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1. INTRODUCTION
Sampling expansions usually deal with the issue of 

perfect signal reconstruction from the samples taken in time 
domain using some kind of interpolation or filtering technique 
provided that the sampling rate satisfies some well defined 
criteria1-12. Intimately connected with the sampling rate required 
for perfect reconstruction of signals is the dimensionality and 
support/bandwidth of the signal in the frequency domain1-12. 
The sampling waveform used for sampling operation, which 
is generally assumed to be an ideal impulse-train or ideal 
pulse train for natural sampling2, also matters most. It must, 
however,  be kept in mind that the continuous-time ideal 
impulse function, also known as the Dirac delta function, is an 
idealization and it is not possible to generate it in real life by 
any physical circuit or system1-12. The nonuniform sampling of 
signals and sampling of periodic or random signals are other 
important issues which have been widely investigated in the 
literature1,5.

Most of the sampling theorems deal with signals which are 
band limited or band pass in the conventional Fourier domain 
(CFD). The most widely-known Shannon sampling theorem 
deals with the issue of signal reconstruction using the samples 
of a band limited signal f(t) satisfying the Nyquist condition1-9. 
Further, it is well known that a signal cannot be recovered 
from its samples by performing any linear time-invariant (LTI) 
filtering operation if it is under sampled. However, perfect 
signal reconstruction through nonlinear or time-variant filtering 
is not ruled out either. It may be mentioned here that the real 
life signals are time-limited, and hence, in theory, cannot be 
band limited/band pass in the CFD1-5. It is also known that 
the sampling of band pass signals is more involved than the 
sampling of band limited signals2,10.

Therefore the challenging issues involved in the sampling 
theory are: 

• Reduction in sampling rate below the Nyquist rate 
• Signal reconstruction using nonlinear or time variant sys-

tems 
• Signal reconstruction using samples in domains other 

than the usual time or frequency domains. 
Recently time and frequency domains have been 

generalized to a continuum of domains called as fractional 
Fourier transform (FRFT) and linear canonical transform 
(LCT) domains13-16. The FRFT is characterized by the angle 
parameter α and the FRFT domain with angle α  may be seen 
as the axis at an angle   from the time domain axis6-8. These 
FRFT domains are shown in Fig. 1 for the ease of discussion 
reproduced from13.
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Figure 1. The FRFT domains.

From the Fig.1, it is natural to investigate the signal 
reconstruction issues in the FRFT/LCT domains other than 
the time or CFD. In particular, having a signal reconstruction 
formula in one FRFT/LCT domain using the samples in the 
same or other domain would be desirable. Similarly, signal 
reconstruction in some FRFT/LCT domain using samples 
taken in multiple domains will also crop up in mind. Of course 
the challenging issues discussed earlier continue to attract the 
attention of the researchers in the FRFT/LCT domains also. 
Moreover, it has been shown that the FRFT/LCT domains 
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are specially suited for processing of chirp signals commonly 
encountered in radars/sonars6-8, as chirp signals can be band 
limited	in	some	FRFT/LCT	domains	other	than	the	CFD.	It	is	
worth mentioning here that the area of nonuniform sampling is 
also	equally	connected	here	and	much	remains	to	be	explored	
here	 in	 the	 FRFT/LCT	 domains.	 The	 sampling	 of	 2-D	 and	
higher dimensional signals also need to be investigated in the 
LCT domains although several 1-D sampling theorems have 
been	 derived	 in	 the	 literature	 involving	 the	 FRFT	 and	 LCT	
domains and can be seen in13-28 and the references therein.  

In this paper, authors have provided a brief discussion of 
the recent advances in the Shannon sampling theory related to 
1-D signal reconstruction involving the samples taken below 
the	Nyquist	rate	using	nonlinear/time-variant	systems.	The	ex-
tensions	of	the	sampling	theorems	to	the	FRFT	and	LCT	do-
mains are also discussed.

2. SAmPLINg SChEmES   
The classical Shannon sampling theorem for signals band 

limited in the CFD gives us the minimum sampling rate (often 
called	 the	 Nyquist	 rate)	 required	 to	 reconstruct	 the	 signal	
uniquely	from	its	samples1-12.        

If	the	sampling	rate	is	below	the	Nyquist	rate	(twice	the	
maximum	 frequency	of	 the	 signal)	 or	 the	 signal	 is	 not	 band	
limited in the CFD, aliasing takes place in the CFD and it is not 
possible to recover the original signal from the under sampled 
signal	 by	 performing	 the	 filtering	with	 an	 ideal	 low-pass	 or	
using any other linear time-invariant system1-12. It provides 
us	 the	 following	 reconstruction	 formula	 for	 a	 low-pass	filter	
signal f(t)	band	limited	to	a	frequency B Hz	as1-12 

[ ]sin 2 ( )
( ) ( )

2 ( )n

B t nT
f t f nT
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∞

=−∞
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where T	is	the	sampling	interval.	Sampling	at	half	the	Nyquist	
rate is possible if we sample the analytical signal corresponding 
to a signal as discussed in5. It may however, be noted that the 
analytical signal, which is obtained using the Hilbert transform 
of the signal,  becomes a complex signal even if the original 
signal happens to be a real signal5.

Recently,	an	interesting	and	innovative	sampling	scheme	
for a signal using an ideal impulse-train is proposed by 
Sharma26, et al. The scheme allows signal reconstruction using 
samples	taken	at	a	rate	which	is	less	than	the	Nyquist	rate.	In	
fact this reduction in sampling rate is possible because of the 
use of the linear time-variant system in place of the LTI system 
in the conventional sampling scheme. The following paragraph 
is reproduced from26 for the ease of reference. This scheme 
decomposes a low-pass signal  f(t)	band	limited	to	a	frequency	
B Hz	as26

1 2( ) ( ) ( )f t f t f t= ,                                                          (1)

where the  signals f1(t) and  f2(t) are assumed to be band limited 
to B1 and B2 Hz	respectively.	It	may	be	obtained	from		the	theory	
of conventional Fourier transform  that2,4

1 2B B B= + .                                                                   (2)

The signal f1(t) can be expressed as26 

1 2( ) ( ) / ( )f t f t f t= .                                                       
(3)

The signal f2(t)	 in	 Eqn	 (1)	 can	 be	 taken	 as	 any	
known	 but	 otherwise	 arbitrary	 signal	 band	 limited	 to	 B2 

	Hz.		As	the	signal		f1(t) is band limited to B2 Hz,	it	is	possible	
to reconstruct the signal  f1(t) using samples obtained using the 
ideal	sampling	waveform	shown	in	Fig.	2,	at	the	Nyquist	rate	
of 2B1 samples/second only2. 

This	requires	the	samples	of	f(t) and f2(t) at a rate of 2B1 

samples/second only. Once the signal f1(t) is constructed using 
the ideal sinc interpolation4	technique	(By	passing	the	samples	
of  f1(t) through	an	ideal	low	pass	filter	with	cut-off	frequency 
B1 Hz)	as	given	by

4
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we can obtain the signal f(t) using	Eqn.	(1).	The	whole	scheme	
is reproduced here from26 and is shown in Fig. 3. 

It must also be mentioned that the samples must satisfy 
the condition 2 ( ) 0f nT ≠ ,	a	condition	which	is	not	difficult	to	
be	satisfied	in	practice26. One may further consider the problem 
of reconstruction of f1(t) in terms of decomposition similar to 
(1) at lower rate. So the whole process can be written as26

( ){ }1 2 3( ) ( ) ( ) ( ) .... ( ) ,Nf t f t f t f t f t =                             
(5)

where signals 1( )f t 2 ( )f t 3( )f t ( )Nf t are band limited sig-
nals with bandwidth 1B  2B , …, NB  respectively satisfying  

0

N

i
i

B B
=
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Another scheme applicable only for natural sampling2 is 
given by Sharma & Joshi24.  The natural sampling is known to 
employ	pulses	of	finite	duration	and	is	often	used	in	practice,	
as	the	ideal	impulse-train	sampling	is	unrealizable.	It	is	further	

Figure 2. Ideal impulse-train sampling waveform ( )T td .

Figure  3. reconstruction scheme using a time-variant 
system26.
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replaced	by	flat-top	sampling	for	the	ease	of	circuit	realization2. 
Using	a	slightly	modified	version	of	the	conventional	natural	
sampling	waveform	with	a	specific	width	of	the	pulses	taken,	
it is shown in24 that the sampling rate in the classical Shannon 
sampling theorem can be further reduced by a factor of two. In 
the Sharma-Joshi scheme the sampling is performed using the 
waveform s(t)  shown in Fig. 4, where d  denotes the width of 
the pulses and T stands for the periodic time of the sampling 
waveform. 

The basic philosophy behind the Sharma-Joshi sampling 
scheme	is	to	eliminate	all	the	even	harmonics	and	one	specific	
odd	harmonic	of	the	sampling	frequency	from	the	spectrum	of	
the sampled signal24. This is achieved by taking the alternate 
positive and negative pulses in the sampling waveform and 
by properly selecting the width of the pulses24. This increases 
the gap between two adjacent replicas in the spectrum of the 
sampled signal around the particular odd harmonic that has 
been eliminated by proper selection of the width of the pulses 
in the sampling waveform24. This increased gap in the spectrum 
of the sampled signal can be exploited either for increasing the 
maximum	frequency	of	 the	signal	 to	be	sampled	 for	a	given	
sampling rate, or for reducing the sampling rate by a factor of 
two	for	a	fixed	maximum	frequency	of	the	signal24. 

For the sampling waveform s(t) shown in Fig. 4, the 
Fourier series can be written as24

spectrum will remain intact (no aliasing) around this eliminated 
odd harmonic, and the original signal can be recovered from 
the	 sampled	 signal	 by	 band	 pass	 filtering	 and	 appropriate	
frequency	translations24. 

The signal has been recovered from the undersampled 
signal,	in	the	Sharma-Joshi	scheme,	by	performing	the	filtering	
and	 frequency	 translation	 operation,	 which	 is	 basically	 a	
signal reconstruction from using a linear time-variant (LTV) 
system24.		It	can	be	easily	seen	that	the	required	sampling	rate	
fs for exact signal reconstruction is independent of the order of 
the	odd	harmonic	eliminated	from	Eqn	(8)	and	must	satisfy	the	
condition	given	below:

sf B≥ ,                                                            (9)

where B	is	the	maximum	frequency	of	the	signal	 ( )x t .

3. SAmPLINg IN thE FrFt ANd LCt 
dOmAINS
The	research	related	to	the	FRFT/LCT	has	opened	up	new	

activities	 relating	 to	 the	 signal	 reconstruction	 in	 one	 FRFT/
LCT domain using the samples in the same or other domain, or 
using partial samples in multiple domains17-27. 

Band	 limited	 signals	 and	 their	 sampling	 theorems	 in	
the	FRFT	domains	have	been	 investigated	by	Xia17.	Xia	has	
presented sampling theorems for the class of signals band 
limited	in	the	FRFT	domains.	For	instance,	a	signal f(t) band 
limited	 in	 the	 FRFT	 domains,	 i.e.,	 ( ) 0,F ua =  for u Ba> , 
admits the following sampling expansion17:

2 2(cot ) /2 (cot )( ) /2 ( )( ) ( ) sinc
sin
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B t nTf t e f nT e
∞

− a a a

=−∞
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∑      

            (10)
where the sampling points are nT with sin /T Ba= p a , n ∈
, and sinc( ) sin( ) /x x x= p p .

Candan19, et al. have also derived sampling and series 
expansion	 theorems	 using	 the	 FRFT	 and	 other	 signal	
transforms. Stern21 has derived few sampling relations and 
corollaries for the signals band limited in the LCT domains. 
We	reproduce	here	the	sampling	theorem	for	linear	canonical	
transformed signals for ready reference from21. Let  f(t) be a 
function with a compact support in some LCT domain with 
parameter matrix [ ],  ;  ,  M a b c d=  such that ( ) 0MF u =  for 

Mu B> , where BM is a positive real number. The function  
f(t) can be exactly reconstructed from its sampled version 
at points nt nT= , n ∈  denoted as ( )Tf t , using the signal 
reconstruction formula given below21                               
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uf t T rect f u t
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(11)  

provided the sampling interval T satisfies	the	inequality:

/ MT b B≤ p .                                                              (12)

here Mℜ  and 1
M
−ℜ  denote the forward and inverse LCT operators 

with parameter matrix [ ],  ;  ,  M a b c d=  and determinant
1ad bc− = .	By	interchanging	the	role	of	the	LCT	domain	with	

Figure 4.  Sampling waveform s(t).
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where 0 02 / 2T fω = p = p , and T is the periodic time of the 
sampling waveform. Here due to the alternation symmetry 
in the sampling waveform along the time-axis, all the even 
harmonics ( 2,  4,  6,...n = ) are absent. Now accounting the 
positive and negative pulses in one cycle of the sampling 
waveform, the sampling rate sf  can be written as24 
 02sf f=

             
(7)

Using	Eqn	(6)	in	Eqn	(7),	we	obtain24

                                                 

1, 3, 5,....

4( ) sin sin
4 2
s s

n

nf fs t n t
n=

d
=

p∑
.                          

(8) 

For	a	specific	choice	of	 d , any one of the odd harmonic 
can further be eliminated from the spectrum of the sampled 
signal24. Clearly the higher the order of the harmonic to be 
eliminated, the lower will be the value of d . The shape of the 
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time domain and replacing [ ],  ;  , [ ,  ,  ,  ]a b c d d b c a→ − −  a 
dual	form	of	the	theorem	of	Eqn	(12)	can	also	be	obtained21-22.
Li 22, et al. have provided an alternative proof and a more 
explicit	version	of	Eqn	(11)	as	given	in	the	following	sampling	
theorem. Let signal  f(t) be band limited to BM in the LCT 
domain with parameter matrix [ ],  ;  ,  M a b c d=  and 0b > . 
Then the following sampling expansion for f(t) holds22:

2 2( /2 ) ( /2 ) ( )( ) ( ) sincj a b t j a b t M

n

B t nTf t e f nT e
b

∞
−

=−∞

− =  p 
∑             

            (13)
where / MT b B= p  is the sampling period and  1 / /MT B b= p  
is	called		the	Nyquist	rate	of	sampling	theorem	associated	with	
the LCT. 

In the sampling theorems discussed in this section so far, 
the	signal	in	a	particular	FRFT/LCT	domain	is	reconstructed	
from	 the	 samples	 of	 the	 signal	 in	 the	 same	 FRFT/LCT	
domain. 

Many other sampling theorems involving the signal and 
its	 derivative,	 signal	 and	 its	 generalized	 Hilbert	 transform	
(GHT) have been investigated18. Zayed18, et al. have derived 
several	sampling	expansions	to	reconstruct	the	FRFT	of	a	time	
limited or band limited   signals  in the CFD using samples 
of the signal and its conventional Hilbert transform (CHT), 
each	at	half	the	Nyquist	rate.	For	a	signal	that	is	conventionally	
band limited to B the main sampling relation reads as follows18:

[ ] [ ]{ } [ ]sin ( )
( ) ( ) cos ( ) ( )sin ( )

( )n

t nT
f t f nT t nT f nT t nT

t nT

∞

=−∞

b −
= b − − b −

b −∑ 
       

            
            (14)

where / (2sin )Bb = a , 2 sin /T B= p a , n ∈ , and ( )f ⋅  
denotes the CHT of the signal ( )f ⋅ . 

Cetin20, et al. have also considered the signal reconstruction 
problem	 from	 the	 partial	 FRFT	 domains information of the 
signal using an iterative algorithm based on the method of 
projections onto convex sets (POCS). Of course the charming 
issues discussed in the introduction section continue to attract 
the	attention	of	the	researchers	in	these	FRFT/LCT	domains.	
The main reason which allow the reduction in sampling rate in 
the	FRFT/LCT	domains	can	be	attributed	to	two	facts:	
•  The signal  f(t) is band limited in the CFD as well as 

some LCT domain but the bandwidth/support in the LCT 
domains can be less as compared to support in CFD. This 
is based on the fact that if  f(t) and ( )F ω  are Fourier 
transform pair

       
( ) ( )CFTf t F←→ ω ,

 then the LCT of the signal 2( ) exp( / 2 )f t jat b− will 
have compact support determined from ( / )MF u b , i.e., 
the support of the LCT of the signal will be b times 
the bandwidth of the signal in the CFD,  where b is the 
parameter  of the LCT matrix21,22. Clearly for values of the 
parameters 1b < , the support of LCT of a signal will be 
less than the support in CFD.

•  The signal is not band limited in CFD but is band limited in 
some LCT domain. 

The signal reconstruction in the above two different 
cases can either use samples of the transformed version of the 
original signal or the original signal itself.

As opposed  to some of the  early works in this 
direction17,21,22, Sharma & Joshi24 discuss a more general class 
of signals and also discuss the band pass sampling in the LCT 
domains.	We	reproduce	the	following	theorems21,24. Let a signal 
f(t) whose	FRFT	with	anglea , i.e., ( )F ua is band limited in 
the LCT domain with parameter matrix M to BM  be sampled at 
a rate us,	then	it	admits	the	following	reconstruction	formula:

( )1 11( ) ( )
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M M

M

uf t rect F u
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− −
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where ( )sF ua

	denotes	the	FRFT	with	anglea  of the sampled 
signal,  1−

aF and 1
M
−ℜ 	 denote	 the	 inverse	 FRFT	 and	 inverse	

LCT operators respectively, and 
1   for   ,

( / 2 )
0   otherwise.

M M
M

u
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− Ω ≤ ≤ Ω
Ω = 


.

The sampling rate for perfect signal reconstruction must 
also	satisfy	the	condition	given	below:	

( sin cos ) 2s Mu a b Ba + a ≥ .                                       
(16)

Clearly	the	sampling	rate	in	Eqn	(16)	is	dependent	on	the	pa-
rameters a and b of	the	LCT	and	it	can	be	less	than	the	Nyquist	
rate	for	some	specific	values	of	the	parameters.	The	band	pass	
counterpart of the above  theorem is as follows24:

Let a signal  f(t)	whose	FRFT	with	angle	a , i.e., ( )F ua is 
band pass from BML to BMH in the LCT domain with parameter 
matrix M be sampled at a rate us, then it admits the following 
reconstruction	formula:
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            (17)
where ( ) / 2MC MH MLB B B= + , and 2 /su T= p .	The	required	
sampling rate us	must	satisfy	the	inequalities	given	below	24):

1( sin cos ) 2
1s Mw

ka b u B
N

− a + a ≤  −  , and

( sin cos ) 2s Mw
ka b u B
N

 a + a ≥  
  ,

                              
(18)

where Mw MH MLB B B= −  and /MH Mwk B B=  , k N≥  and N 
is a natural number.

The sampling expansion given by Papoulis8  has also been 
generalized	 for	 FRFT	 and	LCT	domains8,23,28. The signal re-
construction using partial samples in multiple but related LCT 
domains has also been discussed27. It is worth mentioning here 
that the area of nonuniform sampling and sampling of periodic 
signals25	is	also	equally	connected	here	and	much	remains	to	be	
explored	here	in	the	FRFT/LCT	domains.	The	sampling	of	2-D	
and higher dimensional signals also need to be investigated in 
the LCT domains.
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4. CONCLUSIONS
In this paper, the authors have reviewed the recent advances 

in the Shannon sampling theory of 1-D signals involving the 
samples	 taken	below	 the	Nyquist	 rate	using	nonlinear/	 time-
variant systems. The extensions of the sampling theorems to 
the fractional Fourier and Linear canonical transform domains 
are discussed. The sampling theory for 2D signals remains to 
be explored further.
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