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ABSTRACT

~n'lthis paper, an approximate closed-forrn solution for trajectories of ballistic projectiles is

derive? The assumption made in this derivation is to neglect the variation of the elevation angle
along the trajectory in .a small interval of time. The closed-forrn solution has been used to develop
the 3-lgoritl1m for a lead angle computation as well as faster computation of trajectories. The fact
that lone of the analytiyal expressions, although complex, is invertible and is made use of in the

algorithm. I

Initial velocity of the projectileNOMENCLATURE Yo

Horizontal component of the velocityuc pSCd/2ml

I
Densit): of the air

Vertical component of the \relocityv
p

Target position at time t
XI' YI' Zl

LReference a'rea of die projectiles

Target present positionXd'Yd, ZdMass of the pr:ojectilem

Cd Ud' Vd' W d T~rget present velocityDrag coefficient

Height of the projectileAcceleration Jdue to gravity
I9 z

Elevation angleh Stepl size
I l'

Horizontal range of ~e projectile
, I

Horiz~ntal rahge of the target

Initial elevation angle'Yos

Lead azimuth angleSt 'Vo

Velocity of the project}lev t Time
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Computation of lead angles and preparation of
l,tnge tables for ballistic projectiles are some of the

essential tasks in many theoretical arid practical
applications, such as lead computing sights,
vulnerability study of aircraft, etc. In these tasks,
trajectolies of the projectiles lik~ bullets, shells and

missiles are to be computed seveml times. These

computations consume substantial amount of
computational time. The aim of the present study is

to reduce the lead angle computational time to less

than allotted time of 0.1 s.

INTRODUCTIONI.

This paper also Fontains a new faster algorithm

based on the closedifonn solution for determining
the fiI¥1g dngles to intercept a moving target. This

algorithm can be psed in the lead computing sights.
The closFd-forIn solution for the projectile
trajectories, deriv1d lin Section 2 and Section 3,

outlines a method df constructing trajectories usingI
the closed-form solution. It ~lso includes details of

I ,
the numerical results and fhe error analysis. In

Section 4, an algorithm fo~ lead angle computation

that uses the closed-form splution is described.

Governing equations of these trajectories are a

system of coupled ordinary differential equations
and ,lre solved only numerically. Some attempts
were made in the past to simplify these equations

and find analytical solutions. One~uch attempt

was that of Siacci 1, who made two assumptions:
(i) approximation of ratio of cosines of initial

elevation and elevation of any point on the trajectory
to unity, and (ii) neglecting variations in the air

density along the trajectory. With these as$umptions,

the governing equations are reduced to a simpler

form and can be integrated by means of

quadrdtures. Application of this theol"y is limited to

tI-ajectolies with relatively small elevation angles.I

CLOSED-FORM .SOLUTION OF

PROJECTILE trRAJECTORY
t

Traj.ectories of; the 'projectile are the

.two-dimens~onal cu:rves with the following

governing equations:

2.

In Si~cci theory, the drag function is taken as

proportional to nth power of the velocity, where

values of n are given in a Mayevski's table 1. The

values of n v.ary from 1.55 to 5.00 depending upon
the velocity Jf the projectile. In many applications,
the drag is also taken to be propo11ional to the

square of the velocity. The propo11ionality constant
includes drag coefficient. In this paper, an

approximate analytical solution for the trajectories

has been de lived by taking the latter fo1m of drag
function and making an approximation similar to

the first approximation of Siacci theory. Taking
variation of the elevation angle to be negligible in a

small intef'{al of time, the governing equations are

decouple~. The resulting equations are then

integnlted tf) yield a closed-fo1m solution.

(1)

(2)
!!!! = -CV2 sun ("I) -9

dt t

ds

dt
(3)=u

~dt ~ j (4)

, It is assumed Jat the variation in the elevation

angle in a small time in~erval, (t, t+ h) is negligible.

Without loss of generality, a typical time step to be

the initial time step, that is (0, ~) is taken. This

assumption reduces Eqns (1) and (2~ to.
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Trajec'tories of the projectiles constructed
. h .I .I I .,

1 d, USIng t IS aJ?ProxImate so utIon were ana yse .

Error analysis showing the trunf;ation elTor had

been-conducted. Numericill experiments were

conducted to compare ~uch ~omputed trajectories
with those computed through numerical
integration using Runge-Kutta method. As the" I
step size decreases, the trajectories of the new

~ethod converge to" those of the numerical method.

The new method is faster than the numerical

method.
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.
As far as Eqn (5) is concerned,' there is no change
between the ascending and the descending modes.
Therefore, the expressions fot u and s inf the

descending mode are samejas those in the

ascending mode.

(5)

(6)

where 'Yo is the elevation angle at t = 0.
By taking '}'0 to be negative, and integrating

Eqns (6) and ( 4), one gets

-~ II

These equations arebow de coupled and can be

integrated to~get a closed-form solution. Depending
upon the slgns of right hand Jide constant
coefficients of Hqn (6), two different cases arisb in

the integration. The first case is ~f the ascending
mode of 9ight, i.e., when the elt!vation angle is

positive and the coefficie~ts haVe same sign. The

other case is ~f the descemding mode of flitht, i.e.,
when the elevation an~le is negative and the

coe.fficients have differen~ signs.

By taking 'Yo to, be posi.tive and the irlitial
j

condition as 1=0,1 Y=Yo, U=.YoCOS('Yo) and
, I.

v= Yo sin ('Yo), integcltion of the Eqns (5), (6) and
(3), ( 4) yield I

-Yo cos ('YQ)
u -CYo 1 + 1 (7)

I

cash

where

-c:qg::=-
~~ (Cl-t) (8)

(9)
cas ('Yo) I

s=so+ -lag(ll+GVot) TRAJECTORY CONSTRUcTION USING
ANALYTICAL SOLUTION

c 3.

3.1 Single-Step Method

Generally the trajectories are constructed

using a suitable time step. The positions of the

prbjectile after every time step are calculated, and

the curve joining these points gives the trajectory:
I

The above derived analytical expressions can be

used in the calculation of the trajectory points as

follows:

r -.~
/ COSlC1 'V ~- (10)'

where (so, Z<») is a point on the trajectory at t = O and

For a given initial elevation angle ('Yo) and

velobity (Vo), the trajectol"y point after time (h) is

computed using Eqns (7) to (11) or Eqns (7) to (9),

1?1
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and (12) to (14) depending upon whether 'Yo is

positive or negative, respectively. While
calculating a trajectory point after next time step,
elevation angle and velocity of the! previous step is

taken as 'Yo and yo, respectively.

I
constructed trajectory of th~ projectile. Then

cumulative errors Es(t) and Ez(t) in SJ. (t) and Zh(t),

respectively, in the powier of h are expressed ~tS

..I 2 3
Es(t) = Sh(t) -So(t) = d1h + d2h + d3h + ...,

(15)If values of the drag coefficient and the air
density versus velocity are given- in a tabulir fonn
then values of these coefficients in each time
interval can be computed by an interpolation
method. In this paper, the trajectories constructed
by the above method are referred as constructed

trajectories.

Ez{t) = Zh{t) -Zo{t) = e:lh + e2h2 + e3h3 +

r
where d and e are con~tants. The largest integer p
such that, ,

h-1EI=:O(hP)1

3.2 Numerical Experiment & Error Analysis

The above method of constructing trajectories
is a single-step method. OrQer of this method is

estimated for a numerical example: 4

Let so(t) and Zo(t) be the rdnge and height of a

point on an actual trajecto~ of the projectile for a

particular initial elevation. Let Sh(t) and Zh(t) be the

same quantities of a corresponding point on the

then the order of the mrthod2 is p.

IThe error terms for p = I, 2, 3 and 4 ha ye been
estimated. For p = I, 2, 3 it has peen observed that

the pth term dominates, whilelremaining terms are
almost negligible or sum of th~m is negligible. The
magnitudes of the error terms versus time for p = 3

in a typical case3, are pl,otted in Figs I and 2. Here,

the continuous lines repre~ent the first-order term,
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-I
algor:ithm. The remaining steps arJ of phase 2.

Step

Step 2

The given Ilresent point of the target be
CXd,Yd,Zd). From the.tracking speed,

velocity CUd, 'lId, w d)' of the target is com-
puted. j

Using a suitable time ~tep, say dt 1, the

time Ct) required for the target and. the
projectile to arrive at equal horizontal
range is determined. Initially, t is taken
to be equal to dtl.

dotted lin/ts the second-order tenu and dashed lines
the third-brder tenu. The cqntinuous and dotted

lines are almost tefle;ction of one another wrt

zero-line. Overall effecf due to these two tenus is

negligibld. The third-order tenu dominates. This
shows that ~e truncation error is of the third-order.

Hence, the method is a: second-order method.

Further, the cons~cted trajectories h3rve been
compared with a refere;ce traje~tory computed

applying the Runge-Kutta method using the
following me,sure of deviation: I I. ,

Step 3 Position of the target at t is computed as
--I (sl- 8) (s -8) + (z ..:.Z)I (z -Z) (18)Dev.-v ,- -, ,- ~~~ -';'--" .

,~

x, = Xd + "d t

The ba&ed quantities ate cocresponding to the
reference trajec~tory. In Figt 3, maximum values of
the deviation of analytical trajectories in the entire

flight tirpe are plotted vers~ls step size. As the step
size 'decreases, the maximum deviation decre~.ses

showing convergence of constructed trajectorief) to
the r~ference trajectories. It was als0 found that the

computational time of constructed tmjectories is
about 15 per cel)t less than those obtained by the
Runge-Kutta fobrth-order method with the same
step size.

(19)Yt=Yd+Vdt

Zl = Zd + W d t

S =.YX.Z+V.Z y 2
I Ii I

,
where SI is horizontal range

Step 4 The 'Yo of the gun is taken as

~)'Yo = tan-

Step 5 The projectile position (s, z) at t is com-
puted from Eqns (9) and (10). In these
computations, the whole time of flight of
the projectile, i.e., t is takeq as a single-
time interval.

4. ALGORI1;IiM FOR LEAD ANGLE

COMPUTArION
j

A new faster algorithmj for lead angle
I

computation based on the ~losed-form solution has
been described. This alg6rithm takes CU1Tent position

I
and track;ing speed of the tartet as inputs. Assuming

straight-line path for the target, if computes

required firing angles for a possible interception
with a projectile to be' la~ched from the origin. I

Step 6 If t is equal to dtl' then add dtl to t and go

back to Step 3. If the distance between
the target and the projectile is not decreas-

ing as time increases then an interception

may .not be possible, and stop. Otherwise,
if s is gt-eater than SI' go to next step, else

add dtl to t and go back to Step 3.
4.1 Steps of the Algorithm

The algorithm consists of two phases of
computations. In the firs,t phase, a,n approximate
time for the tflrget and projectile to arrive at an

eq~lal horizontal range is determined. In ilie second
phase, a projectile trajectpry is found, such that the

miss-distance is within the given limit. First six

steps given below are of the phase 1 of the,

Step 7

(20)

Step 8 By dividing t into small intervals of size
dt2' the projectile trajectory is computed

183
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Step 11

Step 12

If (tc + dt) is very close to t, then go to

next step. 'Otherwise set t = tc + dt and

recalculate SI for time t using Eqn .( 19)

and go back to the previous step.

The height pf the target (ZI) in t is com-

puted using Eqn (19). The incremental

he'ight dz achieved by the projectile in

time dt ~ computed using Eqn (10). If

djfference between Zl and (z + dz) is

greater th~ given miss-distance then go
bacJc to Step 7. Otherwise, the cu~.ent
position of the targ~t may be taken as a
possible impact po~t. The current value

of 'Yo is the required lead elevation angle of

the gun. The azimf,lili angle of the impact

point gives required,lead azimuth angle.

Step 9

Step 10

till its rd.nge becomes close to s, but less.
,

Let s and z be the horizon'tal range and

height of such a position, respectively.
Let tC' V c and 'Yc be the time of flight, cur-

rent velocity and elevation of the projec-

tile trajectory, respectively.

If 'Yc is non-positive, then an interception

may not ~e possible in the ascending

mode of proje\ctile flight, and stop.

Otherwise go to next step.

Let ds = s, -s. Time dt required for the

projectile to traverse further the horizon-

tal range equal to ds, is computed using

inverted form of Eqn (9), i.e., .

1
( (.Cds ..

dt=- exCY c p cos ('Yc) ,
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I t
The increment given to 'Yo in Step 7 is based on

a well-known fact in ballistics. Let d be the vertical
miss-distanbe betwe~n a projectile trajectory and a

point abo~e the trajectory. Let ~ be the initial

elevation of the t.rajectoryl and a, the angle
subtended by d at the oHgin. A trajectory of the
projectile v.jith an initial Jlevation angle of a + 13, is

closer to the jpoint than the previo?s trajectory.
Firing angles Timc of Mifs-

Azimuth Elevation f1ight (s) distancc

(d-:& -(d~g) -(th)

-13.28 13.77 1.61

48.13 16.45 0.77

110.88 16.37 0.75

174.79 17.65 3.31

240.00 18.27 3.12

-53.22 24.59 1.52
I

14.45 16.60 0.54

84.02 8.91 3.50

I 141.72 14.12 e.47

180.00 9.70 2.03
-

Computation

time (s)

Data -

No.

2.61

3.02

,.42

3.84

4.28

4.78

5.37

6.31

4.47

4.41

4.2 Results 0.0077

0.0110

0.0126

0.0137

0.0187

0.0214

0.0231

0.0264

0.0220

0.0187

1

2

3

4

5

6

7

8

9

10

CONCLUSION5.

The results validate the closed-form solution.
The fact.that the solutibn is invertible may increase

its usefulness in many.applications.2.0-3& -3506034002
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scheme is used to compute the shell trajectory. This

is to validate the algorithm. Although actual\
miss-distances are high compare~ to computed
miss-distance, they are acceptable for the order of

the ranges considered. I

Table 2. Performance results of the algorithm
--


