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ABSTRACT 

Importance sampling has had its origin in Monte Carlo simulation and in the last 15 years or so, it J 

has emerged w a powerful means of analysis and design with applications in .several areas of 
engineering and science. The principle of importance sampling is described in this paper and attention 
is focussed on some of the subtleties involved in its implementation. To reach a broad audience of 
practising engineers and scientists, mathematical rigour has been maintained at a comfortable level. 

1. INTRODUCTION 

Development of Monte Carlo (MC) simulation 
method of analysis of scientific phenomena and 
systems is attributed to the mathematician von 
Neumann and others. who were engaged in the Los 
Alamos experiment of the 1940's. Since its 
inception, MC simulation has found applications 
ranging from statistical thermodynamics in 
disordered systems to the design and analysis of 
engineering structures typically characterised by 
high compfexity. lndeed whenever an engineering 
problem is analytically intractable (which is often 
enough) and solution by numerical techniques 
becomes prohibitively expensive computationally, 
generally the last resort to determining the input- 
output characteristics of or the states within a 
system is to carry out a simulation. Essentially, 
simulation is concerned with replicating or 
mimicking a system and its operation by 
mechanising the exact mathematical equations that 
describe the systemi and all its inputs using a 
computer. Reliability of the results of a simulation 
is governed primarily by the authenticity cf  the 

analytical model, i.e. by how closely the 
mathematical descriptions used fit the actual 
physical system and its environs. The accuracy is, of 
course, governed by precision of the computations. 

In several applications, systems are driven or 
perturbed by stochastic inputs that may arise from 
natural sources or are derived from outputs of other 
systems. It is of interest to determine the average 
behaviour of the system in terms of its response or 
some other internal states. The MC method then 
uses a model of these stochastic processes to 
generate random numbers, and runs them through 
the simulated system to give rise to responses of 
interest. If this is carried out for a sufficiently large 
number of times, the law of large numbers 
guarantees that the averaged results approach the 
mean or expected behaviour of the system. Thus, 
analysis by MC simulation can play a very useful 
role in the design process of complex systems. The 
MC method, however, is not limited to studying 
sy&ems with stochastic inputs. An early and 
classical use has been the evaluation of integrals of 
functions over complicated multidimensional 
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regions. Random points are generated over a 
simpler or more convenient region which contains 
the desired region of the integration. The points that 
fall in the latter region are then used to evaluate the 
integrands and the results are weighted and summed 
up to provide an estimate of the integral. 

There are many important application areas 
wherein the performance of systems can be closely 
linked with the occurrence of certain rare 
phenomena or events. Importance sampling (1s) is 
the theory of MC simulation that deals with such 
situations. In digital communications, for example1, 
bit error probabiiities over satellite Iinks using error 
correction coding are required to be as low as lo-". 
The false alarm probabilities in radar and sonar 
receivers2 are usually constrained not to exceed 
values close to 10". In packet switching over 
teleconimunication networks3, an important 
parameter of performance is the probability of 
packet loss at a switch. These probabilities are 
required to be of the order In designing 
fault-tolerant computers, the probability that the 
system will fail in a certain time is a performance 
index and will be very small. In these and other 
similar cases4, analysis by mathematical or 
numerical techniques becomes very difficult owing 
to nonlinearities and couplings preserlt in the 
systems, high dimensionality, and other such 
problems. Conventional MC simulation also 
becomes ineffective due to excessively large run 
times required to generate the rare events of interest 
in sufficiently large numbers for obtaining 
statisticalIy significant results. It is here that IS has 
a powerful role to play. For the last 15 years, IS has 
been used effectively in various applications 
requiring the analysis of rare events. In this method 
of analysis, probability distributions of the 
underlying processes that give rise to rare events are 
changed or 'biased' so as to cause these events to 
occur more frequently, rendering them quickly 
countable.  Each event  is then weighed 
appropriately to provide unbiased estimates of the 
rare event probabilities. It turns out that if the 
biasing distribution is chosen carefully, the 

resulting estimate has markedly lower (error) 
variance than the conventional MC estimate. Apart 
from the use of IS in specific applications, an 
important aspect of IS research has been concerned 
with the search for good biasing distributions to be 
used in simulation. 

2. PRINCIPLE OF IMPORTANCE 
SAMPLING 

A simple way to comprehend the IS concept is 
to consider the estimation by simulation of the tail 
probability p, of an event {X 2 t), where X is a 
random variable with probability density function 
f (x) assumed to exist. The value o f t  is such that the 
event is rare, i.e., p, is small. The usual MC 
procedure is to generate a K-length iid sequence 
{xi} ;  from the distribution corresponding to f and 
count the number k, of random variables.that exceed 
the threshold t. Since this can be considered as a 
sequence of Bernoulli trials with success 
probability p,, the random variable k, is 
characterised by the binomial distribution: 

An intuition-based estimate $ j  of p, is: of 
course, k,lk. More formally, the maximum 
likelihood estimate is obtained by setting 
a P l apt = 0 in Eqn (1). This yields 

where 

is the indicator function for the event of interest. By 
the law of large numbers, $, as. ,p,. This MC 
estimate is unbiased. That is 
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where W(x) = f(x)/ f, (x) is called the weighing 
function and E, denotes expectation wrt density f,. 
Based on this, an alternative estimate of p, can be 
defined as 

I (3) where Xi - f,. denotes that each X;. is drawn from 
the distribution of f,. This is the IS estimator of p,. 

by definition. The variance of j, is then given by By Eqn (5) also this estimator is unbiased, i.e. 

E* {?,I =p,. . 
1 

var j, = - var 1, (XI 
K 

since the xis are iid. Some observations can be 
made from this. From Eqns (2) and (3), it is noted 
that the average number of threshold crossings is 
E {k,) = Kpt . Therefore, in order to obtain, on an 
average, a non-zero number of crossings and hence 
a non-zero value for the estimate j,, it is needed to 
perform the simulation with sequence lengths of 
K > 1 1 p, . Further, it can be shown using a central 
limit theorem argument that if we want to estimate 
p, with 95 per cent confidence of having an error not 
more than 20 per cent, we need to have K 2 1 OOIp, . 
Thus, ifp, = 1 o - ~ ,  a sequence length of at least 10' is 
required. This places severe demands on the period 
length of most random number generators as well as 
requiring large computa t ion  t imes  for  t he  
simulalion. Therefore, attempting to obtain a low 
variance estimate by increasing K is clearly 
impractical. 

Consider now some density function f,(x). 
From the definition ofp,, it can be written that 

As in Eqn (4), the variance of the estimator is 
given by 

The IS problem then centres around attempting 
to determine a biasing density f, such that var, j, in 
Eqn (7) is less than var?, in Eqn (4) for the same 
value of K used in both estimations. Alternatively, 
for equal estimator variances, the simulation length 
K,, required for IS estimator should be less than the 
length KN, for MC estimator. This permits the 
definition of a performance measure r ,  called the IS 
gain, as T=K= IK,, the ratio of sample sizes 
required for var* j, =var jt . From Eqns (4) and (7) 
one gets: 

as the IS gain resulting from the use of simulation 
dens i ty  f*. For  IS  t o  provide  apprec iab le  
improvement over MC simulation, the gain should 
satisfy r >> 1. 

Before considering specific examples, a result 
that provides some insight into the selection of good 
biasing distributions is given. There exists a biasing 
density that reduces the estimator variance in 
Eqn (7) to zero, that is, it provides an exact estimate 
of p, . Consider the expression in,square brackets in 
the RHS of Eqn (7). This can be written, using 
Eqn (61, as 
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Figure 1. Unconstrained optimal b i i n g  density 

var, 1, (X)W(X) = 6, {I: ( X )  w2(x) )  - p: 

= E, {I:(x) w2(x))  

- 1 1  X )  (9) 

because of unbiaaedness. It is obvious that this can 
be made zero if one chooses an f, that satisfies 

Denoting this f, as faqf and using the 
definition of (x) in Eqn (lo), one gets 

which is known as the unconstrained optimal 
biasing density that provides a zero variance 
eslimate. Two observations can be made from 
Eqn (1 1). Firstly, the optimal density is in general 
unrealizable because it depends on p,, the unknown 
quantity that is to be estimated. Indeed, if f,OP' 
could be found, then simulation is not needed as p, 
would be known. Secondly, presence of the 
indicator function implies that the entire probability 
mass of f,oP' is placed in the region x 2 t, the event 
region of interest (Fig. 1). This provides a useful 
guideline to the selection of f,. That is, a good 
simulation density attempts to increase. the 

probability mass in the event region. This is, in 
essence, the concept of IS. 

One may ask why IS is needed at all if it is only 
to estimate the tail probability of a random variable 
whose density function is known, as this probability 
can be obtained analytically, or at most, by a 
numerical integration over the event region. The 
real power of IS lies in its ability to precisely 
estimate the rare event probabilities of a random 
variable which is a function of several random 
variables. Such situations arise in applications and 
instances of functions include iid and non-iid sums, 
and other nonlinear transformations encountered, for 
example, in signal processing and communications. 

3. METHODS OF IMPORTANCE 
SAMPLING 

Of the available methods of choosing f*, two 
methods that are popular, easy to implement, and 
frequently used in applications are discussed: 

3.1 Variance Scaling 

Shilting probability mass into the event region 
{X>t) by scaling results in heavier tails of the 
density function and is one of the earliest IS 
methods used in practice. 

Case 1 

Consider a random variable X with one-sided 
Rayleigh density function f (x)=2xe-~~,  x r 0 for 
which an estimate of p, is required. We obtain by 

-r2 direct integration that p, =e . Let us scale the rvX 
by a > 1, so that f, is the density function of ax. 
From elementary transformation theory it follows 
that 

By the definition of W, one obtains 

2 -(l-ua2~* W(x) = a e 

and using Eqn (6), the IS estimator is given by 
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K 

, xi-f* 
I 

which can be implemented easily. Of course, a good 
value of the scaling parameter a has to be chosen. 
That is, a should be selected to minimise the 
estimator variance in Eqn (7). Denoting by I, the 
expectation in the RHS of Eqn (7), one has 

This can be minimised wrt a by setting 
1'(a)=0 and confirming that ~ " ( a ) > 0  at the 
solution. One obtains for the optimum scaling 
parameter 

The resulting IS gain is obtained from Eqn (8) 
as 

Suppose p, = lo4, then with t = 3.71 69, one 
obtains a,,, = 3.7859 and T,, = 54145. That is, 
approx 1850 samples from f* would yield the same 
estimator variance as 10 samples from f .  

Some observations can be made from this that 
are of help while implementing IS. In any 
application of IS, once a biasing scheme is chosen, 
it should be optimised to provide minimum 
variance. For the above case, an optimum value was 

selected for the scaling parameter. In actual 
application, it will seldom be possible to optimise 
the biasing scheme so easily. Usually one has to set 
up a sample or 'running' estimate of the variance or 
the I function and then attempt to minimise it 
algorithmically5 to extract the best estimator 
performance. Another point of importance is that 
excessive IS leads to degradation of performance, 
with the result that IS estimator variance can, in 
fact, exceed the MC estimator variance. Therefore, 
pushing too much probability mass into the event 
region is undesirable despite the fact that the 
unconstrained optimal biasing density places all 
mass in this region. This can be seen by letting 
a +m in the expression for I(a) above. Clearly, 
Z(a) +a, implying that var, it + m. Associated 
with excessive IS is another deleterious effect 
called underestimation. Consider the second 
expression in Eqn. (12) and let a +a, for a fixed 
value of K. It follows that it + Owith probability 1. 
That is, the estimator always underestimates p,. 

3.2 Density or Mean Translation 
Another simple and very effective biasing 

technique employs translation of the density 
function (and hence random variable) so as to place 
more of its mass in the event region. In biasing by 
translation, the simulation density is given by 
f*(x) = f (x-c), where c > 0 is the amount of shift 
and is to be chosen to minimise var* fi, ,  or 
equivalently Z(c). If X is a non-negative random 
variable with density f (x), x 2 0, the biasing density 
is f*(x) = f(x-c),x2c, and the IS estimate is 
given by 

1 
K 

= - x l , ' ( x i )  (xi) ;xi t c ,  xi - f* 

I f ( x i  -c) 

The mean value of j, is 

= pc I pr for o t 

That is, the estimate is biased if the original 
density is translated beyond t. Hence, translations 
for one-sided densities are restricted to c I t. 
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Case 2 

Let Xbe N (0,l). 

That is f (x) =(I / m e x p ( - x 2  12), -m< x<m 

Then, with W(x) = f (x)l f (x- c), one has 
W(x) = exp (- cx + x2). Substituting this in the 
expectation in Eqn (7) and simplifying, one obtains 
I (c) = Q (c + t) exp(c2/2) 

where 

Using the approximation Q (x)=(l/x&i) 
exp(-x2/2) for large x in I(c) and minimising on c 
yields cop, = (1 + t2)'" z t for t >> 1. Foi p, = lod, 
one knows from error function tables that t z 4.7534 
Then c,, = 4.8574. Using this in I(c), the gain 
evaluates to r,, = 1843 10, so that approximately 
only 540 samples from f* provide the same 
estimator quality as lo8 from $. Note that if this 
same example is worked for IS by scaling, then 
approximately 5 100 samples from (scaled) f, are 
required, nearly a 10-fold increase. 

4. VARIANCE ESTIMATION & 
MINIMISATION 

It is a rule of thumb that anything which can be 
placed in the form of an expectation can be 
estimated by simulation. To estimate var,, $, in 
Eqn (7) for the purpose of minimisation, one needs 
only estimate 

since K and p,, are unaffected constants. One has, 
therefore, 

as an unbiased estimate of I, which can be 
implemented alongwith f i t .  Assuming that I has a 

unique ;ninimum wrt to some parameter in a chosen 
biasing scheme, one needs to find the root of j' = 0. 
If, for example, the chosen scheme is scaling, then 
an estimate of the optimum scaling parameter a,, 
can be found by the recursion 

where m is the recursion index. This is just the 
Newton root finding formula wherein a rate 
parameter 6 has been included t o  control 
convergence. The quantities i' and I^'' can be 
determined by successively differentiating I in 
Eqn (13) and setting up their sample estimates. 
Owing to the stochastic nature cf the algorithm, 
convergence is characterised by a small random 
vibration around the optimum value. This is typical 
of stochastic approximation procedures. It has been 
found in practice that the simple Newton formula 
yields good results when IS by scaling is applied to 
the analysis of CFAR detectors used in radar and 
sonar. 

To evaluate the performance of an IS 
implementation, it is necessary to estimate the gain 
1' in Eqn (8). An estimate generally used is 

which should also be implemented along with the IS 
estimator. 

5. APPLICATION TO CFAR DETECTION 
How the IS concept can be applied for 

estimating false alarm probabilities in CFAR 
detectors697 has been indicated briefly. Virtually the 
entire class of CFAR processors used in radar and 
sonar receivers employ target detection algorithms 
of the form X<tY, where the upper event indicates a 
target-present decision. The random variable X 
represents the content of a range or Doppler cell 
that is tested for a target, and Y is some function of 
the contents of a set of cells called the CFAR 
window that surrounds the test cell. Such a simple 
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WEIBULL: a = 1.0 

Figure 2. Convergence of scaling parameter algorithm for 
p, = lo4. 

detection structure is a consequence of a 
requirement for maintaining p, = P (X 2 tY) at a 
specified value in the face of variations in the 
statistical properties of X when it is known that 
there is no target in the test cell, coupled with 
certain model assumptions regarding the detection 
environment. Then p, represents the false alarm 
probability of the detector. Although it does not 
appear directly as a tail probability, the event 
{ X  2tY) is a rare event. The random variable Y 
could be an iid sum or a more complicated 
processing of the cells. Since cell outputs are 
usually the result of energy maximisation 
processing, it can be assumed that X and Y have 
one-sided densities on [0, oo]. 

The task is to perform IS on X and Y to 
estimate p, = P (2 = X - tY 2 0). The optimal 
biasing density for Z places all its mass in the region 
{Z 2 0). It is clear that a biasing density forX should 
shift its probability mass to the right on the line 
[O,oo]. It also turns out that biasing for Y must shift 
mass to the left towards zero, effecting a 
compression of the density function tail. This can be 
seen by rewriting p, as 

p, = P ( Y ~ x I ~ )  

= jP(Y i x l t )  f(x) m. 

Since a biasing for Y must result in an increase 
in p,, it is clear that there must be an increase in 

I WEIBULL: a = 1.0 
N = 16 

= 2.0 (RAYLEIGH) I 
Figure 3. Convergence of threshold finding algorithm for 

pt = lod. 

P (Y  i xlt) for each x, implying a compression of 
the density of Y toward zero. Therefore, for IS 
analysis by scaling of CFAR detectors, the cell 
under test must be scaled up and the random 
threshold scaled down. 

However, a more effective IS method has also 
been developed by the author which is applicable in 
several radar clutter and sonar reverberation 
situations. Assuming, for .the purpose of 
illustration, that the density function of X is 
integrable analytically, i.e., in closed form, then 
one can write 

where g, (v) = P(X 2 ty)  and Eu denotes expectation 
over the density of Y. Clearly, to estimate p, by IS, 
one needs to bias only the density of Y. So, one has 

where W is defined as  usual and fy, is some 
compressing biasing density for Y. The results of 
applying this method to cell averaging CFAR 
detection preceded by an envelope detector in the 
presence  o f  Weibul l  c lu t te r  a r e  shown in 
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WEIBULL: a = 1.0. b = 2.0 (RAYLEGH) 
N r 40 

Figure 4. False alarm probabiity estimates with and without IS for desired p, = lo4 

Figs .(2)-(4). This CFAR problem is intractable 
analytically and numerically very tedious, and IS 
provides the only quick and accurate technique for 
its solution. The convergence of  the scaling 
parameter a, for a target p, = loe6 with a CFAR 
window length of N = 16 and various Weibull 
clutter shape parameters, is shown in Fig. 2, 

6. INVERSE IS PROBLEM 
In practical applications, it is often necessary 

to determine the value of t that can provide a 
specified rare event probability p,. In CFAR 
detectors, for example, this means finding the value 
of threshold multiplier that results in a desired false 
alarm probability. We shall refer to this as the 
inverse IS problem6. There is a powerful feature in 
the IS method described just above which permits 
solution of this problem in an easy and accurate 
manner. Form the .stochastic objective function 

J(t)  = (5, -ao12, where a. is the dzsired false 
alarm probability in a CFAR detector. Our aim is to 
find a t =to, such that pro = ao. By minimising J(t) 
what one can find is a t=io,  such that J(&)=o. It 
can be proved that J(t) has a unique minimum and 
hence it is simple to seek its minimum using a 
descent method. Algorithms based on descent 
methods require computation of gradients of the 
obiective function J(t). But this is easily done, since 
it, in Eqn (18) is differentiable wrt t-by virtue of 
existence of the density function f of X. The results 
of using such a threshold finding technique together 
with the adaptive scaling parameter algorithm of 
Eqn (15) are shown in Fig. 3. The false alarm 
probability estimates for a N = 40 CA-CFAR 
detector in Rayleigh clutter for p, = 10" are shown 
in Fig. 4. The advantage of using this IS technique 
is evident. The results are based on an IS sample 
size of 1000. 
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7. DISCUSSION I: Fundamentals. IEEE. J. Sel. Areas Commun., 

The concept of IS and indications of its use in 1993,11,289 - 99. 
applications have been introduced in this paper. 

2. Mitchell, R. L. Importance sampling applied to Admittedly, we have only scratched the surface of 
simulation of false alarm statistics. IEEE Trans. 

the subject in the depth of the theory as well as in Aerosp. EZectron. Syst., 198 1,17, 15-24. 
the extent of its usage. On the practical side, there 
are  undoubted!^ a number of applications where IS 3. Heidelberger, P. Fast simulation of rare events in 
theory can be used to solve very difficult problems queuing and reliability models. ACM Trans. 
through simulation. In our opinion, the theoretical Modelling Comp. Simu., 1995,5,43-85. 
analysis and mathematical manipulations required 

4. Remondo, D.; Srinivasan, R.; Nicola, N.; van 
to implement a good IS scheme in application are Etten, W.; & Tattije, H. Impact of crosstalk on the 
far less burdensome and cornputationally performance of an optical cross-connect 
demanding than a brute force analytical-numerical considering finite extinction ratio. Proceedings of 
attack. the International Conference on Applications of 

Apart from the initial descriptions of IS and Photonic Technology 98, July 1998, Ottawa, 
scaling and translation techniques therein, the Canada. 
methods and detection applications presented here 

5. Devetsikiotis, M. & - Townsend, J. K. An 
are part of more extensive results on IS obtained by algorithmic approach t a  the optimisation of 
the author recently. importance sampling parameters in digital 
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