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ABSTRACT

In this paper, vibration and damping analyses of glass fibre-reinforced laminated composite
cantilever beams and ;}lates are studied using C! finite element using shear deformation lhepry and also
through experiments. The formulation in the theoretical model includes in-plane and rotary inertia
terms. The governing equations for the complex eigenvalue problem based on complex elastic moduli
are formulated. The solutions are obtained using QR algorithm. Parametric study is carried out to
highlight, the effects of lay-up and ply-angle of the laminates. A limited number of experimental
investigajions on cantilever laminates are conducted for obtaining the natural frequencigs, damping
factor and frequency responses. The comparison between the theoretical and the experimgntal results

i shows good agreement.
1. INTRODUCTION

The activity ang the effbrt in the field of
ﬁbre-reinforced compogites are on the increase for
the laminated construction, and this is mainly'due to
their high‘speciﬂc strength and stiffness. 'The static
and the dynamic analyses of tl‘1e fibre-reinforced
composite material plates are generally carried out
by replacing a laminat?d plate"by a homogenous
orthotrolic material plate. This simplification may
not lead fo the true representation of the
deformationt in the layers because of neglecting
shear deformation due 1o high ratio of the in-plane
Young’s modulus to the transverse shear modulus
for most of the ‘composite materials. 'Hence,
analysis based orf shear deformation theory is
essential for predicling accurate behaviour. Further,
the damping in cor‘nposite materials plays an
important role jn controlling the resonant response

of agrospace structures and thus in prolonging their
service life under repeated loading or impact.
Fibre-reinforced composites, in general, have
higher damping than metals. However, their values
depend on fibre and resin types, fibre orientation,
and stacking sequence. Research on the damping
‘analysis of composites is not so extensive as thmat of
undamped free vibration analysis. Experimental
and analytical efforts based on refined theories and
teliable instruments to characterise the actual
dynamic characteristics of composite laminates are
essential for the designers/engineers in optimising
the structural design.

Considerable research has been carried out
on the vibration and damping of laminated
beams, such as constrained layer/sandwich layer
and it has been reviewed by Nakra' on the topic
dealing with vibration control with viscoelastic
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material. Rao* has extensively dealt with the
dynamics of plates made of isotropic and composite
materials. Some research has also been carried out
on optimum design of viscoelastic damping layer
treatment for beams and plates. The notable
contributions are the studies by'Ylldlz and Stevens’,
Hajela and Lin®, and Marcelin’, et al. Dynamic
response due to forced vibrations of a beam with
constrained damping layer treatment has been
studied by Mead and Markus®, and Roy and
Ganesan’. In all these studies, complex modulus

which consists of a real part representing elatic
stiffness and an imaginary part representing
dissipation, has been widely .used to model the
behaviour of linear viscoelastic materials under
harmonic vibration. Furthermere. all these studies
are based on the classical theory. The investigation
using shear deformation theory is considered by
Moser and Lumassegger'’, He and Rao'!, and
Rikards'2. Imamo and Harrison' pointed out that
the classical theory is not suitable to predict the
system loss factors when the viscoelastic layer has a
considerably lower modulusicompared to the base
and constraining layer moduli or core layer in the
sandwich case. Therefore, it may be necessary to
use a sandwwh beam theory which satisfies
interface stress and displacement continuity with
vanishing shear stress on the top and bottom
surfaces of the beam and is based on higher-order
deformation theory.

Gibson and Plunkett'*, and Gibson'® reviewed
experimental and analytical efforts to characterise
the damping properties of fibre-reingorced
materials. The important contributions are cited
here. The analysis of vibration and damping of
fibre-reinforced composite plate has!been carried
out by Alam and Asnani'®, Malhotra, Ganesan and
Veluswami'’, and Koo and Lee‘8 Alam and Asnani
employed solution in the form of series summatjon,
and the finite element procedure was adopted by

_Malhotra, Ganesan and Veluswami”, and Koo and
Lee'®. Shiau, et al.'® recently investigated the
dynamic response and stability characteristics of
rotating composite blades with frictional damping.

In the present study, vibration and dam;;ing
analyses of glass fibre-reinforced laminated

326

composite beams and plates are studied employing
finite element based on shear deformation theory,
as outlined by Beakou and Touratier’. . The
formulation in the theoretical model mcludes
in-plane and rotary inertia terms. The governing
equations are solved ysing standard eigenvalue
approach. Numerical it'westigations, considering
cantilever laminated beams and pla‘es, are carried
out to bring out the influences of different
parameters. Some experimental studies on the
laminates are also conducted for obtaining the
natural frequenties, damping facter and frequency
responses. A good correlation betwegn numerical
and experimental results is estab\ishe‘ﬁ.

2. FORMULATION l

A ldminated composite plate is considered with
the ‘coordinates x, y along the in-plane directions
and z along the thickness direction, refpectively
Using formulation based on shear flexible theory,
the displacements in K" layger u® y® anl w® ata
point (x, y, z) from the median surface are expressed
as functions of mid-plane displdcement u, v, w and
independent rotation 0, and 6, of normal in xz and

yz planes, respectively, as '

u®? (x,y,2,1) = 4(x,y, 1)—z20w 1 0x +[f, (2)+ g (2)]
@w/ax+e }+gi (2)(ow /3y +0 )

v (x,y,2,1) = v(x,y.t) 720w 10y +g5" () (0w 10
1 +9k]+Lf2 (2) +g‘” (2)){ow /0y +6 )
“"(x Y.t =w(x,y,1) | (0

where ¢t is the time. The functions involved in
Eqn (1) for defining the kinematics are as follows:

f,(2) =h/n sin (rz/h) =h/ 7 b cos(nz/h)
£,(2)" =hiz sin (nz/h) ~hInb,, cos(nz/h)
g (@ =a® z+dV, i=1213,4,k=12,3.... Ny

where N is the number of layers of the multilayered
structure, A is the total thickness of the laminate, ©
is equal to 8.141592, and bus, bss, a®,d® are
coefficients to be determined from contact
conditions for displacements and stresses between
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the layers and from the‘boundhry conditions on the
top and bottom surfages of the plate. The details of
the derivations of these ¢oefficients are presented
by Beakou and Touratjer?’.

The linear strains in tetms 'of mid- -plane
deformation can be written as ;

- )

e} =4
l (0} 3

Y

The mid-plane strains {g°}, ben(ding strains (due to
lower and hrgher-order terms involved in defining
the kmematlcs Eqn (1)), {x}, {®} and shear strains
{y°} in Egn (3) are written as

{ Ou/ Ox ‘ ‘ azw/ax
{e°Y=1 ov/dy l=— 8'widy?
](ls /Oy +0v 0x | ‘ 232 w /Ox0y
‘By? Jox
(0} = Pr2 10y y° }_"y, _[owiox+0,
\ayl /8y ol ow/dy+0, |
Byy /ox, @)

If [{N} represents the membrane stress
resultants (N, N,,, Ny) and {M}, {M3}, represent
the bending stress(resultants due to lower and
higher-order terms involved :in deﬁning the
kinematics [(M,, ,y) (Mn,M M )], one
can relate | these to membrane strams {e }+ and

bending strhins [{y}, {®}] through the conistitutive
relations as | !

(N} = [Al{e®}+[B] {x} +{E}}
My £ B (6°)+101 )+ Bl
(M} = [E)" (e°}+1BY {x}+[Dl{w} )
. Similarly, the tranvarse shear stress resultants
{Q} representing the quantities (Q., Q,}) are
related to the transyerse strains {y°} throug‘h the
constitutive relation|as

() = A1)

The different matrices involved in Eqns (5) and
(6) are defined by Beakou and Touratier®.

For a composite laminate of layer thickness
(k=1,2,3..), and the ply-angle ¢; (k = 1,2,3..), the
necessary expressions for computing the stiffness
coefficients, available in the literature ?' are used.
For the damping analysis, the complex moduli of an
orthotropic material are defined, according to the
elastic- vrscoelastlc correspondence principle, as
follows: !

E} = E} +iE! |E} =E? +iE., E} =E" +iE},
Gy, = G}, +iG,, G, =G, +iG},, Gy, =GR +iGL, ()

' Here, E” and G" are Young’s modulus and shear
modulus, respectively. The subscript 1 denotes
longitudinal direction, whereas subscripts 2 and 3
refer to the transverse directions, wrt the fibres. The
superscripts R and I denote the real and imaginary
parts of the complex moduli. The material loss
factors 7y, N2 M3 under tension-compression and
M2, M23, N3 under shear are defined as

n, = E//Ef,n, =E; | E{, n,=E} | E¥,
N, =Gy /Gﬁ’nzs =G, /G, ‘n)ls =G|, e 8)

The total potential enérgy functional U
consisting of energy stored in the plate is given by:

U(d) = i [ (ANT" £} +[M]" {3} +[M]" {0} +

(01" {y°})dA + j (fiw” dA )

where & is the vector of the degrees-of-freedom
(DOFs) associated to the displacement field in a
finite element discretisation and f is the force
actmg on the structure.

The kinetic energy of the plate is written as

T®) =~ j ( jpr[u“’ W

~hiZ

[ v® w0 ]dz) dA
(10)
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where the dot over the variable denotes the partial
derivative wrt timé and p is the mass density.

Substituting Eqns (9) and (10) in Lagrange’s
equation of motion, one obtains the governing
equation for the vibration of the beam structure as

[M] {8} + [K1{8) = {F} an

f
where [M] is the consistent mass matrix, [K] the
structural stiffness matrix of the laminate which is a
complex matrix, and {F} is the load vector.

The eigenvalues for the damped structure can
be determined from Eqn (11) by letting {F} equal to
zero for the free vibrations.

[M] 8} + [K1{8}'= {0} (12)

The complex e;genvalues of the form A¥ =
AR+ il ) = (0*)%, where ©* = & +ia ) are
obtained for Eqn (12) employing/QR algorithm. The
resonance frequencies © and the system loss factors
n are calculated from the elgenvalues as

o=0%=A%"2 n=A /AR (13)”

Once the natural/resonance frequencies are
obtained, the structure is excited around the natural

frequencies so as to obtain the response of the
structure from the equation.

[ (K1 - o} (1] 8) = (F (14)

where @r is the harmonic d)rcing frequency.
¥

|
!

3. ELEMENT DESCRIPTION

The eight-noded element used here is pased on
Hermite cublcz function for transverse
displacement (w),according to the C' continuity
requlr‘ement Serendipity quadratic function for the
in-plane Wdisplacements u, v and rotatiops 6, , 9,.
Further, the element needs elght nodal DOFs (u, v,
w, Ow/Ox, Owl/dy, azw/axay, 0,, 0,) for 'all corner
nodes and four DOFs (u, v, 6}, 0,) for the mid-node
of all four sides. The element i is developed based on
new kinematics as given in Eqn ’(l) which accounts
for interlayer continuity for displacements and
transverse shear stresses of the laminate. The
element behaves very well for, both thick and thin
situations. It has no spuripus mode and is
represented by correct rigid body niodes.

4. RESULTS & DISCUSSION i

There is no n?ed of using shear correction
factor here, as the ﬂransverse strain is represented
by cosine functlon which is of higher order in
nature. Based on prpgressxve mesh refinement, 16
elements idealisation and 8 x 8 grlq size arg found
to be adequate to model the laminated beams and
plates, respectively, for the ﬂexural/bendmg

Table 1. Comparison of flexural frequencr&es and loss factors of snmply-supported sandwich beams

Frequency ‘o’

hy/hy G Core Mode

N/Mm? N Present

865

5.50 E 06 2 2560

3 5215

1646

.00 E 08 2 5244

3 9672

1101

2.50 E 08 2 3623

7705

1592

7 2.50 E 07 2 5266

10304
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Loss 'factor n’

(rad/s) ‘

Analytica}l23 Present Analytical23
878 0.4954 0.50
2458 - 0.3212 0.34
4927 0.1927 0.20
1643 0.1220 ‘ 0.11
5456 0.3320 0.31

" 9877 0.4629, 0.45
1106 0.3204 - 0.32
3481 0.19‘22' 0.20
7300 0.1096 0.11
1581 0.1134 ! 0.10
5357 0.2714 0.26
10187 0.3207 032
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Tall)le 2. Nptural frequencies and loss factors for cantilever cross-ply.laminated plates (90° /0° /90°.....)
Frequencies (o)(Hz)/Loss factors (1)
I::;'e:): Mudcf 7 Mode 2 "Mode 3 Mode 4
) m x 1073 wy N, x 10 ®3 n3 x 10° 04 ne x 107
2 80.6r R 4910 187.09 9.4329 501.00 5.4859 713.77 6.41567
4 91.34 3.5161 | 1 197.22 8.7144 566.49 3.5499 747.76 6.60910
6 93611 ' 3.2274 199.80 8.5973 580.46 3.2650 761.20 6.38490
8 94.52 I 3.1307 200.95 ‘ 8.5573 586.06 3.1702 766.86 6.30900
10 94.99 3.0868 201.60 8.5389 588.99 3.1269 769.91 6.27430

i
damping analysis. Thus, the present formulation
can be verified numerically by. comparing the
results based on different models, which are used
for studying the thin and thick laminates. Before
proceeding for the detailed analysis, flexural
frequencies and the damping/loss factors obtained
for sandwich beam are compared in Table 1 and
they are lfound to be in good agreement with the
available analytical/numerical’ solutions'®, ‘The
matenalslconsndered hete are?’:

GFRP (Glags/DX-210):
Ef=10.90 GPa, E” 10.90 GpA G= 4.91 GPa,
GR = 491 GPa, Gj= 4.91 GPa via = 0.30,
M = 13;8465 x ‘104 M2 =T = M2 = M2 = M3
= 0.208}p 1870 kg/m*
where Vi, p are Ponss,on s rfatio and mass density,
respectively. )

H® = 3778 GPa,

The, geometry df the cantilever laminates
assumed Pere are given as

Beam: Length (a) = 300 mm; breadth (b) =
37 mm,; thickness (h)‘ 03 mm

Plate: Length (a) = 200 mm; breadth (b) =
180 mm; thickness (h) % 06 mm
| b
i i

Table 3. Inﬂuﬁnce of ply-angle of: 11-1ayel‘ed cantilever
laminated plate (6°/- 6°/ 0°/0°....) |
i

Frequencies (0)(Hz)/Loss factcirs (n)(x10'°°l)
Mo?e 1 Mode 2 Modé 3 Mode 4
|

O3 N3 4 N4

(deg) ™ W N

90 80.68 2.?8 197.35 2.08 546.73 2.08 738.21 2.08
i

45  80.39 2.08 256.91 2.G8 485.94 2.08 787.27 2.08

30 $7.77 2.08 253.35 2.08 583.71 2.08 724.82 2.08

15 112,90 2.08 231.09 2.08 627.47 2.08 715.2632.08

{
. Numerical Results

Free vibrati?n analysis of cross-ply cantilever
laminated plate is carried out and the results are
shown in Table 2 varying the number of layers in
the laminate. It is seen from Table 2 that the effect
of number of layers is to increase the frequency
values and to reduce the damping/loss factor of the
structures. Further study is made considering a
laminate with 11 layers to highlight the influence of
ply-angle and the results are tabulated in Table 3. It
can be concluded from' Table 3 that the ply-angle
can significantly alter the frequency values, and this
is due to the directional stiffne.-%s provided by the
anisotropic properties in the multilayered laminate.

|
Table 4(a). Comparison of theoretigal and experimental
results for free vibrations of 11-layered cross-ply

cantilever plate (90°/ 0°/90°!....)
Frequencies Theoretical Experimental
(o) (Hz) l (Hz)
' 88.0 88.0
©, 197.3 184.0 *
w3 546.3 -
Wy 728.5 , -

Table 4(b). Comparison of theoretical and experimental
results for free vibrations of 11-layered cross-ply
cantilever beam (90°/ 0°/90°.....)

! Frequencies Theoretical | Experimental
(@) (Hz) (Hz)
o 17.22 17.0
®, + 107.85 96.0
o 236.63
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4.2 General Experimental Setup

The experimental setup is accomplish?d by
setting a bench—vice on a rigid mounting table to
simulate the boundary condition of one side
clamped and other sides free. The vice is mounted
rigidly onto the mounting table with the help of a
steel channel. The equipment required for the tests

include a dynamic si;gnal analy?er, two sets of
tunable bandpass filters, two ‘sets of signal
conditioning ampliﬁelrs, a frequencygrontrol meter
and power amplifier, an electromagnetic shaker,
one acceierometer and force transducer, and an
impact hammer with necessary standard cables. The
v‘ice'and thellayout of the instrumebts are planned

.

Y 'l, ‘
STRUCTURE (
- £7\ - |

{

7

EXCITER

! TABLE UMT |
ITITTT 77T 777777777
. BANDPASS CONBITIONING BANDPASS CONDITIONING
FILTER AMPLIFIER FILTER AMPLIFIER
o o o O c o o o
O O oLo
00 QO 1100
! | I
EXCITER CONTROL H '
UNIT POWER '
AMPLIFIER
L] o o
OO0 :
0O 9O6 o o
}
POWER T '
SUPPLY [
' i
I
]
e ?
SIGNAL 000 $ !
ANALYSER 00O |
QLY ’ ,
e 000©@0 0 00 O Cl) CHANNELS .

Figure 1. General schematic experimental setup
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so as to enable easy lrecording of measurements as
shown in the schematic diagram (Fig. 1). Based on
the calibratipn charts, settings of various
instruments 'are initialised before proceeding the
experiment..‘A photograph showing the actual
experimenta} layout containing the amplifiers,
filters and the analyser and the setup ready for
vibration tests is shpv&n in Fig. 2.

4.3 Experimental Setyp for Laminated
Plate/Beam i

. ;

Here, an instrumented hammer is readied by
assembling all cc‘>mp‘0nents of the hammer. The
other required instruments like cohditioning
amplifier, filters, cz?bles, accelerometers, etc. are
placed in position. All the measuring instruments
are connected using standard cables. The analyser
used is Hewlett Packard dynam.ic signal analyser.
The measuring accelerometer is placed on the top of
the mounted composli‘te laminates at the centre.
With ti}e help of instrumented hammer, small
impact is given to the bearp/plate on the top surface

- AT R RS i e

)
Figure 2. Actual experimental layout

and then the measured time response characteristics
are fed to the dypamic signal analyser for obtaining
the natural frequencies. The consistency of the
results is ensured by repeating the experimental
procedure, i.e., by striking the laminate at a number
of points marked on it. The mode shape of the
laminate is then obtained by impacting (same
amount of force) at different marked 'points on the
laminate using the impact hammer and then
recording the frequency response behaviour at the
centre of the laminate. Finally, the frequency
response due to the forced excitation, by means of
placing an electromagnetic shaker below the
laminate at centre of the free end of the beam/plate,
is obtained. Further, for forced response
measurement, the shaker is kept in contact with the
laminate at the free end.

4.4 Experimental Results & their Comparisons

The cross-ply laminates (GFRP) with 11 layers
(90°/0°/90°/...... ), as test specimens, are made.
The natural frequencies obtained for the laminates
(béam and ' plates) from the experiment are
compared in Table 4 with those of theoretical model
preéented. It can be observed from this table that the
resujJts are in.good agreement. The little
discrepancy in the results may be attributed to the
possible variation in the material properties

(assumed for numerical study and that of actual

laminates used for experiment), and to a lesser
extent in simulating the boundary conditions in
experiment. .

The frequency responges are studied for
laminated plate through experiment and theoretical
investigations. A force of 1.6421 N is applied at the
centre of the free end of plate'and the response is
measured at the centre of the laminate and depicted
in Fig. 3. Furthermore, the response of the
laminated plate is recorded for the range of
frequencies, around fundamental frequency. Using
half-power point mcthod, the values of the damping
factors arc calculated from the experimental
response shown in Fig. 3. Introducing the damping
factor obtained from experimental response, the

frequency response characteristics is evaluated
} |
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20E-04 - FORCE OF 1.621 N AT THE CENTRE OF
FREE END AND RESPONSE MEASURED AT
THE CENTRE OF THE LAMINATED PLATE
1.00E-04 - T
T 8.00E-05 - e
= THEORETICAL 2| :
pd W i i
= B
& 6.00E-05 1 A B (it
< [[rte
z l
7
O 4.00E-05 - ll |
A
[
e | A
200E-05 1 £y pERIMENTAL 1
!
0.00E+00 . ; . —

0 20 40 60 80 100

FREQUENCY (Hz) !

Figure 3. Frequency response of laminated cantilever 11-
layered plate.

theoretically using Eqn (14) and is presented along
with experimental response ih Fig. 13. The
behaviours predicted (by experimental and
theoretical work), are qualitatively similar and the
displacement at resonance agrees very well.
However, the variation in the results may possibly
be attributed to the difficulty in ensuring the
simulation of the exact boundary conditions (the
shaker, which is used for excitation, is physically in
contact with the laminate at the free end).

The frequency response of laminated beam,
consisting of 1l-layered cross-ply one, obtained
from experiment is demonstrated in Fig. 4. The first
peak in the response, which is predominant,
corresponds to the fundamental frequency (17 Hz)

and second peak is near the second natural mode
(96 Hz) of the beam.

5. CONCLUSIONS

The vibration and damping analyses of
laminated cross-ply beams and plates are studied
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Fignred. Frequency ! response of laminated cat‘ltilever 11-
i

layered beam. I
through theoretical and experime}ltal studies of
models. The theoretical study, is made using finite
element procedure utilising shear deformation
theory. Some experimental studies are also carried
out. The following conclusions can be made from
this investigation: '

The ply-angle in a layered laminate affects the
behaviour of the laminate by.increasing the free
vibration frequencies as the angle is decreased.
The change in ply-angle does not affect the loss
factor for, the modes studied.

e 'The overall response behaviour predicted by
theory and! that obtained by experimental
investigations are qualjta%ively similar.

A good correlation is obsg¢rved between
theoretical and experimental values for free
vibration frequencies and displacements for the
first mode of vibration for the laminates.

'

1]
The discrepancies in results for certain cases of
plates and beams could pe attributed to variations
in material properties jand difficulties in
simulating, precise and exact boundary
conditions.
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