fine-grained 
snow, and hence one would expect the redistribu- 
tion of grain sizes to proceed much more rapidly 
in fine-grained snow. The relevant physical prop- 
erties for the two materials are presented in 
Tables 2 and 3.  

The relative rates of metamorphism for the 
large-grained snow and the fine-grained snow have 
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~ably2.  Microstructure for large-grained snow 
," 

Grains size Density Free surface area Number density 
constituent No. .,- (mm) (kglm3) (m-I) (m-'1 

Table 3. Microstructure for fine-grained snow 

", Grains Grain size Density Free surface Area Number density 
J constituent No. (mm) (kglm'l (m-') (m-'1 

/' 1 0.50 50.0 3.27 x lo3 1.0 x lo8 

2 0.25 50.0 6.54 x lo3 8.3 x 10' 

been illustrated in Fig 6 .  The figure depicts density 
distribution for the two types of snow at four given 
times. The horizontal axis represents the initial 
grain sizes, though it must be kept in mind that the 
initial dimensions for the two types of snow differ 
by a factor of 10. The first figure shows the distribution 
at the initial time when all constituents have 
densities of 50 kg/m3. By 30 days, the two smallest 
constituents in the fine-grained snow have completely 
disappeared. In contrast, the large-grained snow 
has gone though a relatively minor change in grain 
size distribution. The remaining two parts of the 
figure are for 60 and 90 days. 

One can see that the nature of metamorphism 
is different from that in the first example for both 
large-grained and fine-grained snow. In this example, 
the second smallest-grained constituent actually 
gains mass for some time as opposed to the first 
example. In the first example, where all constituents 
had equal number of densities (N,), the largest- 
grained constituent extracted mass from all the 
smaller grains, with the result that all these constituents 

are much larger than that of constituent No. 5, and 
this is responsible for the two smallest constituents 
interacting with each other. Constituent No. 5 is 
sacrificed in favour of Constituent No. 2, which 
gains mass until the smaller one is nearly depleted. 
Then this constituent begins losing mass to the 
next larger one. 

5.3 Effect of Temperature 

Temperature naturally plays a role in the rate 
at which any form of metamorphism progresses. 
This is seen in the effect that temperature has 
on the free energy and on the potential differ- 
ences *Av. Calculations were carried out for four 
temperatures, -3, -10, -20 and -70" C. In this 
example, one considers the five grain size to be 
0.25, 0.5, 1.0, 2.5 and 5.0 mm. Each grain size 
was assumed to have an initial density of 50 kg/ 
m3. The relative changes in the grain size con- 
stituent densities for these initial grain sizes are 
demonstrated in Fig: 7. 

lost mass. In this example, where all constituents The temperatures of -5 "C and -10 "C are 
'have equal initial mass densities, it was seen that characteristic of the temperatures that would exist 
the surface areas of the small-grained constituents in ~easonal snow cover in the alpine areas of the 
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United States. The lowest temperature shown here, 
-70 "C, is characteristic of the temperatures that 
can be found in Antarctica during winter. 
Consequently, these rates of metamorphism would 
be relevant to processed snow that would be used 
for landing strips at the South Pole Station or 
other areas in the Antarctica. Note that the temperature 
is extremely important in determining the rate at 
which metamorphism advances. At -70°C,  the 
process is practically stopped. 

160 I SMALL GRAINED 

1 LARGE GRAINED 

TIME = 0 DAY 

I SMALL GRAINED 
160 

5.4 Effect of Initial Grain Size Distribution 

As indicated earlier, initial grain size can have 
an effect on the rate of metamorphism. To investigate 
this, two initial grain size distribution were considered. 
The first one was snow in which the grain size was 
evenly distributed wrt density, and the second one 
had a distribution approaching a normal distribution. 
Both materials had an initial mean gfain size of . 
0 . 5  mm. 

1 I SMALL GRAINED 

160 

LARGE GRAINED 

TlME = 60 DAYS 

0.25 0.50 1.00 2.50 5.00 

GRAIN SlZE m (x104 or 10") 

I SMALL GRAINED 

160 

LARGE GRAINED 

TlME = 90 DAYS 

0.25 
I I I 

0.50 1 .OO 2.50 5.00 

GRAIN SlZE m (XI 0.' or 104) 

Figure 6. Variation of density distribution of constituents with time. The fine-grained snow has an initial grain size distribution 
ranging from 0.025 mm to 0.5 mm. The large-grained snow has a distribution ranging from 0.25 mm to 5.0 mm, so 
that each constituent is 10 times as large as in the small-grained snow. 
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INITIAL GRAIN SlZE (mm) 

TlME = 50 DAYS 

loo 1 TIME = 200 DAYS 

INITIAL GRAIN SlZE (mm) 

Figure 7. Effect of temperature upon rate of metamorphism 

The time-dependent variation of grain size 
distribution for the two snow samples over a period 
of two years as calculated by the physical model 
presented here is depicted in Fig. 8. As one can 
see, the distribution does evolve towards a larger 
grain size distribution. The smaller grains are sacrificed 
in favour of the larger grains. By one year, grains 
with initial sizes smaller than 0.4 mm have been 
eliminated. However this does not imply that grains 
with smaller sizes will not exist within the material 
at any given time. Density distribution in terms of 
initial grain size instead of instantaneous size in 
depicted in Fig. 9. One should keep in mind that 
at any given time, the instantaneous grain size will 

they begin to acquire similar characteristics as 
time passes. To make a better comparison, variation 
of the mean grain size with time was considered. 
How these two materials change their mean grain 
size with time, is demonstrated in Fig. 9. An interesting 
result is that while the grain size distribution during 
the first 100 days are substantially different, the 
rates at which the two materials change also differ 
significantly, as implied by the slopes of the curves 
in Fig. 9. However, by 100 days, grain size distribution 
are somewhat similar (Fig. 8), and the rate of grain 
growth for the two materials approach each other. 

6. CONCLUSION 
generally be different from the initial grain size. 

In this paper, a mixture theory based on volume- 
As can be seen in Fig. 8, grain size distribution fraction principle and utilising material microstructure 

are%cmsiderably different in their initial state, but has been developed and examined to determine if 
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Figure 8. Comparison of grain size distribution evolution for two snow samples, one with a nearly uniform initial distribution, 
and the other with a more normal distribution. 

- 

- 

such formulations can be put to use to predict heat 
and mass transfer in snow and firn. While experimental 
data to validate and calibrate such a theory is still 
being developed, the results do indicate that such 
mixture theories can be effectively used to predict 
material response to thermomechanical processes, 
such as metamorphism. 

7 * - , N - 0 DAY ,' ( 

80 DAYS , i' 
! . . . . . . . . . . . 

160 DAYS , I \ 
I 

360 DAYS ,,: ,/-- x...,, ', 
720 DAYS .., t 

The examples given here demonstrate that if 
such formulations are to be used, an accurate description 
of the material microstructure is needed. The first 
example showed that under equi-temperature 
conditions, a complicated mass transfer process 
takes place with large grains acquiring mass from 
small grains and with the necks acquiring mass 
from all the grains. This was the situation for size 

/' ',. ! 
- 

- 

- 

- 

I 1 
0 0.2 0.4 0.6 0.8 1 .O 

INITIAL GRAIN RADIUS (mm) 

#-"------ 
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W 0 7  
C! rn 0.6 ,,*llc NORMAL DISTR. 
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UNIFORM DISTR. g 0.4 

0 100 200 300 400 500 600 700 

TIME (DAYS) 

Figure 9. Comparison of the rate of change in mean grain 
size for two grain size distributions. 

distribution based on initial number densities for 
all constituents. However, if the initial microstructure 
had all constituents with equal mass densities, most 
of the initial activiti would involve mass exchanges 
between the smaller grains. In the second example, 
the metamorphisms of fine-grained and large-grained 
snow were compared. In this case, it was seen that 
metamorphism was much more dynamic for the 
fine-grained snow. The calculations also showed 
that temperature does significantly affect the rate 
of metamorphism. Finally, the effect of initial grain 
size distribution on the rate of grain growth was 
considered. The calculated results demonstrated 
that initial grain size distribution does not appear 
to dramatically affect long-term grain growth. In 
the example used here, the material with an initial 
uniform size distribution experienced an initial 
larger grain growth rate. However, its grain size 
distribution slowly evolved towards one similar to 
the other material, with the result that its grain 
growth rate approached that of the second sample. 
It remains to be seen if this would also be the case 
under conditions involving large Temperature gradient. 
Experimental data forthcoming with improved image 
analysis methods should help determine if this 
result is representative of what. really happens. 

Work is continuing to compare these results 
with those of stereology studies currently underway. 
In addition, the formulation presented here is 
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now being applied to equitemperature conditions 8. Adams, E. E. & Brown, R. L. A mixture 
involving a nonhomogeneous material with an theory for evaluating heat and mass transport 
elastic/viscoplastic behaviour and to temperature processes in nonhomogeneous snow. Contin. 
gradient conditions. Mech. Thermodyn., 1990, 2 ,  31-63. 
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