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ABSTRACT

‘In‘tthis paper, an approximate closed-form solution for (rajectories of ballistic projectiles is
deriveg. The assumption made in this derivation is to neglect the variation of the elevation angle
along the trajectory in‘a small interval of time. The closed-form solution has been used to develop
the algorithm for a lead angle computation as well as faster computation of trajectories. The fact
that ‘one of the analytical expressions, although complex, is invertible and is made use of in the
algorithm. |

NOMENCLATURE Vo Initial velocity of the projectile
C pSCy/2m, u Horizontal component of the velocity
i
Density, of thtla air v Vertical component of the velocity

m

Sy

vV

Reference area of the projectile X, Y» 2,  Target position at time

Mass of the projectile Xy Y4 2y Target present position
Drag coefficient ug, vg Wy Target present velocity
Acceleration ‘due to gravity Z Height of the projectile
Step: size Y Elevation angle
Horizontal range of the projectile Yo Initial elevation angle
Horizontal rahge of thé target Vo Lead azimuth angle
Velocity of the project‘:ile t Time
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1. INTRODUCTION

Computation of lead angles and preparation of
ange tables for ballistic projectiles are some of the
essential tasks in many theoretical and practical
applications, such as lead computing sights,
vulnerability study of aircraft, etc. In these tasks,
trajectories of the projectiles liké bullets, shells and
missiles are to be computéd several times. These
computations consume substantial amount of
computational time. The aim of the present study is
to reduce the lead angle computational time to less
than allotted time of 0.1 s.

Goveming equations of these trajectories are a
system of coupled ordinary differential equations
and are solved only numerically. Some attempts
were made in the past to simplify these equations
and find analytical solutions. One’such attempt
was that of Siacci!, who made two assumptions:
(i) approximation of ratio of cosines of initial
elevation and elevation of any point on the trajectory
to unity, and (ii) neglecting variations in the air
density along the trajectory. With these assumptions,
the governing equations are reduced to a simpler
form and can be integrated by means of
quadratures. Application of this theory is limited to
trajectories with relatively small elevation angles.

In Sigcci theory, the drag function is taken as
proportional to nh power of the velocity, where

values of n are given in a Mayevski’s table 1. The
values of n vary from 1.55 to 5.00 depending upon
the velocity of the projectile. In many applications,
the drag is also taken to be proportional to the
square of the velocity. The proportionality constant
includes drag coefficient. In this paper, an
approximate analytical solution for the trajectories
has been derived by taking the latter form of drag
function and making an approximation similar to
the first approximation of Siacci theory. Taking
variation of the elevation angle to be negligible ina
small interyal of time, the governing equations are
decoupled. The resulting equations are then
integrated tp yield a closed-form solution.
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TraJectorles of the prOJectlles constructed
rusing this approx1mate solution ‘were analysed.
Error analysis showing the trunf,atlon error had
been-conducted. Numerlcél experiments were
conducted to compare such computed trajectories
with those computed through numerical
integration using Rungye-Kutta method. As the
step size decreases, the trajectories of the new
method converge to those of the numerical method.
The new method is faster than the numerical
method. "

This paper also pontains a new faster algorithm
based on the closed-form solution for determining
the firing dngles to intercept a moving target. This
algorithm can be pséd in the lead computing sights.
The closgd-form solution for the projectile
trajectories, derived lin Section 2 and.Section 3,
outlines a mgthod f constructing trajectories using
the closed-form solutiqn. It also includes details of
the numerical results and the error analysis. In
Section 4, an algorithm for lead angle computation
that uses the closed-form sé)lution is described.

2. CLOSED-FORM SOLUTION OF

PROJECTILE TRAJECTORY
|
Trajectories of the ‘projectile are the

't'wo-dimensional curves with the following
‘governing equations:

du

un _ 2

I CV cos (y) ¢))
d )

71%’ == CV:sin (y) - g )
ds

- €
f"’

-’ { ! S

, Itis assumed that the variation in the elevation
angle in a small time inferval, (¢, t + k) is negligible.
Without loss of generality, a typical time step to be
the initial time step, that is (0, ﬂ) is taken. This
assumption reduces Eg]ns (1) and (2) to
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% =— Csec (V) u (5
|
% = 1— C cosec ('yo) - g (6)

where a is the elevation angle at t =0,
i

These equaﬂons aretnow decoupled and can be
integrated to! iget a closed- form solution. Depending
upon the s'igns of right hand side cohstant
coefficients of Eqn (6), two different cases arisk in
the integration. The first case is qf the ascending
mode of flight, i.e., when the eldvation angle is
positive and the coefficients have same sign. The
other case is of the descending mode of flight, i.e.,
when the elevation angle is negative and the
coefficients have different signs.

By taking 7, to. be positive and the n{mal
‘condition as t= O,‘ V=V, u=Vycos (70) and

v= "V, sin (Yp), mtegrimon of the Eqns (5), (6) and
3), (4) yield :

_ Vycos (yg) ' .
"~ CVot+1 ™
_1/855!1(70)‘ (J Cg ]
- . C tan Sith ( ) (Cl H| ®
0s (Yo)
§= so+ C log (1+CVyt) 9)

B sin(Yo) . 1 (,l _]
=7+ C log|cos ('Yo)(l 1)

A / _Q&_} .
/ cos [cl sin (1) (10)

where (s,, Z) is a point on the trajectory at ¢ =0 and

In thg descending mode of flight, 7y, is negative

l N e . ~ -\ . e . .
and hence the coefficients of Edn (6) differ in signs.

As far as E.qn (5) is concered; there is no change
between the ascending and the descending modes.
Therefore, the expressions for u and s in/ the
descending mode are same;as those in the
ascending mode.

By taking 7y, to be negative, and integrating
Eqns (6) and (4), one gets

where

Siﬂ ( ;()’

I

7
tan 70 0

(
~O

3. TRAJECTORY CONSTRUCTION USING
ANALYTICAL SOLUTION

3.1 Single-Step Method

Generally the trajectories are constructed
using a suitable time step. The positions of the
prfuectxle after every time step are calculated, and
the curve joining these points gives the trajectory.
The above derived analytical expressions can be
used in the ‘calculation of the trajectory points as
follows:

For a given initial elevation angle (yy) and
veloéity (Vp), the trajectory point after time (k) is
computed using Eqns (7) to (11) or Eqns (7) to (9),
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and (12) to (14) depending upon whether Yo 1s
positive or negative, respectively. While
calculating a trajectory point after next time step,
elevation angle and velocity of the previous step is
taken as 7y, and V,,, respectively. |

If values of the drag coefficient and the air
density versus velocity are given-in a tabular form
then values of these coefficients in each time
interval can be computed by an interpolation
method. In this paper, the trajectories constructed
by the above method are referred as constructed
trajectories.

3.2 Numerical Experiment & Error Analysis

The above method of constructing trajectories
is a single-step method. Order of this method is
estimated for a numerical example. . s

Let s4(r) and zy(#) be the range and height of a

point on an actual trajectory of the projectile for a
particular initial elevation. Let s,(¢) and z,(¢) be the

same quantities of a corresponding point on the

constructed trajectory of thq’ projéciile. Then
cumulative errors E () and E(t) in S}, (r) and z,(¢),
respectively, in the power of h are expressed as

E(t)= sy(t) - s,() =dyh+ doh® + dsf® + ...,
(15)

E()=z)-z()=eh+ e, + esh +

'
where d and e are constants. The largest integer p
such that , !

K El=0hP)|

then the order of the mf:tl{od2 is p.

The error téerms for p=1,2,3 and 4 have been
estimated. For p=1,2, 3 it has been observed that
the p™ term dominates, while rémaining terms are
almost negligible or sum of the;:m is negligible. The
magnitudes of the error terms Vversus time for p =3

in a typical case’, are plotted in Figs 1 and 2. Here,
the continuous lines represent the first-order term,

w
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Figure Error terms in s values (y F 45° and ho =0.125)
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Figure 2. Error terms in z values (Yo =45’ and ko =0.125)
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dotted lings the second-order term and dashed lines
the third-brder term. The cqntinuous and dotted
lines are almost fefle;ction of one another wrt
zero-line. Overall effect due to these two terms is
negligiblé. The third-order term dominates. This
shows that fthe truncation error is of the third-order.
Hence, the method is a second-order method.

Further, the constllucted txajectpn'es have been
compared with a referexrce trajectory computed
applying thé¢ Runge-Kutta method using the

following mefisure of deviation: I .

Dev. =—\/(Sl-?) =D+ &-D(E-2)

{
stz | 8 U0

The bartred quantities are corresponding to the
reference trajectory. In Fig, 3, maximum values of
the deviation o} analytical trajectories in the entire
flight time are plotted versws step size. As the step
size decreases, the maximum deviation decrcq‘scs
showing convergence of constructed trajectories to
the reference trajectories. It was also found that the
computational time of constructed trajectories is
about 15 per cent less tHan those obtained by the
Runge-Kutta fotrth-order method with the same
step size. 4

4. ALGORITHM FOR LEAD ANGLE
COMPUTATION :

A new faster algorithm, for lead angle
computation based on the i:losed-form solution has
been described. This algérithm takes [current position
and tracking speed of the target as inputs. Assuming
straight-line path for the target, if computes
required firing angles for a possible interception
with a projectile to be launched from the origin.

4.1 Steps of the Algorithm

The algorithm consists of two phases of
computations. In the first phase, an approximate
time for the target and Iirojectile to arrive at an
equal horizontal range is determined. In the second
phase, a projectile trajectory is found, such that the
miss-distance is within the given limit. First six
steps.given berlow are of the phase 1 of the

algorithm. Tile rer;laining steps are of phase 2.

Step The given present point of the target be
(%4 Ya» 7). From the.tracking speed,
velocity (uy, vz, wy), of the target is com-
puted. ’

Step 2 Using a suitable time s‘tep, say dt |, the

time (f) required for the target and.the
projectile to arrive at equal horizontal
range is determined. Initially, ¢ is taken

to be equal to dt,.
Step 3 Position of the target at ¢ is computed as

Xy=Xy+uyt
Ni=yatvyyt (19)
y=z4twyt
31=W

where s, is horizontal range

Step 4 The v, of the gun is taken as

. (%
Yo = tan [S_j

The projectile position (s, z) at ¢ is com-
puted from Eqns (9) and (10). In these
computations, the whole time of flight of
the projectile, i.e.,  is taken as a single-
time interval.

Step 5

Step 6  Iftis equalto dt;, then add dr, to t and go

back to Step 3. If the distance between
the target and the projectile is not decreas-
ing as time increases then an interception
may not be possible, and stop. Otherwise,
if 5 is greater than s,, g0 to next step, else
add dt; to t and go back to Step 3.

Step 7

Increment 4, by

dy=tan™! (e‘.,.— : (20)

&y

Step 8 By dividing ¢ into small intervals of size

dr,, the projectile trajectory is computed
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Step 9

Step 10
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till its range becomes close to s, but less.
Let s and z be the horizontal range and
height of such a position, respe~ctively.
Lett,, V. and y, be the time of flight, cur-
rent velocity and elevation of the projec-
tile trajectory, respectively.

If . is non-positive, then an interception
may not be possible in the ascending
mode of projectile flight, and stop.
Otherwise go to next step.

Let ds =5, —s. Time dt required for the
projectile to traverse further the horizon-

tal range equal to ds, is computed using
inverted form of Eqn (9), i.e., .

dt= CIVC (exp( J—‘l)
0.0018 %
)
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Step 11

If (t,+ dt) is very close to £, then go to

next step. Otherwise set t=1¢_+dt and '
recalculate s, for time ¢ using Eqn (19)

and go back to the previous step.

Step 12 The height of the target (z,) in ¢ is com-

puted using Eqn (19). The incremental
helight dz achieved by the projectile in
time df is computed using Eqn (10). If
differente between z, and (z+dz) is
gréater thap éiven miss-distance then go
back to Step 7. Otherwise, the current
position of the target may be taken as a
possible impact poir:lt. The current value
of Y is the required lead elevation angle of

the gun. The azimgth angle of the impact
point gives required lead azimuth angle.

0.125 0.0625

0.0313

STEP SIZE

— I = T
! 0.0156 0.0078

) f

Figure 3. Maximum deviation versus step size plots of t‘rajectori% With various initial elevation
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The increment given to Yo in Stép 7 is based on
a well-known fact in‘ballistics. Let d be the vertical
miss-distante between a projectile trajectory and a
point abO\q‘e the trajectory. Let B be the initial
elevation of the trajectoryl and o, the angle
subtended by d at the o¥igin. A trajectory of the
projectile with an initial dlevation angle of & + B, is
closer to the Point than the previox.ls trajectory.

4.2 Results

2 3400 60 8 -350 -3 2.0
3800 120 11 -350 -2 1.0

4 4200 180 14 -350 -1 0.5

5 4600 240 17 -350 0 0.0

6 5000 300 20 -350 0.5
5400 360 23  -350 2 1.0

8 5800 420 26 1-350 3 -2.0

9 4500 480 291 -350 4 -25

10 4500 540 32 150 0 -4.0

Table 2 contains lead angles comp‘uted using
the algorithm for sample data points of Table 1. In
these computations, dt1‘=0.1,. dt,=0.05 and
miss-distance d=0.01 m have been used. The
miss-distances and times of flight are calculated
offline, once the lead angles are computed by the
algorithm. In the offline calculations, the
Runge-Kutta fourth-order numerical intégration
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scheme is used to compute the shell trajectory. This
is ta validate the algorithm. Although actual
miss-distances are high compared to computed
miss-distance, they are acceptable for the order of
the ranges considered. |

Table 2. Performance results of the algorithm

¥

(deg) _ (eg)  _ uw

1 -1328 1377 2.61 1.61 0.0077
2 4813 1645 3.02 0.77 0.0110
3 11088 1637 3.42 0.75 0.0126
4 17479 1765 3.84 331 0.0137
5 24000 1827 428 3.12 0.0187
6 -5322 2459 478 1.52 0.0214
7 1445 1660 537 0.54 0.0231
g 8402 891 631 3.50 0.0264
9 ‘14172 1422 4.47 R.47 0.0220
10 180.00  9.70 4.41 2.03 0.0187

5., CONCLUSION

The results validate the closed-form solution.
. . e . .
The fact'that the solution is invertible may Increase
its usefulness in many applications.
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