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1. INTRODUCTION
An important task in image analysis is the discrimination 

of objects based on their appearance. Various properties 
of appearance such as texture, color and shape can be 
measured. Shape is a powerful tool for describing objects and 
differentiating between them, and has been extensively applied 
in many areas of computer vision1,2. In fact, the issue of shape 
extends far beyond computer vision into areas such as the 
graphic arts3, physics, chemistry and biology4,5. 

There is no universal definition of what shape is. The word 
‘figure’ is used for shape. Here we consider shape as something 
geometrical. We will use the term shape for a geometrical 
pattern, consisting of a set of points, curves, surfaces, solids etc. 
This is commonly done, although ‘shape’ is sometimes used 
for a geometrical pattern modulo some transformation group, 
in particular similarity transformations. Shape analysis deals 
with transforming a shape, and measuring the resemblance 
with another one, using some similarity measure. So, shape 
similarity measures are an essential module in shape matching. 
Although the term similarity is often used, dissimilarity 
corresponds to the notion of distance: small distance means 
small dissimilarity, and large similarity. Shape similarity 
measures are used in building extraction and oil tank detection 
from remote sensing images2,6,7,8.

Various shape features are often evaluated by how 
accurately they allow one to retrieve similar shapes from a 
designated database. However, it is not sufficient to evaluate 
a representation technique only by the effectiveness of the 
features employed. This is because the evaluation ignores 
other important characteristics of a shape representation 

technique. For example, in the new multimedia application 
content-based image retrieval (CBIR), efficiency is envisaged 
as equally important as effectiveness due to the online retrieval 
demand. In fact, MPEG-7 has set several principles to measure 
a shape descriptor, that is, good retrieval accuracy, compact 
features, general application, low computation complexity, 
robust retrieval performance and hierarchical coarse to fine 
representation9.

The algorithm to compute the similarity depends on the 
precise measure, required properties and particular matching 
problems for the application at hand. In this paper, global 
contour and region based shape analysis is described. The 
classification of matching problems and similarity measure 
properties are explained, and various similarity measures are 
presented.  

2. SHAPE ANALYSIS
Shape analysis methods analyze the objects in a scene. 

In this section, we concentrate on shape representation and 
description aspects of shape analysis. Shape representation 
methods result in a non-numeric representation of the original 
shape so that the important characteristics of the shape are 
preserved. The word important typically has different meanings 
for different applications. Shape representation generally looks 
for effective and perceptually important shape features based 
on either shape boundary information or boundary plus interior 
content. Various features have been designed, including shape 
signature, signature histogram, shape invariants, moments, 
curvature, shape context, shape matrix, spectral features etc. 
Shape description refers to the methods that result in a numeric 
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descriptor	 of	 the	 shape	 and	 is	 a	 step	 subsequent	 to	 shape	
representation. A shape description method generates a shape 
descriptor vector (feature vector) from a given shape. The goal 
of	description	 is	 to	uniquely	characterize	 the	 shape	using	 its	
shape	 descriptor	 vector.	 The	 required	 properties	 of	 a	 shape	
description scheme are invariance to translation, scale, and 
rotation.	This	is	required	because	these	three	transformations,	
by	definition,	do	not	change	the	shape	of	the	object.

The problem of the shape analysis has been published 
by many authors and a great amount of research papers are 
available in the literature. A number of review papers10-12, as 
well as books13-20 have been written on the subject of shape 
analysis.

2.1 Classifications
Shape	 analysis	 methods	 can	 be	 classified	 according	 to	

many different criteria. Pavlidis10 has proposed the following 
classifications.	The	first	 classification	 is	 based	 on	 the	 use	 of	
shape boundary points as opposed to the interior of the shape. 
The two resulting classes of algorithms are known as boundary 
(external) and global (or internal), respectively. Examples of the 
former class are algorithms which parse the shape boundary15-24 
and various Fourier transforms of the boundary24-29. Examples 
of global methods include the medial axis transform (MAT) 
proposed by	Blum	and	described	 in15,18,20,30-34, moment based 
approaches37-47, and methods of shape decomposition into other 
primitive shapes48-50. Another	classification	of	 shape	analysis	
algorithms can be made on the basis of whether the result of 
the analysis is numeric or non-numeric. For example, the MAT 
produces another image and is therefore called a space-domain 
technique.	 On	 the	 other	 hand,	 scalar	 transform techniques	
produce numbers as results. Examples of later methods include 
various Fourier24-29 and moment-based37-47 procedures for shape 
analysis. 

A	 third	 classification	 of	 shape	 analysis	methods	 can	 be	
made on the basis of information preservation. Methods 
which allow for the accurate reconstruction of a shape from 
its descriptor are called information preserving methods, as 
opposed to methods only capable of partial reconstruction 
which	 are	 called	 information	 non-preserving	 techniques.	An	
example of an information non-preserving method is area to 
perimeter	square	ratio.	Many	significantly	different	shapes	can	
have the same area	to	perimeter	square	ratio,	and	therefore	it	is	
not possible to reconstruct the original shape knowing only its 
area	to	perimeter	square	ratio.	Many	simple	shape	descriptors	
suffer from the same problem.

2.1.1 Contour-based Shape Representation and 
Description Techniques

Contour	 shape	 techniques	 only	 exploit	 shape	 boundary 
information. There are generally two types of very different 
approaches	for	contour	shape	modeling:	continuous	approach	
(Global) and discrete approach (Structural). Continuous 
approaches do not divide shape into sub-parts; usually a 
feature vector derived from the integral boundary is used to 
describe the shape. The measure of shape similarity is usually a 
metric	distance	between	the	acquired	feature vectors. Discrete 
approaches break the shape boundary into segments, called 

primitives using a particular criterion. The final	representation	
is usually a string or a graph (or tree) the similarity measure 
is done by string matching or graph matching. In the present 
paper we discuss about the continuous approach. One can go 
through Zhang and Lu paper12 for discrete approach.

2.1.1.1 Continuous Approach
Continuous	 contour	 shape	 representation	 techniques	

usually compute a multi-dimensional numeric feature vector 
from the shape boundary information. The matching between 
shapes is a straightforward process, which is usually conducted 
by using a metric distance, such as Euclidean distance or city 
block distance. Point (or point feature) based matching is also 
used in particular applications.

2.1.1.1.1 Simple Shape Descriptors
Common simple global descriptors are area, rectangularity, 

circularity (perimeter2/area), eccentricity (length of major 
axis/length of minor axis) and major axis orientation51. These 
simple global descriptors usually can only discriminate shapes 
with large differences; therefore, they are usually used as 
1lters to eliminate false hits or combined with other shape 
descriptors to discriminate shapes. They are not suitable to 
be standalone shape descriptors. Other simple global contour 
shape descriptors have been proposed by Peura and Iivarinen52. 
These descriptors include convexity, ratio of principle axis, 
circular variance and	 elliptic	 variance.	 young,	 Walker,	 and	
Bowie51 proposed an interesting concept of bending energy. 
According to this approach, a shape can be represented by its 

bending	energy	defined	by 2

0

1 ( )
p

E K p dp
P

= ∫   
      
where K(p) is the curvature function, p is the arc length 
parameter, and P is the total curve length. To actually compute 
the	bending	energy	above	equation	was	not	used	directly,	but	
instead the Fourier transform of the boundary was computed 
first.	 Using	 Fourier	 coefficients	 and	 Parseval’s	 relation,	 the	
bending	 energy	 was	 computed	 in	 a	 more	 efficient	 way.	 In	
addition, the authors proved that the circle was the shape 
having the minimum average bending energy.

Object	classification	often	operates	by	making	decisions	
based on the values of several shape properties measured 
from an image of the object. In computer vision, circularity is 
extensively used as a shape measure53,54. Haralick53 proposed 
a	measure	for	circularity	where	the	center	of	the	fitting	circle	
is assumed to coincide with the centroid of the object border. 
But	there	is	little	work	on	the	measurement	of	the	other	shapes.	
Proffitt51 and Peura and Livarinen56 have both described 
ellipticity measures. Although one rectangularity measure50 is 
reasonably well known it is not as widespread as circularity. 
More	recent	work	by	Rosin	described	several	new	approaches	
to rectangularity measurement54. Another recent work by 
Rosin1 proposed several algorithms for calculating ellipticity, 
rectangularity and triangularity shape descriptors. 

(a) Circularity
• Geometry based (CG)

Circularity	measure	is	defined	as	P2/A where P and A are 
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the perimeter and area of the object. 

•   Statistical based (CS)
Haralick53 proposed a measure for circularity where the 

center	 of	 the	 fitting	 circle	 is	 assumed	 to	 coincide	 with	 the	

centroid of the object border. So 
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•   Statistical Structural Descriptor (CSD)
Zhang	 and	Wenyin67 proposed a novel shape descriptor 

based on the histogram matrix of pixel-level structural. The 
computation of the statistical structural descriptor can be 
briefly	summarized	into	3	steps:	

The centroid of a shape is computed based on the Distance 1. 
Transform, 
Two structural attributes, the length ratios and angles of 2. 
each point on the contour, are calculated by taking the 
centroid	as	a	fixed	reference	point.	
Statistics are conducted on the two attributes to generate 3. 
the structural feature histogram matrix (SFHM). 
This shape descriptor can measure circularity, smoothness, 

and	 symmetry	 of	 shapes,	 and	 be	 used	 to	 recognize	 shapes.	
Here brief description has been made about the measure of 
circularity using those three steps.

Distance transform based centroid:	 By	 exploring	 the	
properties	 of	 distance	 transform	 (DT),	 Zhang	 and	Wenyin67 

have presented a DT based centroid. Compared with the 
centroid obtained by averaging all points in a shape, DT based 
centroid is closer to the centroid given by the human visual 
system and more robust to noise. Assume I(x,y) is a point in a 
shape, D(x,y) is the corresponding point after DT, whose value 
|D(x,y)| indicates the distance to the closest boundary point 
from I(x,y).	The	DT	based	centroid	is	computed	by:	 	
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where n is the number points in the shape.
Structural feature histogram matrix:	 Based	 on	 the	

obtained centroid, we start to compute the proposed shape 
descriptor. Assume that C(x,y) is the centroid of a shape, Pi and 
Pj are two different points on the contour {P1,P2,…,Pn}, |PiC| 
and |PjC| denote the lengths of the two vectors PiC and PjC, θij 
is the angle between them, as shown in Fig. 1, two structural 
attributes dij and θij	are	defined	as	follows:

min , , [0,1] and , [0, ].ji
ij ij ij i j ij

ij

P CPC
d d PCP

PCP C

 
 = ∈ q = ∠ q ∈ p
 
 

 Clearly, they are invariant to scaling and rotation.
It’s	true	that	any	pair	of	points	(Pi, Pj) out of the n points 

on the contour has a corresponding pair ( , )ij ijd q . Hence, there 
are n(n-1)/2 pairs of ( , )ij ijd q , [1, 1]i n∈ − , [ 1, ]j i n∈ +  for a 
shape. The set { }( , ) ( , ) | [1, 1];  [ 1, ]ij ijD d i n j i nΛ = q ∈ − ∈ +  are 
utilized	 to	 describe	 the	 shape.	 First,	we	 transform	 the shape 
into a feature space with a new coordinate system, in which 
θ denotes the X axis, d denotes the Y axis, and every element 
in the set ),( ΛD is a point in the feature space. Second, since 

[0,1]ijd ∈ and [0, ]ijq ∈ p , [0,1] divided into M equal	bins,	and	
[0,π	] into N equal	bins.	As	a	result,	the	feature	space	is divided 
into M ×N blocks.

Lastly,	 Zhang	 and	 Wenyin67 describe the formula to 
calculate the percentage of the contour points in the block at 
the uth row and the vth column	by:

1
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Finally, a M×N histogram matrix Q structural feature 
histogram matrix (SFHM) is constructed based on all q(u,v), 

[ ] [ ]0, 1 ,  0, 1 .u M v N∈ − ∈ −
Now the circularity (Cir) of a shape can compute by 

using structural feature histogram matrix67.	Assume	the	size	of	
Q of a shape is M×N with the distance d=1 at 1st row and d=0 
at Mth row. 

Assign the elements in •	 ith row of Q a weight i so that 
a bigger d has a smaller weight and a smaller d has a 
bigger weight. 
Let •	 Cir equal	to	the	weighted	summation	of	all	elements	
in Q.	The	pseudo	code	is:
Cir = 0;
FOR	i =1:M
Cir=Cir+(summation of all element on ith row)*i;
END
It’s	true	that	all	elements	in	the	SFHM of circles are at the 

first	 row	where	d=1 and the summation of all elements is 1. 
Hence, circle has smallest circularity, Cir = 1. A shape with Cir 
value closer to 1 is more similar to a circle.

Figure 1. two structural attributes of SFhm.
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(b)    Ellipticity
•   Moment Invariants (E1)

The	first	approach	is	based	on	moment	invariants.	Since	
any	ellipse	can	be	obtained	by	applying	an	affine	transform	to	a	
circle,	we	use	the	simplest	affine	moment	invariant58 (based on 
the central moments pqµ )	of	the	circle	to	characterize	ellipses

2
20 02 11

1 4
00

I
µ µ − µ

=
µ

while all perfect circles will produce identical values of I1, other 
shapes can also produce the same value. To help discriminate 
shape more precisely it would be possible to also incorporate 
higher-order invariants. However, the disadvantage is that 
higher-order moments are less reliable. In contrast, I1 only 
requires	relatively	low	powers	of	second-order	moments,	and	
is thus more practical. The moments for the unit-radius circle 
are

2 2

2 2

1

1

r x
p q

pq

r x

m x y dydx
−

− − −

= ∫ ∫

allowing us to calculate the value of the invariant as
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1
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The measure of ellipticity is then taken as
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which ranges over [0, 1], peaking at 1 for a perfect ellipse.

•   Elliptic Variance (EV)
Peura and Iivarinen56	described	an	‘elliptic	variance’	which	

they used to measure ellipticity. The mean μ and covariance C 
of the N data points pi are calculated. The distances of points 
from the mean are weighted by the covariance matrix

( ) ( )T
i i ir p p−= − µ − µ1C

and the mean distance calculated as
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Then	the	normalized	elliptic variance in distance is 
2

2
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N
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,
which for uniformity with the other measures we modify to

1
1VE =

+ ∑ .

•   Euclidean Ellipticity (EE)
A more direct and potentially more reliable approach is to 

robustly	fit	an	ellipse	to	the	region’s	boundaries	and	measure	
the	Euclidean	distances	between	 the	 ellipse	 and	 the	 region’s	
boundaries.	 Rosin61	 and	 Roth	 and	 Levine62 proposed a least 
median	 of	 squares	 approaches	 to	 feature	 fitting.	 Minimal	
subsets	(i.e.	five	points)	of	the	data	are	selected	at	random	and	
used them to generate the ellipses. The ellipse with the lowest 
median	error	over	 the	 full	data	set	 is	 retained	as	 the	best	fit.	

The true point error, which is the distance from the point along 
the	 line	 normal	 to	 the	 ellipse,	 involves	 solving	 a	 quadratic	
equation.	The	orthogonal	conic	distance	approximation	method	
is more accurate and easy to calculate and this is used as an 
alternative	of	other	Rosin’s	paper60.	Using	this	fit	the	outliers	
are	robustly	detected	and	rejected,	and	the	estimate	is	‘polished’	
by	applying	a	least-square	fit.	If	necessary	the	data	is	refitting	
using	Fitzgibbon	et	al.’s	ellipse-specific	algorithm59, which is 
guaranteed to return an ellipse. The result of the above process 
is to robustly and accurately determine the summed errors 

of	 the	 ellipse	 fit	
1

N

i
i

E d
=

= ∑ where di’s are the conic distance 
approximations.	 The	 normalized	 ellipse	 measure,	 which	 is	
scale	invariant,	is	defined	as	

 

1
11

EE
E

N A

=
+

where A	is	the	original	region’s	area.

•   DFT (EF)
Proffitt55 proposed an approach for measuring ellipticity 

and circularity based on the discrete Fourier transform (DFT). 
An	ellipse	is	fitted	to	the	shape	by	centering	it	on	the	region’s	
centroid.	The	ellipse	is	then	scaled	such	that	its	mean	square	of	
the lengths of the lines from the centroid to the boundary points 
matches	the	region’s.	Ellipticity	is	calculated	(via	the	DFT)	as	
the distance between corresponding points on the ellipse and 
the region.

•   Moment Matching (EM)
Voss	and	S¨uße	proposed	a	method	for	fitting	geometric	

primitives based on moments63.	 First,	 by	 applying	 an	 affine	
transformation	 the	data	 is	normalized	 into	a	canonical	 frame	
(which for an ellipse they take as the unit circle). Then by 
applying the inverse transformation to the primitive (i.e. the 
circle)	produces	the	fitted	ellipse.	An	ellipticity	measure	can	be	
calculated	as	the	root	mean	square	of	the	differences	between	
the	normalized	moments	 of	 the	data	 ( ijm′ ) and the moments 
of the canonical primitive ( ijm ), where only the moments not 
used	to	determine	the	normalization	are	included:

( )2
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M
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m m

+ ≤

=
′+ −∑

.
(c)			Rectangularity
•   MBR	(RB)

The standard approach to measuring rectangularity is to 
use the ratio of the area of the region to the area of its minimum 
bounding	rectangle	(MBR).	The	MBR	of	a	convex	polygon can 
be	calculated	in	linear	time	by	Toussaint’s64 ‘rotating calliper’	
method. Since the convex hull of a simple polygon can be 
found in linear time the overall algorithm remains linear.

•   Rectangular	Discrepancy ( DR′ )
The	rectangularity	measure	MBR	is	very	much	sensitivity	

to	 noise	 and	 to	 overcome	 the	 problem	Rosin57 described an 
alternative	in	which	a	rectangle	is	fitted	to	the	region	based	on	
its	moments.	Rectangularity	is	then	measured	as	the	normalised	



DEF.	 SCI.	 J.,	VOL.	 63,	 NO.	 1	 ,	 JANUARy	 2013

78

discrepancies between the areas of the rectangle and the region. 
Let R be the area difference between the rectangle and the 
region, D be the area difference between the region and the 
rectangle,	and	finally,	B be	the	rectangle’s	area,	then

1D
R DR

B
+

= − .

It was found that a weakness of the moment-based 
approach was that the orientation estimates were unreliable 
for	compact	regions.	A	significant	improvement	could	be	made	
by considering both the original orientation estimate with and 
without a 45° offset57. The maximum of the two is retained as 
the	final	rectangularity	measure DR′ .

•   Moment Matching (RM)
Again	 Voss	 and	 S¨uße	 is	 applied	 fitting	 method65. The 

normalisation	 procedure	 is	 performed	 first	 by	 translates	 and	
rotates the data at the origin and aligned with the axes. Then 
the scaling is normalised to provide unit area. This leaves 
the	 rectangle’s	 aspect	 ratio,	 which	 is	 calculated	 by	 a	 one-
dimensional optimisation using the higher-order moments (up 
to	fourth	order).	The	minimum	RMS	error	is	used	to	calculate	
the rectangularity
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(d)   Triangularity
•   Moment invariants (T1)

Flusser and Suk58 proposed the same approach as previous 
in ellipses to characterise triangles by moment invariants. They 
have considered any triangle as a simple right-angled triangle 
aligned	 with	 the	 axes	 after	 an	 affine	 transformation.	 The	
moments are

1

0 0

x
p q

pqm x y dydx= ∫ ∫ ,

which results in 1
1 .

108
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Thus the triangularity measure is 
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
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.
•   Polygonal triangle approximation (TA)

In polygonal triangle approximation approach66,	first	we	
have	fitted	a	geometric	triangle	model	to	the	data,	and	measure	
the error between the model and the data. Fitting is performed 
by	 finding	 a	 polygonal	 approximation	 of	 the	 boundary.	
Dynamic	programming	 is	used	 to	find	 the	optimal	 three-line	
polygon	approximation	minimizing i

i
E d= ∑ the summed L1 

error, where di is the shortest Euclidean distance from pi to the 
triangle66.	The	final	triangularity	measure	is

1
11

AT
E

N A

=
+

,

where A is the area of the region.

•   Minimum bounding triangle (TB)
Another	alternative	approach	to	fitting	a	triangle	is	to	use	

the	 region’s	 minimum	 bounding	 triangle	 (MBT).	 O’Rourke	
69, et al. describe an optimal O(n) algorithm to determine 
the	MBT.	Analogous	 to	 the	 standard	 approach	 to	measuring	
rectangularity, triangularity is calculated as the ratio of the area 
of the region to the area of its minimum bounding triangle.

•   Moment Matching (TM)
Voss	and	S¨uße’s	fitting	method65	is	applied	to	fit	a	triangle,	

where	the	canonical	model	is	an	equilateral	triangle	with	m10 
= m01	=	0.	As	with	 their	ellipse	fitting	all	 the	parameters	are	
recovered without additional optimisation and triangularity is 
measured as
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(e)			Unique	Relative	Measure	for	Shape	Descriptors	
Different	definitions	of	measures	are	available	for	different	

object shapes detection. Even feature based approaches although 
potentially	being	based	on	local	features	requires	the	presence	
of most of the object to compute the statistic of the features. It 
applies to all shape descriptors presented in the special issue of 
pattern recognition on shape similarity by Latecki69, et al. as 
well	as	to	the	shape	descriptors	presented	in	Belongie70, et al. 
and Grigorescu and Petkov71. The subject of shape perception 
remains a fertile area of research. The power of such primitive 
shapes	 for	scientific	analysis	 is	 that	 they	can	be	applied	 to	a	
vast range of tasks involving not only man-made objects but 
also natural forms. 

Nayak and Stojmenovic72 proposed a variety of schemes 
that	compute	global	shape	measures,	which	can	be	categorized	
as	 techniques	based	on	minimum	bounding	 rectangles,	other	
bounding	primitives,	fitted	shape	models,	geometric	moments,	
and Fourier descriptors are described. Farin73 compared a variety 
of triangle shape measures using concepts such as smoothness 
and convexity. Stojmenovic and Nayak74 propose several 
measures, all of which are based on existing linearity measures 
that have been adapted to measure circularity. In order to make 
use of these linearity measures, they transferred the Cartesian 
coordinates of the input set into polar coordinates. The linearity 
of the polar coordinate set corresponds to the circularity of 
the original input set given a suitable centre. They separately 
considered the circularity of ordered and unordered point 
sets. The circularity of unordered data is determined directly 
from the linearity measure, whereas the circularity of ordered 
data is derived by multiplying the unordered data circularity 
measure by a monotonicity factor. A shape descriptor based 
on the histogram matrix of pixel-level structural features is 
presented	in	Zhang	and	Wenyin’s	paper75.	In	their	paper	first,	
length ratios and angles between the centroid and contour 
points of a shape are calculated as two structural attributes. 
Then, the attributes are combined to construct a new histogram 
matrix in the feature space statistically. This shape descriptor 
can measure circularity, smoothness, and symmetry of shapes, 
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and	 be	 used	 to	 recognize	 shapes.	 Stojmenovic	 and	 Nayak76 
proposed	 a	method	of	measuring	 the	 accuracy	of	 ellipse	fits	
against	 the	original	point	set.	The	evaluation	of	fits	proceeds	
by their ellipticity measure which transforms the point data 
into	polar	representation	where	the	radius	is	equal	to	the	sum	
of distances from the point to both foci, and the polar angle 
is	 equal	 to	 the	 one	 the	 original	 point	makes	with	 the	 centre	
relative to the x-axis. The linearity of the polar representation 
will	correspond	to	the	quality	of	the	ellipse	fit	for	the	original	
data. They also proposed an ellipticity measure based on the 
average ratio of distances to the ellipse and to its centre.

Already we have discussed many shape descriptors on 
continuous	approach.		There	is	no	single	definition	is	available	
in	 the	 literature	which	 can	 be	 used	 for	 finding	 the	 shape	 of	
an	object.	As	for	example,	for	finding	rectangular	or	circular	
or	elliptical	shape	object	one	has	 to	define	different	measure	
for	different	shape.	A	new	definition	of	measure	for	different	
geometrical shapes detection is presented by Chaudhuri6, et al. 
The	definition	is	a	unique	(single)	measure	by	which	different	
shape of objects can be identify on the basis of their degree of 
fitness	parameter.	In	our	paper6,	first,	we	have	fitted	a	polygon/
curve	optimally	on	the	object	then	compute	the	degree	of	fitness,	
which is a ratio of matching area and the non-matching area 
due	to	object	and	polygon/curve	both.	Next,	we	are	identified	
the object of a particular geometrical shape (rectangle/circle/
ellipse)	on	the	basis	of	minimal	value	of	degree	of	fitness	for	
different	fitted	polygon/curve.

•   Best	fitting	Methods	of	2-D	Parametric	Polygons/curves
Computing geometrical features is an important 

intermediate level vision task that has many applications. 
This step serves as a gateway to high-level matching and 
understanding of elements in the image. Among many other 
2-D	 parametric	 polygons/curves	 fitting	 of	 rectangle/	 square,	
circle, and ellipse plays important roles in real life applications. 
In general, approaches for locating parametric polygons/curves 
can be divided into two steps7,8,77.	 The	 first	 step	 is	 to	 detect	
the boundary of the object. The second step is to estimate its 
parameters based on the boundary points2, 7,8,77. The parameters 
estimation	procedures	are	discussed	briefly.

•   Best-fitted	Rectangle
Chaudhuri2,7, et al.	proposed	for	computing	the	best-fitted	

rectangle for closed regions. The coordinates of the vertices 
of	 the	 best-fitted	 rectangle	 are	 computed	 using	 a	 bisection	
method	 of	 the	 upper	 estimated	 rectangle	 (UPER)	 vertices	
and	the	under	estimated	rectangle	(UNER)	vertices	based	on	
difference	 area	 minimization	 between	 object	 and	 best-fitted	
rectangle	areas.	The	coordinates	of	the	vertices	of	UPER	and	
UNER	 are	 computed	 directly	 using	 closed-form	 solutions	
based on the border points of the object. The approaches for 
UPER	and	UNER	are	 based	 on	 simple	 coordinate	 geometry	
and	least	square	fitting	approach.	Using	a	least	square	approach	
the directions of major and minor axes of the object, which 
gives the orientation of the object are extracted. The four 
vertices	of	UPER	are	computed	by	pair-wise	solving	the	four	
straight lines7.	Also	the	four	vertices	of	UNER	are	computed	
by pair-wise solving the four straight lines, which are formed 

by	least	square	fitting	approach2. Finally, the four vertices of 
the	best-fitted	rectangle	are	computed	by	bisection	method	of	
the	UPER	and	UNER	vertices	in	a	iterative	way	based	on	the	
constraint	of	area	unchanged	of	the	fitted	rectangles	between	
the last and previous iterations, which is same as the difference 
between	 the	area	of	 the	object	and	 the	area	of	 the	best-fitted	
rectangle is minimum2.

•   Elliptic	and	Circular	fit
Fitting circles and ellipses of an object is a problem that 

arises in many application areas. Ellipse or circle computation8 
begins	 with	 finding	 the	 boundary	 points7,8,77 for each blob. 
The border points of a perfect elliptical or circular object will 
satisfy	the	equation	of	the	ellipse	or	circle	and	in	such	situation	
the	error	due	to	fitting	will	be	zero.	But	if	the	border	point	of	
an	object	does	not	lie	on	the	fitted	ellipse	or	circle	then	it	will	
generate an error. Here, errors function for all border points of 
the	object	is	defined	and	then	estimate	the	other	parameters	of	
ellipse	or	circle	by	minimizing	the	error8.

•   Unique	Relative	Measure
There	are	five	steps	in	this	approach.	First	fit	a	polygon/

curve (rectangle/circle/ellipse) on the object. Fig. 2(a) shows 
an	 image	 (object)	 and	 its	 fitted	 circle	 is	 shown	 in	Fig.	 2(b).	
Next	 step	 is	 to	 find	 the	 matching	 area.	 Fig.	 2(c)	 shows	 the	
matching	area	(dark	black	region)	of	the	object	and	the	fitted	
circle.	Then	find	the	non-matching	area	due	to	fitted	circle	and	
it is shown in Fig. 2(d) (dark regions inside the circle upper and 
lower	portions).	Next,	find	the	non-matching	area	due	to	object	
and shown in Fig. 2(e) (little bit bright gray regions inside the 
object left and right sides). The total non-matching area is the 
sum of both non-matching areas due to object and curve. Then 

Figure 2. Example of an object (a) Object (b) Fitted circle 
(c) Match area of the object and fitted circle (d) Non-
match area with respect to circle (e) Non-match area 
with respect to object.

compute	the	degree	of	fitness	as	the	ratio	of	non-matching	area	
and matching area. Mathematical formulation of the proposed 
definition	is	as	follows.

Let	 A	 be	 a	 region	 and	 B	 be	 the	 fitted	 polygon/curve	
(rectangle/circle/ellipse).	Without	loss	of	generality	we	assume	
that the area of a region means the number of points of the 
object. Similarly, the area of the polygon/curve (rectangle/
circle/ellipse) is the number of points inside the polygon/curve 
including	the	boundary	points.	The	matching	region	of	A	and	B	
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is A B∩ . The non-matching region due to object is ( )A A B− ∩
and	the	non-matching	region	due	to	fitted	curve	is ( )B A B− ∩ . 
Let A# be the area of region A and let B

AM is called the measure 
of	degree	of	fitness	of	object	A	with	respect	to	fitted	polygon/
curve B.	So	the	measure	of	degree	of	fitness B

AM is	defined	as

( ) ( )
( )

# #Total non-matching area
Matching area #

B
A

B A B A A B
M

A B
− ∩ + − ∩      = =

∩

“+” means union, so from the set theory
( ) ( ) ( ) ( )B A B A A B A B A B− ∩ ∪ − ∩ = ∪ − ∩       , so B

AM

can be written as 
( ) ( )

( )
#

#
B
A

A B A B
M

A B
∪ − ∩  =

∩
  

                  
The	 above	 measure	 of	 degree	 of	 fitness	 B

AM depends 
on	fitted	polygon/curve	 (rectangle/circle/ellipse).	Since	fitted	
polygons/curves are invariant under translation, rotation 
and	scaling,	so	 the	measure	of	fitness	 is	also	 invariant	under	
translation, rotation and scaling. Also the proposed measure 
of	fitness	 is	 dimensionless	 and	 always	finite.	 Perfectly	fitted	
curve	 of	 an	 object	 has	 zero	 value	 for	 degree	 of	 fitness.	The	
image with 8 different shape objects is shown in Fig. 3(a). The 
degree	of	fitness	of	different	 shape	objects	of	Fig.	 3(a)	with	
respect to rectangle, circle and ellipse are shown in Table 1. It 
is	reflected	from	Table	1	that	the	objects	2	and	4	are	detected	
as	rectangle	and	since	all	sides	of	the	fitted	rectangle	are	equal	
for	object	2,	so	object	2	is	a	square.	The	objects	4,	7	and	8	are	
detected as ellipse and object 5 is detected as circle. Since the 
values	of	degree	of	fitness	for	objects	1	and	3	with	respect	to	
all curves (rectangle, circle and ellipse) are higher and greater 
than tolerance level (T < 0.3), so they are not detected as any of 
the	curves,	though	the	minimum	values	of	the	degree	of	fitness	

for these objects are for ellipticity. Chaudhury2,6-8, et al. used 
this	 unique	 relative	 measure	 for	 building	 extraction	 and	 oil	
tank detection from remote sensing images.

(f)   Discussion
Global	 contour	 shape	 techniques	 take	 the	 whole	 shape	

contour as the shape representation. The matching between 
shapes can either be in space domain or in feature domain. For 
shape	description,	the	techniques	are	accurate	and	efficient.	On	
the one hand, shape should be described as accurately as possible 
and a shape description should be as compact as possible 
to	 simplify	 indexing	 and	 recovery.	 Efficient	 offline	 feature	
extraction is also desirable. Simple global shape descriptors are 
compact; however, they are very inaccurate shape descriptors. 
They need to be combined with other shape descriptors to create 
practical shape descriptors. Fourier descriptor is simple to 
implement, and involves less computation by either using fast 
Fourier transform (FFT) or using truncated Fourier transform 
computation. The resulting descriptor is also compact and the 
matching is very simple. Fourier descriptor (FD) is simpler to 
compute and more robust compared to curvature scale space. 
Boundary	moment	descriptor	is	similar	to	Fourier	descriptor,	
and	 is	 easy	 to	 acquire.	 However,	 unlike	 Fourier	 descriptor,	
only the few lower order moment descriptors have physical 
interpretation.

2.1.2 Region-based Shape Representation and 
Description Techniques

In contour base methods only use boundary information; 
but	 in	 region	based	 techniques,	 all	 the	pixels	within	a	 shape	
region are taken into account to obtain the shape representation. 
Common region based methods use moment descriptors to 
describe shapes. Other region based methods include grid 
method, shape matrix, convex hull and media axis. Similar to 
contour based methods, region based shape methods can also 
be divided into global and structural methods, depending on 
whether they separate shapes into sub parts or not.

2.1.2.1 Global Methods
The concept of moment in mathematics evolved from 

Figure 3. (a) Different shapes binary image (b) Fitted rectangle 
(c) Fitted circle and (d) Fitted ellipse

Table 1. Degree of fitness of different objects in Fig. 3(a)

Objects of 
Fig. 3 (a)

degree of Fitness

rectangularity Circularity Ellipticity

Object 1 1.378815 3.835594 0.615690

Object 2 0.000000 0.207373 0.219076

Object 3 1.288053 3.766476 0.897333

Object 4 0.366713 1.229934 0.049481

Object 5 0.274922 0.0318950 0.032764

Object 6 0.000000 3.661320 0.677681

Object 7 0.442777 0.696997 0.074589

Object 8 0.338803 0.747632 0.064988

(a) (b)

(c) (d)
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the concept of moment in physics. It is an integrated theory 
system. For both contour and region of a shape, one can use 
moment’s	theory	to	analyze	the	object.

(a)			Region	Moments
Among the region-based descriptors, moments are very 

popular. These include invariant moments, Zernike moments, 
Radial	Chebyshev	moments,	etc.	The	general	form	of	a	moment	
function mpq of order (p + q) of a shape region can be given 
as:

 
( , ),  , 0,1, 2,...pq pq

x y
m f x y p q= ψ =∑∑

where pqψ  is known as the moment weighting kernel or 
the basis set; f(x, y) is the shape region.

(b)   Geometric moment invariants
Hu	published	the	first	significant	paper	on	the	use	of	image	

moment invariants for two-dimensional pattern recognition 
applications33. Geometric moments, are the simplest of the 
moment functions with basis p q

pq x yψ =  while complete, is 
not orthogonal. His approach is based on the theory of algebraic 
forms:

( , ),  , 0,1, 2,...p q
pq

x y
m x y f x y p q= =∑∑

The geometric central moments, which are invariant to 
translation,	are	defined	as:

( ) ( ) ( , ),  , 0,1, 2,...q q
pq

x x
x x y y f x y p qψ = − − =∑∑

where 10
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m
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m
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A set of 7 Geometric moments are given by Hu37, which 
are useful shape recognition.

Geometrical moments are computationally simple. 
Moreover, they are invariant to rotation, scaling and 
translation.	Since	the	values	of	the	acquired	moment	invariants	
are	usually	very	small,	a	normalization	process,	such	as	zscore	
normalization38, is needed in the implementation.  The main 
problem with geometric moments is that only a few invariants 
derived	 from	 lower	 order	 moments	 is	 not	 sufficient	 to	 
accurately	describe	shape.	Higher	order	invariants	are	difficult	
to derive. However, they have several drawbacks78:

Information	redundancy:	since	the	basis	is	not	orthogonal,	• 
these moments suffer from a high degree of information 
redundancy.
Noise	sensitivity:	higher-order	moments	are	very	sensitive	• 
to noise.
Large	variation	in	the	dynamic	range	of	values:	since	the	• 
basis involves powers of p and q, the moments computed 
have large variation in the dynamic range of values for 
different orders. This may cause numerical instability 
when	the	image	size	is	large.

(c)   Algebraic Moment Invariants
The algebraic moment invariants are computed from the 

first	m central moments and are given as the eigen values of 

predefined	matrices,	M[j,k], whose elements are scaled factors 
of the central moments42. The algebraic moment invariants 
can be constructed up to arbitrary order and are invariant to 
affine	transformations.	However,	algebraic	moment	invariants	
performed either very well or very poorly on the objects with 
different	configuration	of	outlines.

(d)   Zernike Moments (ZM)
Zernike Moments (ZM) are orthogonal moments78. 

The complex Zernike moments are derived from orthogonal 
Zernike	polynomials:

( , ) ( cos ,sin ) ( ) exp( )mn nm nmV x y V r R r jm= q q = q

where ( )nmR r 	is	the	orthogonal	radial	polynomial:
( | |)/2
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∑

,...2,1,0=n , nm ≤≤ ||0 and || mn− is even.
Zernike polynomials are a complete set of complex valued 

functions orthogonal over the unit disk, i.e. 2 2 1x y+ ≤ . The 
Zernike moment of order n with repetition m of shape region 
f(x, y)	is	given	by:

1 ( cos , sin ). ( ).exp( ),  1nm nm
r

nZ f r r R r jm r
q

+
= q q q ≤

p ∑∑

Zernike moments (ZM) have the following advantages79:
Rotation	invariance:	the	magnitudes	of	Zernike	moments	• 
are invariant to rotation.
Robustness:	they	are	robust	to	noise	and	minor	variations	• 
in shape.
Expressiveness:	since	 the	basis	 is	orthogonal,	 they	have	• 
minimum information redundancy.
However, the computation of ZM (in general, continuous 

orthogonal	moments)	poses	several	problems:
Coordinate	 space	 normalization:	 the	 image	 coordinate	• 
space must be transformed to the domain where the 
orthogonal	 polynomial	 is	 defined	 (unit	 circle	 for	 the	
Zernike polynomial).
Numerical	 approximation	 of	 continuous	 integrals:	 the	• 
continuous integrals must be approximated by discrete 
summations. This approximation not only leads to 
numerical errors in the computed moments, but also 
severely affects the analytical properties such as rotational 
invariance and orthogonality.
Computational	 complexity:	 computational	 complexity	• 
of the radial Zernike polynomial increases as the order 
becomes large.

(e)			Radial	Chebyshev	Moments (RCM)
The radial Chebyshev moment of order p and repetition 

q	is	defined	as80:
1 2

0 0

1 ( ).exp( ). ( , )
2 ( , )

m

pq p
r

S t r jq f r
p m

− p

= q=
= − q q

pr ∑ ∑
where )(rt p is the scaled orthogonal Chebyshev polynomials 
for	an	image	of	size	N×N:
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The mapping between ( , )r q and image coordinates (x, y) 
is	given	by:
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Compared to Chebyshev moments, radial Chebyshev 
moments possess rotational invariance property.

(f)   Generic Fourier Descriptor
Although Zernike moment descriptor has a robust 

performance	but	it	has	several	drawbacks:
The kernel of Zernike moments is complex to compute • 
and before computing the moment features the shape has 
to	be	normalized	into	a	unit.
The radial features and circular features captured by • 
Zernike moments are not consistent, one is in spatial 
domain and the other is in spectral domain. It does not 
allow multi-resolution analysis of a shape in radial 
direction. 
The circular spectral features are not captured evenly at • 
each	order,	 this	can	 result	 in	 loss	of	 significant	 features	
which are useful for shape description. 
To overcome these drawbacks, a generic Fourier descriptor 

(GFD) has been proposed by Zhang and Lu81. The GFD is 
acquired	by	applying	a	2-D	Fourier	transform	on	a	polar-raster	
sampled	shape	image:

2
2( , ) ( , ) exp 2i

r i

r iPF f r j
R T

 p  r j = q p r + j    
∑∑

where 0 r R≤ <  and (2 / )i i Tq = p , (0 )i T≤ < ; 
0 ,  0 .R T≤ r < ≤ j < R and T	are	the	radial	frequency	resolution	
and	angular	frequency	resolution	respectively.	The	normalized	
coefficients	are	the	GFD.	The	similarity	between	two	shapes	is	
measured by the city block distance between their GFDs.

GFD is simpler to compute then Zernike moments 
computation. Also the features are pure spectral features and 
have better retrieval performance due to multi-resolution 
analysis	in	both	radial	and	circular	directions	of	the	shape.	With	
an enhanced process, GFD can achieve retrieval performance 
on perspectively transformed shapes as high as it achieves 
on similarity transformed shapes82. Zhang and Lu have also 
shown that GFD outperforms contour shape descriptors such 
as CSS, FD and region-based shape descriptors such as Zernike 
moments, geometric moments and grid method83.

(g)  Discussion                                                                        
Global region based methods treat the shape region as 

a whole and make effective use of all the pixel information 

within the region. These methods measure pixel distribution 
of the shape region, which are less likely affected by noise 
and variations. As a result, they usually can cope well with 
shape	 of	 significant	 defection,	 which	 poses	 a	 problem	 for	
contour-based methods. Particularly popular region methods 
are moment methods. Moment methods extract statistical 
distribution of region pixels. The lower order moments or 
moment invariants carry physical meanings associated with 
region pixel distribution. However, because of their global 
nature, the disadvantage of moment-based methods is that 
it	 is	difficult	 to	correlate	high	order	moments	with	a	shape’s	
salient	features.	Besides	the	previous	moments,	there	are	other	
moments for shape representation, for example, homocentric 
polar-radius moment84, orthogonal Fourier-Mellin moments 
(OFMMs)85, pseudo-Zernike Moments86, etc. The study shows 
that the moment-based shape descriptors are usually concise, 
robust and easy to compute. It is also invariant to scaling, 
rotation and translation of the object. Present paper discusses 
about the global approach. One can go through Zhang and Lu12 
for structural approach.

3. CLASSIFICAtION OF mAtChINg 
PrObLEmS ANd SImILArIty mEASUrE 
PrOPErtIES
This section discusses about shape matching problems 

and properties. Shape matching is studied in various forms. 
Given	two	patterns	and	a	dissimilarity	measure,	it	can	define	
the	problem	as	follows:

Computation	problem:	compute	the	dissimilarity	between	• 
the two patterns. 
Decision	problem:	for	a	given	threshold,	decide	whether	• 
the dissimilarity is smaller than the threshold. Also 
for a given threshold, decide whether there exists a 
transformation such that the dissimilarity between the 
transformed pattern and the other pattern is smaller than 
the threshold.
Optimization	 problem:	 find	 the	 transformation	 that	• 
minimizes	 the	 dissimilarity	 between	 the	 transformed	
pattern and the other pattern.
Sometimes the time complexities to solve these problems 

are rather high, so that it makes sense to devise approximation 
algorithms:

Approximate	optimization	problem:	find	a	transformation	• 
that gives dissimilarity between the two patterns that is 
within a constant multiplicative factor from the minimum 
dissimilarity.
These problems play an important role in the following 

categories of applications.
Shape	retrieval:	search	for	all	shapes	in	a	typically	large	

database	of	shapes	that	are	similar	to	a	query	shape.	Usually	all	
shapes	within	a	given	distance	from	the	query	are	determined	
(decision	problem),	or	the	first	few	shapes	that	have	the	smallest	
distance (computation problem). If the database is large, it 
may	be	infeasible	to	compute	the	similarity	between	the	query	
and every database shape. An indexing structure can help to 
exclude large parts of the database from consideration at an 
early stage of the search, often using some form of triangle 
inequality	property.
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Shape	 recognition	and	classification:	determine	whether	
a	 given	 shape	 matches	 a	 model	 sufficiently	 close	 (decision	
problem), or which of k class representatives is most similar (k 
computation problems).

Shape	alignment	and	registration:	transform	one	shape	so	
that	it	best	matches	another	shape	(optimization	problem),	in	
whole or in part.

Shape	 approximation	 and	 simplification:	 construct	 a	
shape of fewer elements (points, segments, triangles, etc.), that 
is still similar to the original. There are many heuristics for 
approximating polygonal curves66 and polyhedral surfaces87. 
Optimal methods construct an approximation with the fewest 
elements given a maximal dissimilarity, or with the smallest 
dissimilarity given the maximal number of elements. (Checking 
the former dissimilarity is a decision problem, the latter is a 
computation problem.)

•   Properties
It can be desirable that a similarity measures has such 

properties.	Whether	or	not	specific	properties	are	wanted	will	
depend on the application at hand, sometimes a property will 
be useful, sometimes it will be undesirable. Some combinations 
of properties are contradictory, so that no distance function can 
be found satisfying them. A shape dissimilarity measure, or 
distance function, on a collection of shapes S is a function d:	
S S R× → . In the properties listed below, it is understood that 
they must hold for all shapes A, B, or C in S.

•   Metric Properties
(i)		 Non-negativity:	 ( , ) 0 ,d A B A B S≥ ∀ ∈  
(ii)		 Identity:	 ( , ) 0 d A A A S= ∀ ∈
(iii)		Uniqueness:	 ( , ) 0 implies d A B A B= =
(iv)		Symmetry:	 ( , ) ( , ) ,d A B d B A A B S= ∀ ∈ and 
(v)	 Triangular	inequality:

( , ) ( , ) ( , ) , ,d A B d A C d B C A B C S+ ≥ ∀ ∈ .
A	 distance	 function	 satisfying	 identity,	 uniqueness,	 and	

triangular	 inequality	 is	called	a	metric.	 If	a	 function	satisfies	
only	identity	and	triangular	inequality,	then	it	is	called	a	semi-
metric.	Symmetry	 follows	from	the	 triangular	 inequality	and	
identity and symmetry is not always wanted. Indeed, human 
perception	does	not	always	find	that	shape	A	is	equally	similar	
to B, as B is to A. In particular, a variant A of prototype B is 
often found more similar to B than vice versa88.

•   Continuity Properties
It is often desirable that a similarity function has some 

continuity properties. The following four properties are about 
robustness, a form of continuity. Such properties are for example 
useful	to	be	robust	against	the	effects	of	discretization.	

Perturbation	 robustness:	 for	 each	 0ε > there is an open 
set	F	of	deformations	sufficiently	close	to	the	identity,	such	that

( ( ), )  d f A A f F< ε ∀ ∈ .  For example, it can be desirable that 
a	distance	function	is	robust	against	small	affine	distortion.

Crack	 robustness:	 for	 each	 ε>0,	 and	 each	 ‘crack’	 x	 in	
bd(A), the boundary of A, an open neighbourhood U of x exists 
such	that	for	all	B,	 A U B U− = − implies ( , )d A B < ε . 

Blur	 robustness	 for	each	 0ε > , an open neighbourhood 

U of bd(A) exists, such that ( , )d A B < ε for all B satisfying 
B U A U− = −  and ( ) ( )bd A bd B⊆ . 

Noise	and	occlusion	robustness:	for	each	 2x A∈ℜ − , and 
each 0ε > , an open neighbourhood U of x exists such that for 
all B, B U A U− = − implies ( , )d A B < ε .

 
•   Invariance 

A distance function d is invariant under a chosen group 
of transformations G if for all Gg ∈ , ( ( ), ( )) ( , )d g A g B d A B=
. For object recognition, it is often desirable that the similarity 
measure	 is	 invariant	 under	 affine	 transformations,	 since	 this	
is a good approximation of weak perspective projections of 
points lying in or close to a plane. However, it depends on 
the application whether a large invariance group is wanted. 
For example, Thompson89 showed that the outlines of two 
hatchet-fishes	 of	 different	 genus,	 Argyropelecus	 olfersi	 and	
Sternoptyx diaphana, can be transformed into each other by 
shear	and	scaling,	see	Fig.	4.	So,	the	two	fishes	will	be	found	to	
match	the	same	model	if	the	matching	is	invariant	under	affine	
transformations.

Figure 4. Two hatchet-fishes of different genus: Argyropelecus 
olfersi and Sternoptyx diaphana. From Thompson88 

paper.
4. SImILArIty mEASUrES

Measure of similarity is an important concept for shape 
analysis problem. On this issue distance is a very important 
measure used widely in applied science problems such as 
pattern recognition and image processing. It is desirable that 
the distance is a metric. In this section it discusses various 
distances, which are used in shape analysis problem.

4.1 discrete metric
Finding	 an	 affine	 invariant	metric	 for	patterns	 is	 not	 so	

difficult.	Indeed,	a	metric	that	is	invariant	not	only	for	affine	
transformations, but for general homeomorphisms is the 
discrete	metric:

0 if 
( , )

1 otherwise
A B

d A B
=

= 
  

However, this metric lacks useful properties. For example, 
if a pattern A is only slightly distorted to form a pattern 'A , the 
discrete distance ( , ')d A A  is already maximal.

Under the discrete metric, computing the smallest
),( BAd  over all transformations in a transformation group G 

is	equivalent	to	deciding	whether	there	is	some	transformation	
g in G such that g(A)	 equals	 B. This is known as exact 
congruence matching. For sets of n points in kℜ , the algorithms 
with the best known time complexity run in ( log )O n n time 
if G is translations, scaling, or homotheties (translation plus 



DEF.	 SCI.	 J.,	VOL.	 63,	 NO.	 1	 ,	 JANUARy	 2013

84

scaling), and ( )/3 logkO n n    time for rotations, isometries, 
and similarities90.

 
4.2 LP distance, minkowski distance

Many similarity measures on shapes are based on the 
Lp  distance between two points. Three special cases of the 
Lp (Minkowski metric), namely City-block distance ( dC), 
Euclidean distance (dE) and Chessboard distance (dM) are 
popular. For two n dimensional points ( )1 2, ,..., nx x x=X and 

( )1 2, ,..., ny y y=y , the PL metric	is	defined	as
1/

1
( , )

pn
p

p i i
i

d x y
=

  = − 
  
∑X y

where Cd , Ed and Md correspond to ∞=  and 2,1p , 
respectively.

4.3 CMC Distance (dCMC)91

Since the conventional data space is Euclidean, it is natural 
to use Euclidean distance in such a space.	But	computation	of	
Euclidean distance is expensive in a high dimensional space, 
especially when such computation is to be performed on a 
large amount of data. An example is the processing of multi-
spectral/hyper-spectral imagery which contains more than a 
million pixels per image frame and many such frames are to 
be processed. In statistical pattern recognition methods also, 
the distance is to be computed iteratively on a large amount 
of data. In order to reduce the computation, City-block and 
Chessboard distances are often used in image processing and 
related	 problems.	While	 these	 distances	 are	 computationally	
more	 efficient,	 they	 derivate	 markedly	 from	 the	 Euclidean	
frame	work	and	cause	the	accuracy	of	the	final	result	to	suffer,	
because City-block distance is upper estimate and Chessboard 
distance is under estimate with respect to Euclidean distance.

Chaudhuri, Murthy and Chaudhuri (CMC) metric91, which 
is	 close	 to	 Euclidean	 distance	 and	 yet	 requires	 significantly	
less computational effort. Given two n-dimensional points, 

1 2,( , ..., )nX x x x= and 1 2,( , ..., )nY y y y= , let i ix y− be the 
maximum for 0i i= ; the CMC distance (dCMC)	is	defined	as	

0 0

0
1

1( , )
2

2

n

CMC i i i i
i
i i

d X Y X Y x y
nn =

≠

= − + −
− −   

∑

where a   is	the	floor	of	“a”, i.e. the largest integer a≤ .
Rhodes	proved	in	his	paper98, it is natural to expect a suitable 

linear combination of dC and dM to give an approximation to 
dE	better	than	either	of	them.	Note	that	Rosenfeld	and	Pfaltz

99 
obtained a 2-dimensional approximation by combining dC and 
dM  nonlinearly as { }( ) max ( ( ) 1) / 3, ( )C MD x d x d x= + .

4.4 Hausdorff Distance
In many applications, for example stereo matching, not 

all points from A need to have a corresponding point in B, 
due to occlusion and noise. Typically, the two point sets are 
of	different	size,	so	that	no	one-to-one	correspondence	exists	
between all points. In that case, a dissimilarity measure that is 
often used is the Hausdorff distance. The Hausdorff distance is 
defined	not	only	for	finite	point	sets,	it	is	defined	on	nonempty	

closed bounded subsets of any metric space. Hausdorff distance 
is a classical correspondence-based shape matching method, it 
has often been used to locate objects in an image and measure 
similarity between shapes92-97. Given two shapes represented 
by	 two	 set	 of	 points:	 1 2( , ,..., )nA a a a= and 1 2( , ,..., )nB b b b=
the Hausdorff distance between two sets A and B	is	defined	as	

{ }( , ) max ( , ), ( , )H A B h A B h B A= ; 
where ( , ) max min

b Ba A
h A B a b

∈∈
= −  and .  is the underlying 

norm on the points of A and B, usually Euclidean distance. 
However, this distance measure is too sensitive to noise or 
outlier. A single point in A that is far from anything in B will 
cause  h(A,B)	 to	 be	 large.	 Therefore,	 a	 modified	 Hausdorff	
distance	is	introduced	by	Rucklidge96:

( , ) minf th
a A b B

h A B f a b∈
∈

= − where ( )th
x Xf g x∈ denotes fth 

quantile	value of g(x) over set X, for some value of f between 0 
and 1. For example, the fth	quantile	value	is	the	maximum	and	
the 1/2th	quantile	value	is	the	median.	In	practice92, f is usually 
set to be ½. The advantage of shape matching using Hausdorff 
distance is that shape can be matched partially. However, 
the Hausdorff distance is not translation, scale and rotation 
invariant. In order to match a model shape with a shape in the 
image, the model shape has to be overlapped on the image in 
different positions, different orientations and different scales. 
As the result, the matching is prohibitively expensive.

4.5 bottleneck distance
Let A and B	 be	 two	 point	 sets	 of	 size	 n, and d(a,b) a 

distance between two points. The bottleneck distance F(A,B) 
is the minimum over all 1-1 correspondences f between A 
and B of the maximum distance ( , ( ))d a f a . For the distance 
d(a,b) between two points, an pL distance could be chosen. 
An alternative is to compute an approximation F to the real 
bottleneck distance F. An approximate matching between A and 
B with F  the furthest matched pair, such that (1 )F F F< < + ε , 
can be computed with a less complex algorithm100. 

The decision problem for translations, deciding 
whether there exists a translation  such that ( , )F A B+ < ε
can also be solved, but takes considerably more time100. 
Because	of	the	high	degree	in	the	computational	complexity,	
it is interesting to look at approximations with a factor
ε :	 ( , ) (1 ) ( *, )F A B F A T+ < + ε +  , where *  is the optimal 
translation. Variations on the bottleneck distance are the 
minimum weight distance, the most uniform distance, and the 
minimum deviation distance.

4.6 Area of Symmetric difference, template metric
For two compact sets A and B, the area of symmetric 

difference, also called template metric, is defined	 as
(( ) ( ))area A B B A− −∪ . Unlike the area of overlap, this 

measure is a metric. Translating convex polygons so that 
their centroids coincide also gives an approximate solution 
for the symmetric difference, which is at most 11/3 of the 
optimal solution under translations3. This also holds for a set 
of transformations F other than translations, if the following 
holds:	 the	 centroid of A, c(A),	 is	 equivariant	 under	 the	
transformations, i.e. ( ( )) ( ( ))c f A f c A=  for all f in F, and F is 



CHAUDHURI :	GLOBAL	CONTOUR	AND	REGION	BASED	SHAPE	ANALySIS	AND	SIMILARITy	MEASURES

85

closed under composition with translation.

5. CONCLUSION
Extracting a shape feature in accordance with human 

perception is not an easy task. Due to the fact that human vision 
and perception are an extraordinary complicated system, it is 
a utopia to hope that the machine vision has super excellent 
performance with small complexity. In addition, choosing 
appropriate features for a shape recognition system must 
consider what kinds of features are suitable for the task. There 
exists no general feature which would work best for every kind 
of images.

The last few decades have resulted in an enormous amount 
of work related to shape analysis. The course of development 
has	 been	 influenced	 by	 achievements	 from	 other	 related	
research disciplines as well as by image analysis applications. A 
selection of the most characteristic methods has been discussed 
briefly.	The	main	goal	of	this	review	was	to	attempt	to	cover	
the diversity of methods for shape description and provide a set 
of references that the reader can use for further research. 

In this paper, existing shape representation and description 
techniques	 have	 been	 reviewed.	 Generally,	 there	 are	 two	
classes	of	approaches	in	shape	representation	and	description:	
contour-based versus region-based. Under each class, the 
methods can be divided into structural and global methods. 
The different methods can be further distinguished between 
methods working in space domain and methods working in 
transform	domain.	We	have	discussed	 several	 approaches	of	
global contour and region based shape description methods. 
Contour-based approaches are more popular than region-based 
approaches in literature. This is because human beings are 
thought to discriminate shapes mainly by their contour features. 
Another reason is because in many of the shape applications, 
the shape contour is the only interest, whilst the shape interior 
content is not important. However, there are several limitations 
with contour-based methods. First, contour shape descriptors 
are generally sensitive to noise and variations because they 
only use a small part of shape information, that is, contour 
information. Second, in many cases, the shape contour is not 
available. Third, in some applications, shape content is more 
important than the contour features. These limitations can be 
overcome	by	using	region-based	methods.	The	findings	in	the	
survey	 are	 in	 favour	 of	 region-based	 methods.	 Region-base	
methods are more robust as they use all the shape information 
available; they can be applied to general applications; and they 
generally provide more accurate retrieval. In addition, region-
based methods can cope well with shape defection, which is 
a common problem for contour-based shape representation 
techniques.	Although	 region-based	methods	make	 use	 of	 all	
the shape information, it is not necessarily more complex than 
contour-based methods, as some promising methods such as 
the moment methods and GFD are simple to implement.

The article has also discussed a number of shape similarity 
properties. It is a challenging research task to construct similarity 
measure	with	a	chosen	set	of	properties.	The	difficulty	is	that	
the distance measure must be suitable for partial matching. The 
dissimilarity must be small when two shapes contain similar 
regions,	and	the	measure	should	not	penalize	for	regions	that	

do not match. Also, the number of local minima of the distance 
can be large. 
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