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1. INTRODUCTION
The hyperspectral imaging has paved the way to uncover 

targets which used to remain uncovered while analyzing data 
from multispectral sensors. In most cases, however, the spatial 
resolution for many satellite based hyperspectral sensors is still 
too coarse in comparison to their spectral resolution1. Thus, 
a target of interest may get spectrally resolved but may not 
spatially due to small size. Such a target may partly occupy 
one pixel or several pixels and may manifest itself in several 
ways, as can be seen from Fig. 1. For example, a target may lie 
completely within a pixel or it may cover one pixel fully and 
also simultaneously exist partially in all the eight pixels in the 
neighbourhood. In both the cases, the problem is referred to as 
subpixel target detection. In subpixel target detection, the goal 
is to recover the target, which due to its smaller size than the 
spatial resolution is completely embedded in the pixel. 

target detection can exploit both the spatial and the spectral 
properties, subpixel target detection can be achieved only 
by exploiting spectral properties2. Since the spectrum of the 
subpixel target is mixed with the spectrum of the background in 
a given pixel, it requires unmixing of both the spectrum as well 
as the proportion of the constituent material (i.e., the abundance 
fraction). Amongst various unmixing models, linear mixture 
model (LMM) is the most widely used one for its simplicity3 

despite the fact that it is not guaranteed to produce non-negative 
abundances and hence there always exists a requirement of a 
more robust model such as constrained linear mixing model or 
a nonlinear mixing model for estimating abundance fractions 
within a pixel. Alternatively, multilayer perceptron neural 
network and neuro-fuzzy methods4,5 have also been used to 
recover the components. These models generally use a priori 
target information drawn from spectral libraries or from the 
image scene itself and output both the endmember spectrum 
and their corresponding abundance fractions inside the pixel. 
However, abundance fractions thus obtained indicate only their 
relative proportions and not their spatial distribution within the 
pixels. 

The effective subpixel target detection depends on 
appropriate spatial distribution of these abundance fractions 
via super resolution mapping. A number of techniques based 
on several theories for super resolution mapping have been 
reported in the literature. These include linear optimization 
techniques, Markov Random Field models6, Hopfield neural 
network7,8, pixel swapping, etc9,10 . Most of these techniques 

Subpixel Target Enhancement in Hyperspectral Images

Manoj K. Arora* and K.C. Tiwari#

Indian Institute of Technology Roorkee, Roorkee–247 667, India 
 #Delhi Technological University, New Delhi–110 042, India 

*E-mail: manojfce@iitr.ernet.in  

AbSTRACT

Hyperspectral images due to their higher spectral resolution are increasingly being used for various remote 
sensing applications including information extraction at subpixel level. Typically whenever an object gets spectrally 
resolved but not spatially, mixed pixels in the images result. Numerous man made and/or natural disparate 
targets may thus occur inside such mixed pixels giving rise to subpixel target detection problem. Various spectral 
unmixing models such as linear mixture modeling (LMM) are in vogue to recover components of a mixed pixel. 
Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the 
pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the 
applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based 
super-resolution mapping method has been presented. In this method, the subpixel target detection is performed 
by adjusting spatial distribution of abundance fraction within a pixel of an hyperspectral image. Results obtained 
at different resolutions indicate that super-resolution mapping may effectively be utilized in enhancing the target 
detection at sub-pixel level. 

Keywords: Super-resolution mapping, mixed pixel, subpixel target detection, hyperspectral data, linear mixture    
modeling 

  Figure 1.  Full and subpixel targets.

 Determination of individual components and their 
abundance fractions inside a pixel is known as mixed pixel 
classification and is the first step towards subpixel target 
detection using hyperspectral data. Further, while multipixel 
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are still under evolution and testing. These have mostly been 
applied for land cover mapping with very few implemented for 
subpixel target detection. In this paper, a new inverse Euclidean 
distance	based	super	resolution	mapping	technique	for	subpixel	
target detection has been introduced and discussed. 

2. EXPErImENtAL dAtA
First set of experiments have been conducted on 

synthetically generated data with known subpixel abundance 
fractions, which have been used as reference data to test the 
proposed	 technique.	 Thereafter,	 the	 experiments	 have	 been	
repeated	on	hyperspectral	data	collected	from	AVIRIS sensor 
to detect aircrafts as targets. 

column), (244, 145), (232,137), (199,158), (89, 11), (70, 22). 
These have been given reference IDs, P1 to P5. From this data, 
an	image	of	size	40	x	40	pixels	has	been	extracted	containing	
two aircrafts, P3 and P5 (Fig. 3 (b)). It may be noticed that 
these two targets fall under shadow and may be treated as 
difficult	 targets	 to	 detect.	 For	 the	 set	 of	 experiments	 in	 this	
study, regions containing both full and partially full pixels have 
been extracted.

 
3. EUCLIdEAN dIStANCE bASEd SUPEr 

rESOLUtION 
Spectral unmixing is the process by which fractions of 

various constituents within a pixel (in this case, fraction and 
the background, also known as abundance fractions) are 
estimated11,12.	On	the	other	hand,	super	resolution	may	be	defined	
as	optimization	of	abundance	fractions	within	or	between	the	
pixels	to	derive	a	subpixel	map	at	a	spatial	resolution	finer	than	
that of the coarse spatial resolution input image6,7,8. It may be 
carried out at different scale factors depending upon the spatial 
resolution	 required	 to	 be	 achieved.	 However,	 developing	
a model that accurately captures the spatial distribution of 
abundance	fractions	within	a	pixel	 requires	understanding	of	
how natural features get translated into an image.

3.1 Super Resolution Using Abundance Fractions
In nature, all earth surface features exhibit spatial 

contiguity in their layout and composition. They also appear to 
hover around a centre of mass. This spatial contiguity also gets 
retained in the images depicting these features which appear 
centered around a centre of mass. Thus, all the pixels belonging 
to that feature (also referred to as class or object or target) are 
assumed to be attracted towards the pixel in the centre. In 
other	words,	the	central	pixel	exerts	some	attractive	influence	
on all the surrounding pixels of the same class. This attractive 
influence	can	be	expressed	in	terms	of	an	attractive	function.	
In a similar way, all subpixels for a given target/class inside 
a pixel (which can be determined from the knowledge of its 
abundance fraction) can be assumed to experience an attraction 
towards the centermost subpixel. Naturally, this attractive 
influence	can	be	expected	to	be	a	function	of	the	distance	of	
any given subpixel from the centermost subpixel and hence can 
be modeled using an appropriate distance measure. Thus, the 
attractive	influence	can	be	quantified	knowing	the	number	of	
subpixels (expressed in terms of abundance fractions) and the 
distance of any given subpixel from the centermost subpixel. 
The	genesis	of	super	resolution	techniques	lies	in	quantification	
of	this	attractive	influence.	

Modeling	the	above	attractive	influence	for	each	pixel	to	
be	super	resolved	requires	an	appropriate	distance	function,	the	
number of subpixels for each class and a pixel neighbourhood 
scheme.. The number of subpixels is calculated based on the 
scale factor corresponding to the pixel in the coarse spatial 
resolution image. For example, a scale factor of 5 implies that 
abundance	fractions	in	a	pixel	are	mapped	into	five	rows	and	
five	 columns	 of	 subpixels.	Thus,	 a	 total	 of	 25	 subpixels	 are	
created within each pixel. Further, if a target (or a class) is 
estimated to have a value of 0.6 as its abundance fraction in a 
pixel	and	the	scale	factor	is	5,	it	implies	that	60%	of	the	total	

Figure 2. 30x30 pixels image approximating shape of an aircraft. 
(Fractions ranging from 0.25 to 0.9).

2.1 Synthetic data
A synthetic dataset approximating the shape of an aircraft 

and of similar complexity as an actual aircrafts in terms of 
shape	 and	 size	 has	 been	 considered.	 Further,	 a	 number	 of	
synthetic images at different scales, namely, 3x3, 5x5, 7x7, 9x9 
and 11x11 pixels corresponding to scale factors 3, 5, 7, 9, and 
11 respectively have been generated to account for difference 
in spatial resolutions.

2.2 AVIRIS Data
An	archived	hyperspectral	image	(size:	400	x	400	pixels,	

224	 bands)	 from	AVIRIS	 sensor	 acquired	 over	 a	 naval	 air	
station in San Diego, California has been used (Fig. 3(a)). The 
image is available as example data in ENVI image processing 
software. After removal of water absorption and bad bands, 
189 bands of this hyperspectral image already available as 
reflectance	spectra	have	been	considered.	The	image	contains	
five	 aircrafts	 (Fig.	 3	 (a))	 centered	 at	 pixel	 coordinates	 (row,	

Figure 3. (a) a 200x200 pixels  true colour image of AVIRIS data. 
(b) 40x40 pixels region of segmented image AVIRIS  
data with two aircrafts (referred AVIRIS - i).

(a) (b)
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subpixels (i.e, 25 x 0.6 = 15 subpixels) belong to that target. The 
next	requirement	for	modeling	is	the	selection	of	appropriate	
neighbourhood scheme. Pixel neighbourhood constitutes the 
group of pixels that exert or experience attraction on/from the 
central pixel/subpixel. There are several different types of pixel 
neighbourhood schemes such as 2 x 2 pixels, 4 x 4 pixels and 
8 x 8 pixels neighbourhood schemes etc. Each of these pixel 
neighbourhood schemes also includes the pixel at which the 
object/class	centre	 is	 located.	Both,	 the	pixel	neighbourhood	
scheme and the object/class centre concepts shall be used 
in estimation of subpixel distances for modeling attractive 
influence.	

Consider an n x m pixel image, as shown in Fig. 4, to 
be used for super resolution mapping. It may be noticed 
that the pixels at the corners are surrounded by other pixels 
only on three sides while those at the centre are surrounded 
by	 eight	 pixels	 from	 different	 sides.	A	 clique	 is	 defined	 as	
a subset of an image array whose two distinct elements are 
mutual neighbours6. Thus, for an image array, it is necessary 
to	consider	all	the	possible	cliques	separately.	C1	to	C9	are	the	
various	possible	cliques.	Cliques	marked	as	C1	through	C8	do	
not	have	an	8	x	8	pixel	neighbourhood	but	clique	C9	has	an	
8	x	8	pixel	neighbourhood.	These	cliques	are	 the	backbones	
of super resolution as these decide the number of pixels that 
directly	influence	the	pixel	being	super	resolved.		

either of the binary classes but their exact locations are yet to 
be ascertained. To do this, we need to know the fractions of 
the binary classes. Let one of the binary classes in the entire 
8-pixel neighbourhood be referred as CL-1 and let abundance 
fractions	for	this	class	in	each	of	the	pixels,	identified	as	P1	to	
P9, be a1 to a9 as shown in Fig. 6(b). Once these fractions are 
known, the number of subpixels for each binary class can be 
calculated. Consider for example that the fraction for CL-1 in 
the central pixel is 0.8. Then the number of subpixels of class, 
CL-1, present in the central pixel is 0.8 x 25= 20 subpixels and 
rest belong to the other class. Similarly, number of subpixels 
for each of the binary class inside all the pixels P1  through P9 
can	be	 found.	The	 requirement	now	 is	 to	 spatially	distribute	
the subpixels of each of the binary classes. In the preceding 
example, 20 subpixels of Cl-1 and balance 5 subpixels of 
other	class	have	to	be	assigned	a	unique	location	amongst	the	
total 25 subpixel locations available in the central subpixel. 
It can be expected that the distribution of these subpixels of 
say CL-1 (and of the other class) would depend upon two 
things, namely the abundance fractions of the same class in 
all	 the	neighbouring	pixels	of	 the	 clique	 and	 the	distance	of	
each subpixel from the neighbouring pixel. For example, refer 
to Fig. 6. Assume that there are 20 subpixels of Cl-1 in the 
central pixel P5. First, the number of subpixels experiencing 
attraction from each of the neighbouring pixels P1, P2, P3, 
P4, P6, P7, P8, P9 (i.e, excluding P5 which is the pixel being 

Figure 4. An n x m pixel image array for super resolution and 
corresponding  cliques.

3.2 Modeling the Attractive Influence based on 
Inverse Euclidean Distance
To	understand,	modeling	of	the	attractive	influence	in	the	

case of the proposed inverse Euclidean distance based method, 
consider an n x m array as shown in Fig. 5 (a) (note that it 
is the same n x m pixel array as shown in Fig. 4). For super 
resolution, let a 3 x 3 pixel array be extracted from this pixel 
array as in Fig. 5(b). Further, consider that the central pixel is 
the pixel to be super resolved (Fig. 5(c)). This presents a case 
of	clique	C9	as	shown	in	Fig.	4.	Let	all	the	pixels	in	this	clique	
be denoted by P1  through P9 (Fig. 5 (c)). Assuming that super 
resolution is being performed at a scale factor of 5, a 5 x 5 
subpixel grid has been created at the central pixel. Thus, there 
are 25 subpixels which need to be spatially distributed. In other 
words, there are 25 subpixel locations which are occupied by Figure 6. (a) 3 x 3 pixel array, and (b) abundance fractions of 

Cl-1 in the image.

(a) (b)

Figure 5.  (a) An n x m image array for super resolution, (b) 8 x 8  
pixel neighbourhood, and (c) 8 x 8 pixel neighbourhood 
with central pixel for super resolution mapping.

(c)

(a) (b)
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super resolved) and getting aligned at locations closer to it, will 
depend upon the abundance fraction of CL-1 in these pixels. In 
other words, a pixel with higher abundance fraction of CL-1 
would attract larger number of subpixels from the pixel being 
super resolved (i.e P5). Second, the attraction experienced 
by each of the subpixels will be in inverse proportion to its 
distance from any of the neighbouring pixels. Modelling these 
two	 aspects	 together	 leads	 to	 assigning	 a	 unique	 location	 to	
each of the subpixels of both the classes. For the proposed 
Inverse	 Euclidean	 Distance	 based	 technique,	 these	 aspects	
have been discussed in the following paragraphs,

3.2.1. Number of Subpixels Getting Attracted Towards 
Each of the Neighbourhood Pixel

 For ease of explanation, assume that the abundance 
fractions for CL-1 in each of the pixel P1 to P9 (i.e, values 
assigned to a1 to a9 in Fig. 6 (b)) are 0.3, 0.3, 0.3, 0.3, 0.6, 0.2, 
0.2, 0.2, 0.2 respectively. Further let the central pixel, P5 be the 
pixel being super resolved at a scale factor of 5. This means 
that pixel P5 which is being super resolved has 25 x 0.6=15 
subpixels of CL-1 which get attracted towards the class/object 
centre. During the process of super resolution, it is assumed 
that the target centre can be located in any of the neighbouring 
pixels (i.e, P1 to P9 except P5 which is under super resolution), 
and hence each is considered separately in turn as the target 
centre. Now, the number of subpixels (out of these total 15 
subpixels) getting attracted towards each of the neighbourhood 
pixels P1 to P9 (except P5 which is under super resolution) can 
be determined. It may, however, be noted that while calculating 
the number of subpixels getting attracted towards a pixel, the 
values are always rounded off to the next higher value and the 
deficiency	of	subpixels,	if	any,	is	accounted	towards	the	pixel	
having the least abundance fraction.

3.2.2. Estimation of Attractive Influence
 In the previous section, the number of subpixels (of 
pixel P5 under super resolution) getting aligned with each of 
the neighbourhood pixels (i.e, pixels P1 to P9 except pixel 
P5 which is under super resolution) have been determined. 
Now,	each	of	these	subpixels	needs	to	be	assigned	a	specific	
location	 in	 an	 array	 of	 pixels,	 the	 size	 of	 the	 array	 being	
determined by the scale factor (as discussed earlier). It is 
obvious that a subpixel nearer to any given neighbouring pixel 
will	 experience	greater	 attractive	 influence	 and	 therefore	 the	
relative	attractive	influence	experienced	by	different	subpixels	
can	be	used	to	assign	them	a	specific	location.	This,	however,	
requires	that	the	attraction	being	experienced	by	each	of	these	
subpixels from the corresponding neighbourhood pixel is to 
be determined. Further, it is easy to estimate this attractive 
influence	as	a	function	of	the	inverse	of	the	distance	between	
the subpixel and any given pixel. Next, for estimating the 
attractive	 influence	 using	 inverse	 Euclidean	 distance,	 two	
definite	 locations	are	needed	namely	 the	 start	 and	 the	finish.	
The start location is always the class/object centre which is 
expected	 to	 exert	 attractive	 influence	on	 the	 subpixels	 being	
super	resolved.	The	finish	location	is	the	subpixel	of	the	array	
on	which	the	attractive	influence	is	being	estimated.	Since	any	
of the neighbourhood pixel can be the class/object centre, each 

of the neighbourhood pixel is assumed to be the class/object 
centre in turn and treated as start location for estimation of the 
attractive	influence.	Now,	to	calculate	the	Euclidean	distance	
between	the	two	locations,	 these	need	to	be	defined	in	terms	
of	 certain	 coordinates.	To	do	 this,	 first	 the	 pixel	 to	 be	 super	
resolved is decided and subdivided into a grid of subpixels 
depending upon the scale factor (in this example, P5 is the 
pixel being super resolved and the scale factor is 5). All the 
subpixels can thus be referred to in the form of their row and 
column coordinates (i.e (1,1), (1,2) etc). Next, the locations 
of	 all	 the	 neighbourhood	 pixels	 are	 also	 defined	 in	 terms	 of	
row and column coordinates of the subpixels of the pixel under 
super resolution. Thus, in Figure 5 (c), the start location in 
respect	of	all	the	corner	pixels	(P1,	P3,	P7,	P9)	are	defined	as	
(1,1), (1,5), (5,1), (5,5). Similarly, the start location in respect of 
all	middle	subpixels	(P2,	P4,	P6,	P8)	are	defined	as	(1,3),	(3,5),	
(5,3), (5,1). In the above computations, the inverse Euclidean 
distance	from	this	class/object	centre	is	defined	as,					

1( )ij
ij

A
d

=              (1)
 
where Euclidean distance is given by, 

2 2( ) ( )ij c cd i x j y= − + −                                 (2)   
where dij is the Euclidean distance, i and j represent row and 
column coordinates of the neighbourhood pixel assumed to 
be start location (class/object centre), xcand yc are the row and 
column coordinates of the the subpixel on which the attractive 
influence	is	being	ascertained

3.2.3. Achieving Super Resolution. 
	 Once	the	attractive	influence	experienced	by	different	
subpixels from each of the neighbourhood pixels has been 
estimated, subpixel locations can be ranked in the order of 
descending	attractive	 influence	and	 these	rankings	are	stored	
for	 their	subsequent	 reference	during	 the	spatial	distribution.	
At this stage, the number of pixels attracted towards each of 
the neighbourhood pixels and the ranking of the attractive 
influence	 experienced	 by	 each	 of	 the	 subpixels	 are	 known.	
It is now assumed that the pixel with the highest abundance 
fraction	 for	 CL-1	 shall	 have	 the	 highest	 attractive	 influence	
on the subpixels, therefore the super resolution is commenced 
with the pixel having the highest abundance fraction. All 
the subpixels getting attracted to this pixel are considered 
first	 and	 assigned	 a	 fixed	 location	 as	 per	 the	 stored	 ranking	
for this pixel. The process is repeated for the pixel having 
the next highest abundance fraction for CL–1 and so on until 
all	 the	pixels	of	 the	clique	have	been	processed.	During	 this	
process,	it	is	ensured	that	the	attractive	influence	experienced	
by any single subpixel from any two neighbourhood pixels 
is never the same. If so, the pixel having higher abundance 
fraction is assigned higher ranking. The advantages of this 
ranking procedure are, the attractiveness values for different 
scale factors can be ranked and stored initially itself and there 
is	no	computational	requirement	at	the	run	time	thus	making	
the super-resolution process faster. It considers subpixels of a 
given class together and hence there is no iterative clustering 
involved and that it considers the fractions of binary class both 
in the pixel being super resolved as well as in the neighbouring 
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clique	pixels;	hence	it	may	be	possible	to	extend	the	method	
for various multi-class problems. 

4. ImPLEmENtAtION OF PrOPOSEd 
tEChNIQUE
The	 implementation	 of	 proposed	 technique	 can	 be	

summarized	in	the	form	of	an	algorithm	as,	
(a) Obtain the image to be super resolved and estimate the 

abundance fractions for various classes/targets using 
spectral	unmixing	or	any	other	technique.

(b) Decide the scale factor for super resolution. Since there 
are no heuristics which guide us on the maximum extent 
to which the input image can be superesolved. This 
judgement is usually based on trial and error through 
experiments	for	a	given	dataset	and	the	definition	of	the	
classes being mapped. In the instant case, scale factor of 
3, 5, 7, 9, and 11 were chosen as they were considered 
sufficient	 to	 give	 adequate	 enhancement	 of	 the	 target	
under study.

(c) Calculate attractiveness for each subpixel towards object/
class centre.

Obtain object/class centre points at a given scale •	
factor	for	all	neighbouring	pixels	in	all	the	cliques.
Calculate •	 Aij using dij	as	given	in	Eqns	(1)	and	(2).
Arrange •	 Aij 

in descending order and store it separately 
for	each	of	the	clique	pixels.	

(d)  Consider the pixel to be super resolved. Obtain abundance 
fraction	 for	 a	 given	 class	 CL-1	 in	 all	 the	 clique	 pixels	
associated with this pixel and calculate the number of 
subpixels	to	be	associated	to	each	of	the	clique	pixels.	

(e)  Commence super resolution,
Commence	super	resolution	starting	with	the	clique	•	
pixel having the highest abundance fraction for any 
given class. 
Recall	 the	 stored	 rankings	 for	 this	 clique	 pixel	•	
estimated at step (c) (iii) and spatially distribute the 
number of subpixels associated with this pixel. 
Repeat	•	 steps (a) to (e) till	all	the	clique	pixels	have	
been considered. In case of any overlap of subpixel 
position at any stage, use the next vacant location. 

5. rESULtS ANd dISCUSSION
5.1 Accuracy of Subpixel target detection in 

Synthetic data 
The	classification	accuracy	and	CPU	time	obtained	for	the	

Synthetic image is given in Table 1. It can be seen from the table 
that	classification	accuracy	achieved	using	inverse	Euclidean	

distance	technique	at	a	scale	factor	of	11	is	as	high	as	82.22%.	
The	 classification	 accuracy	 increases	 marginally	 from	 scale	
factor 3 to scale factor 11 despite the increase in complexity. 
This	 suggests	 that	 the	 technique	 may	 be	 more	 suitable	 at	
higher scale factors. On the other hand, the CPU time taken 
for	the	proposed	technique	increases	only	marginally	with	the	
increase in the scale factor. The near constant CPU time for 
the	Euclidean	 distance	 technique	 across	 all	 the	 scale	 factors	
demonstrates	 the	 effectiveness	 of	 the	 proposed	 technique	 in	
sub-pixel target detection at any given spatial resolution. The 
main	 reason	 for	 this	 higher	 computational	 efficiency	 in	 the	
proposed	technique	is	the	fact	that	or,	it	does	not	involve	any	
iteration	as	 the	attractive	 influence	experienced	by	 subpixels	
for each scale factor is stored ab initio itself and are simply 
recalled at the run time for super resolution process. The targets, 
recovered	using	this	technique	for	the	synthetic	image	(shape	
approximating an aircraft) are shown in Fig. 7. On focusing 
on	 the	 shape	 of	 the	 target	 (i.e.,	 the	 aircraft),	 these	 figures	
depict marginal improvement with increase in scale factors. 
This	suggests	that	there	may	be	improvement	in	classification	
accuracy with increase in scale factor without any substantial 
increase in the CPU time.

Scale 
factor

Proposed technique

Classification accuracy (%) (s) CPU time

3 75.94 09.25
5 81.85 09.25
7 81.65 09.28
9 81.98 09.54
11 82.22 09.59

Table 1. Classification accuracy and efficiency in case of 
synthetic dataset

Figure 7. Super resolved images.

5.2 Subpixel Target Detection in AVIRIS 
In order to further evaluate the performance of the 

technique,	an	AVIRIS	has	been	considered.	The	dataset	consists	
of two aircrafts as targets. First, the abundance fractions 
of each pixel in these images have been obtained using the 
unsupervised spectral unmixing method available as part of 
ENVI software. It is pertinent to point out here that simple 
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LMM is not guaranteed to produce non-negative abundances 
and hence there always exists a requirement of a more robust 
unmixing model such as constrained linear mixing model or a 
nonlinear mixing model may for obtaining an accurate estimate 
of abundance fractions within a mixed pixel. However, for 
reasons of computational simplicity and to maintain the focus 
of the study, simple LMM has been used here. Thereafter, 
the proposed technique has been applied to perform super 
resolution. However, due to non-availability of reference data, 
the super resolved images have been evaluated visually and 
not quantitatively. The super resolved significant increase in 
CPU time. Images of targets detected across different scale 
factors are shown in Fig. 7. As is evident from this figure, 
the proposed inverse Euclidean distance technique produces 
satisfactory results across all scale factors. The reason for 
success of this method lies in the fact that it does not involve 
any iterative convergence and is based on the stored rankings 
of attractiveness values of the super resolved subpixels. The 
major advantage of the proposed technique has been the near 
constant CPU processing time despite increase in scale factor 
or in complexity (i.e synthetic vs AVIRIS data).

6. CONCLUSIONS
Spectral unmixing methods such as linear mixture 

modeling (LMM) are used to recover abundance fractions of 
the components occurring inside a mixed pixel, There are two 
main limitations of LMM. The simple LMM is not guaranteed 
to produce non-negative abundances and hence there always 
exists a requirement of a more robust unmixing model such as 
constrained linear mixing model or a nonlinear mixing model 
may for obtaining an accurate estimate of abundance fractions 
within a mixed pixel. The second limitation of LMM is its 
incapability to provide spatial distribution of the abundance 
fractions within a pixel. These limitations, in particular its 
incapability to provide spatial distribution severely restricts 
the applicability of hyperspectral data for subpixel target 
detection. In this paper, a new inverse Euclidean distance based 
super-resolution technique has been proposed. The technique 
achieves subpixel target detection in hyperspectral images by 
adjusting spatial distribution of abundance fraction within a 
pixel. The experiments have been conducted using synthetic 
as well as AVIRIS dataset. The performance of the proposed 
technique measured in terms of classification accuracy and 
CPU time for both the datasets have been found be satisfactory 
and encouraging. The major advantage of the proposed 
technique has been the near constant CPU processing time 
despite increase in scale factor or in complexity (i.e synthetic 
vs AVIRIS data).Though the technique produces good results, 
one of the limitation of the proposed technique lies in the use 
of a linear Euclidean distance as a measure of attractiveness. 
Future studies may consider the use of a non-linear measure 
for ranking subpixels for spatial distribution, particularly in 
case of multi-class problems. 
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