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ABSTRACT 

A technique for evauation of conductor and dielectric losses in pedestal-supported finlines usilig 
mixed spectral domain approach has been presented. All field components were computed through 
application of Galerkin's technique in spectral domain, assuming weighted basis functions torepresent 
unknown electric voltages, i.e., magnetic currents. In the process, the propagation constant along the 
line was also accurately computed. The aim was to study attenuation behaviour of these lines wrt 
variation in dimensional and other structural parameters. The results indicated a specific dimenGonal 
range within which their use is justifiable. The potential defence applications of pedestal-suppbrted 
finlines is in millimeter wave systems, e.g., radars, missile guidance systems, etc. 

NOMENCLATURE metallic fins on one or both sides of a dielectric slab 

Ld Dielectric loss 
LC Conduction loss 
o Angular frequency 

E Permittivity of the dielectric 

tan 6 Loss tangent of the dielectric 

s d  Cross-sectional area of the dielectric 

4 Surface resistance 
C Total conductor periphery 
-+ 

H t Tangential magnetic field over the 
conductor surface 

-+ + 

E, , H ,  Electric and magnetic fields, respec- 
tively in the crossse&ional plane 

1. INTRODUCTION 

suspended within a rectangular conducting 
enclosure. The dielectric substrate has to be 
supported either by grooves or pedestals. With 
comparable dielectric and channel dimensions, a 
pedestal-supported quasi-planar transmission line 
enjoys advantages, such as larger bandwidth, wider 
impedance range and less sensitivity of impedance 
ta  dimensional tolerances over groove-supported 
 structure^^'^. The cross-sectional view of a 
pedestal-supported bilateral finline is presented in 
Fig. 1. 

The available literature does not provide 
proper account of losses for wave propagation 
along a pedestal-supported finline, although 
transmission loss should be considered a very 

For frequencies at the lower end of the important criterion while ev-aluating the 
millimeter wave (MMW) spectrum, finline offers a performance of a transmission line. Hence, a 
versatile transmission medium', which contains method of loss evaluation in pedestal-supported 
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to the substrate and perpendicular to the direction of 
propagation. The transform is defined by 

T 
h - $(a )  = r - m  + (x )e*"& , 

1 (1) 

T 
d where a is a discrete Fourier variable. 

Figure 1. Cross-section of pedestal-supported bilateral finline 

Since the regions above and below the 
~ e d e s t a l  s u ~ ~ o r t  have different sidewall ' . 
separations, it requires mixing of the two different 
spectral domains (which exist on two sides of the 

finlines using mixed spectral domain approach has pedestal support) to investigate the structure. 
been devised. Novelty of the work lies in the 
evaluation of losses considering the effect of For the pedestal-supported finline shown in 

pedestal, which has not been reported in the Fig. 1, the aperture at y = t plane is replaced by a 

literature so far. perfectly conducting plane (shorted aperture) with 
the original tangential electric field at the aperture 

Today, electronic warfare is heavily dependent restored at y = t+ and y = t- by appropriate magnetic 
on MMW circuits and systems. MMW systems used 
for defence applications, viz., radars, missile f 
guidance systems, etc. have to incorporate 
quasi-planar transmission structures like finlines, m -1 y = h  y = t .  

image dielectric guides, etc. Of these, either sar,Ma 
groove-supported or pedestal-supported finlines are . . . . . \a 

preferred for certain applications. Since the SECTION Ill 

pedestal-supported finlines are superior in 
performance to groove-supported finlines for 
reasons stated above and since their total losses 
considering the presence of pedestal also are 
presented for the first time here, this study will be 
extremely useful in designing MMW finline-based 
defence electronic systems. The results presented 
here establish a proper dimensional range of such 
lines which would ensure low-loss performance, 
which is always a prime design concern for obvious 
reasons. 

2. THEORETICAL BACKGROUND 

In the spectral domain approach, Galerkin's 
method is used in the Fourier transform domain to 
get a homogeneous system of equations for 
determining the unknown propagation constant and 
relative amplitudes of current distribution along a 
planar or quasi-planar transmission line. The 
Fourier transform is taken along a direction parallel 

Figure 2. Equivalent structure used for analysis 

surface currents MI and - M I ,  respectively. 
Similarly, the aperture aty = 0 plane is replaced by a 
perfectly conducting plane and appropriate 
magnetic surface currents M2 and - M2. The 
resulting equivalent structure is shown in Fig. 2. 

The hybrid fields in each of the three regions in 
Fig. 2 are first expressed in terms of superposition 
of TE-to-y and TM-to-y expressions involving 
scalar potentials. The transverse magnetic fields in 
the spectral domain at the planes y = t and y = 0 
approaching from either side of each plane may be 
obtained in terms of unknown magnetic currents 
and spectral domain Green's functions as 
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rsXi - - re: e:i rfilxi 
L'zJOt  1': ~ : J L f i , ~ l  

+ re: 521 rfi2x1 1': e:JLfi,,l (4) 

Here, quantities with tifde (-) represent Fourier 
transforms of corresp~nding spatial domain 
quantities, while x or z idthe subscript refers to the 
corresponding direction. Enforcing continuity of 
transverse magnetic field across the apertures at 
y = t and y = 0 in the spatial domain, one gets 

and 

However, it is to be noted that one should be 
careful in applying Eqns 6(a) and 6(b) to the 
spectral domain when different quantities are to be 
replaced by their Fourier transforms, due to the fact 
that different spectral domains having different 
spectral variables exist a ty = 0+ and y = 0- planes. 

To solve for unknown magnetic currents using 
spectral domain immitance approach, first, the 
unknown magnetic currents are expanded in terms 
of known basis functions with unknown amplitude 
factors as 

Taking inner products of the spatial domain 
Eqns 6(a) and (6b) wrt MlXi (i = 1, ...., P), MlZr 
( i = l ,  ...., P),M2,,(i=l ,...., B a n d  M2=i(i=l,....,Q), 
respectively and applying Perseval's theorem, one 
gets a matrix equation of the form 

[A1 [XI = 0 (7) 

where [XJ is a vector composed by the unknown 
magnetic current weighting factors. The coefficient 
matrix [A] may be written in terms of sub-matrices 
as 

!-['I1 I P I P  I S l 2  1 PXP 1'13 I PXQ ['II] PXQ 1 

A typical sub-matrix element will be of the form 

The discrete Fourier transform variables to be 
chosen are a, = 2 n x l a  for region with sidewall 
separation a and a, = 2nx 1 b region with sidewall 
separation b. Expressions obtained for the spectral 
domain Green's functions are given in the 
Appendix 1. 

3. DETERMINATION OF PROPAGATION 
CONSTANT 
Matrix Eqn (4) forms a set of homogeneous 

equations in unknown magnetic current basis 
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Figure 3. Propagation constant vs frequenc~ f'& ~ r i o u s  0 20 10 60 80 loo 
values of w/a. F~QUENCY ( OHz ) 

Figure 4. Propagation constant vs frequency for various 

function amplitudes which will have a nontrivial values of w/a. 

solution set provided the coefficient matrix [A] has . 
Thus, knowing all field expressions, losses were 

got zero determinant. Since all the terms in [A] 
computed4 as 

implicitly contain the constant P, setting its 
determinant to zero and adopting a root-searching 2 

technique using the modified secant method, one ac tan6  ~~14~1 ds 

can solve p. L,  = -+ + N p / m  
2ReI  E, ~ g * . d s  

-" 
Inner product of two functionsJTx) and g(x) in a 
region having width L along x-direction is given by and 

w 
2Re.l E, X H ,  * . d  s 

which may bqreplaced by + 7 ( a )  g ( a )  i.e., an 
\ n = - m  

infinite summation over a discrete spectral variable 5. CHOICE OF BASIS FUNCTIONS 
The basis functions are to be chosen to 

a by application of Perseval's theorem. represent the magnetic currents, i.e., electric 
voltages across the slots accurately, taking into 

4. DETERMINATION OF LOSSES consideration proper edge corrections. The basis 
functions chosen were: 

Once the propagation constant is evaluated, the 
fields in alrregions can be obtained after solving the sin [ 2 i m  1 p] 

M, = (-1)' 
unknown magnetic current weighting coefficients. J1-(Zr/p)' 
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Figure 5. Conduction loss vs slot width 

M zi (x, p) = (:I)~-' 
cos [2(i - 1)m I p ]  

Jl-0' 

for an x-directed slot of width p. - I .  ( k -(i - l)nl)] 
These functions were chosen noting the 

inherent symmetry of the structure. They are The number of basis functions required were 
analytically transformable.to yield the following determined after proper .convergence test for 
transforms: various slot widths and the number used varied 

from 1 to 3. 

and 

MX, (a,.) = (-1)' ~ r ( J o ~ ~ + i n ~ ]  
4i 1 6. CHECKING FOR ACCURACY 

For checking accuracy of the results, few data 
points were chosen from Figs 2 and 3 of Ref. 4. 

- J o  (I?-inl)] 
They represent propagation constant, and loss 
computation results for unilateial finlines; a 
limiting case of pedestal-supported finlines 
obtained' by setting a = b = c in the geometry 
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E = 2.22. FREQUElKY = 30 G h  
0.20- 

- cr 8 3.15. FREQUENCY 1 25 GHz 
0.15- 

- a a 1 - 
0 
A 

0.05- 
\ 

Figure 6. Dielectric loss vs slot width 

(Fig. 1). Results thus obtained for the same set of and b = 1.7780 mm, tan 6 = 2 x lw4 
parameters agreed with the results presented in 
Ref. 4 are given in Table 1. 

It is further assumed that c = w, i.e., a 
7. COMPUTED RESULTS symmetric bilateral finline structure R,, i.e., surface 

Figures 3 and 4 show the dispersion 
characteristics, i.e., variation of normalised 
propagation constant with frequency for different 
sets of parameters. Figures 5 and 6 show variations 
of both LC and Ld against normalised slot width for 
two different sets of parameters. For all graphs 
presented, the following data (wrt Fig. 1) were 
assumed: 

h =  3.6185 mm, t =  0.1250 mm 

d = 3.4925 mm. a = 3.5560 mm 

resistance of conductor was computed using its 
standard expression5. 

Based on the observations of these and other 
such curves (not presented here for the sake of 
brevity) it was found that the losses were within 
tolerable limits provided the normalised slot width 
exceeds a critical value of 0.2 or so. Also, as 
expected, the principal contribution to total'losses 
is provided by the conductor loss and not by the 
dielectric loss. 

Table 1. Propagation constant and loss c o m p u ~ o n  results for unilateral finlines 

Obs Relative slot Frequency Relative propagation Dielectric loss Conductor loss 
No. width (wla) (GHz) constant (pflco) (dB/m) (dB/m) 

According to Computed According to Computed According to Computed 
Ref. [4] Ref. [4] Ref. [4] 
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8. CONCLUSION 
A new technique for exact computation of 

losses and their variations with frequency and slot 
width in a pedestal-supported bilateral finline has 
been proposed. _The  analysis is perfectly 
generalised and can be extended to unilateral or 
other finline structures with pedestal upport after 
practically little or no modification. s..'hl oreover, 
considering applications of finlines to millimeter 
wave systems used in defence and electronic 
warfare, this study has great importance to Defence. 
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APPENDLX 1 

spectral Domain Green's Fum%hs 

Gh (a$) = -Ylh  N: -YIC N,2 G:(a,p) =G:(a,P) = ( Y ~ L T Y ~ C ) ~ X ~ Z  

GA ( a , ~ )  = G i  (a,P) = (yle - ~ t r ) ~ ,  N, 8: (a,$) = ~ 6 h  N,2 + ~ 6 e  N: 

GA (asp) = - Y I ~  N,Z - Y I ~  N,Z 
Y l c  

ioso - y1 cothy,(h-t) = --cothy, (h-t), ylh - -- 
G i  (a,P) = Y 2 h  N: +Y2c N: ' y 1 

iocro 

G,' (a$) = GA = (y2, -y2,)NxN, 

\ - - 

G: (a,p) = Y,, N: +y2, N: y2e = -&!!?!&M&~, (h-f), y,, = - Y t ~ ~ t h Y 2  (h-f 
Y 2 joclo 

i o ~ ~ ~ ~  , Y 2 h  = - Y Z  
G: ( a , ~ )  = G: (asp) = ( Y ~ ~  -Y 3h )NxNz Y3c = - y, sinhy, t jopo sinh y, t 

G: (a ,  P) = -Y3h N: -Y 3c N: Y4e = Y3c 9 Y 4 h  = y3h 

G i  (%PI = G: (%PI = ( ~ 5 .  -y,h)NXNz 
y = J- in Section i 

* 
6: (a,@) = -Y sh N: -Y 5c N: 

Obviously, a is .to be defined separately for 
different regions as discussed. 


