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This paper deals witﬁ anew 48-degrees-of-freedom rectangular finite element for analysing

r moderately thick, multilayered composite plates. The formulation is based on a kinematics
which allows one to exactly ensure the continuity ¢onditions for the displacements, and the
transverse strgsses at the interfaces between the layers of a laminated structure and zero
stress conditians at the top and bottom surfaces of the plate. The shear correction factors
are not requir¢d in the formulation, as the transverse shear deformations are defined using
trigonometric functions that are of higher order. The effectiveness of the element is tested
against standard problems concerning statics, vibration and buckling, for which exact three-
dimensional/numerical solutions are;available.

1. INTRODiJCTIle

The increased use of fibre-reinforced composites
as structural rlnémbers in aerospace, nuclear and
marine engineeriing has resulted in several studies,
such as structural modelling, failure and damage
assessment of composite materials. The research
in these areas is increasin g for the past few decades.
Owing to the difficultigs in obtaining the solution
of three-dimensional problems with general
boundary conditions, there,is a growing appreciation
of the importance of deyeloping some approximate
two-dimensional theories and the solutions. Since
the solutions based, onanalytical methods are not
always feasible, numerical procedures like finite
element method .are preferred.

Many of the existing methods of analyses for
multilayered anisotropic plates are direct extensions

of those developed éarlier for homogeneous isotropic
and orthotropic plates and employ a displacement
field which does not satisfy continuity requirements
at the interfaces of the composite laminates.
Exhaustive overviews on this topic can be found
from the work of Noor and Buron', and Kapania
and Racita®. A refined computational model has
been presented by Reddy’. Many higher order
shear deformation theories*¢ have been proposed
for achieving the continuity requirement at the
interfaces and satisfying the stress conditions at
the top and bottom surfaces. Recently, an efficient
plate theory based on a new kinematics utilising
trigonometric functions has been outlined by Touratier”.

The aim of the present work is to develop a
new eight-noded rectangular plate element for the
analysis of composite laminates based on the
theory proposed by Touratier, incorporating the

Revised 26 July 1999

317



DEF SCI J, VOL 50, NO 3, JULY 2000

following features

(a) A higher-order shear deformation distributions
using trigonometric functions without shear
correction factors

(b) Inter-layer continuity conditions on displacement
and transverse stresses, and vanishing transverse
shear stresses at the top and bottom surfaces
of the laminate

(c) Finite element model utilising five-independent-
generalised displacements (three displacements
and two rotations)

The shape functions employed here are Hermitian
cubic interpolation for the transverse normal
displacement and Serendipity quadratic functions
for in-plane displacements ind rotations. The
performance of the element is evaluated through
numerical experiments considering several
problems related to statics, and vibration and
buckling for which exact three-dimensional analytical
solutions are available in the literature.

2. LAMINATED PLATE THEORY

A laminated composite plate is considered with
the coordinates x, y along the in-plane directions
and z along the thitkness direction, respectively.
Using formulation based on shear flexible theory,
the displacements in &* layer u®, v® and w™® at
a point (x, y, z) from the median surface are
expressed as functions of mid-plane displacement
u, v, w and independent rotation 6 and Hy of
normal in xz and yz planes, respectively as

u®(x,y,z,t) = u (x,y,t) — zdw/dx + (2
¥ g M) Iw/Ix+q, +g,® (2)

{ﬁw/ﬁy+6’y}
'“'k‘](x,y,: 1) = vi{x,y,t) — z0w/ 3y + 83“"(:)
[Ow!ox+ 6, ]+ [/7 (z)+ gi“(:)]

-4 Bl

JLc?wlﬁy-*-HyJi
wh (xy,z,t) = w (x,,10) (1

where ¢t is the time. The functions involved in
Eqn (1) for defining the kinematics are as follows:
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f1(@) = Wn sin (mz/h) ~ (W/n)b,, cos (mz/h)
f(2) = Wx sin (mz/h) - (Wn)b,, cos (nz/h)
g¥=a® z+d®,i=1,2,3,4;k=12,3,. N (2)

where N is the number of layer's of the multilayered
structure, & i the total thjckness of the laminate,
7 is equal to 3.141592y and b,, b,, a®, d® are
coefficients to bedetermined from contact conditions
for displacements and strgsses between the layers
and from the boundary cgnditions on the top and
bottom surfaces of the plate. The details of these
coefficients can be found from the work of Touratier’,
and Beakou and Touratier®.

'

The linear strains in terms of mid-plane deformation
can be written as

(3)

The mid-plane straihs {e°}, bending strains
{x},{o} {due to lower' and highel order terms
involved in defining the kinematics, Eqn (1)}, and
shear strains {»*}in Eqn (3) are writ{ten as

r P N
ﬁ /o Pw/
) { )
{;:' } — | & "‘{Z}=— Fwil
(&) /x) |
; ,“’ /2 ' /{)\1 ) " N
{a)}:f?‘),/fﬂ L0 :j}]LkJ(%//,?\qpaxl
sy I T sy e, [ @
(:"L) / K

If {N} represents the membrane stress résultants
(N, N, N, )and {M},{ M} represent the bending
stress. resultants due to lower and higher-order
terms involved in defining the kin(ematics
[M_ M M) (M,, M, 1\71”)]‘, one cap relate
these to membrand strains {€°} and bending strains
{x},{o} through 'the constitutive relations as

a1
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-1 () i) ®

{M}=(E] {e*}+ (BT {x} + D{o}

Similarly, the transverse shear stress resultants
{Q} représenting the quantities (Q,,, Q) are related
to the tral’nsverse {7°} strains through the constitutive

relation as ,

[ ¢ (11,00
HLJ;:L*]J‘W’ { (6)

The different matrices involved in Eqns’ (5)
and (6) are defined :{s follows: .

h/2

{B}=| #0,]

L=

-h72 ¢

h/2

{E}=J Vf\‘ 4’] [, ;;:f;'

-h/2

n?2 }

{py=| =[0,]a (7)

~h/2

h2 ,
- 1,
:L/r;ﬂ[() | dz

L= J

Zh2

h/2

-h/2

h/2 ]
" VIOV ds
)= | (el [o]lre)d:

hi2 |

The matrices Y(z) and Z(z) are given as

F /v &Y%

Y =
OF " aWia - o ixr &P 10

fi+g 0 o g
Z(z)= 0 fi+g g¥ 0
g g fi+gM fived

' t
For a composite laminate of thickness (%), consisting
of N layers with stacking angle ¢(k=1,2,3....,.N)
the layer thickness (h'k) the necessary expressions
for computing the reduced stiffness coefficients of
([Q,1, [Q]) available in the lite{*ature% are used
here. '

8)

[
The total potential energy functional (U) consisting
of energy stored in the plate is given by:

. : ®)

1 v14 § ¢ y ' I v
:*%;\1’1 ‘LL.’J: rL(/J i/ Jai:11 | (w f)aA

where & is the vector of the degrees-of-freedom
(DOFs) associated with the displacement field in
a finite element discretisation. fis the distributed
force.

The kinetic energy of the plate is written as

b
h/2

J. /17‘11‘ Yy !t

~h/2
|

T(o)=

S

(10)

where the dot over the variable denotes the partial
derivative wrt time and p is the mass density.

The potential energy due to external in-plane
force, N °in x direction is written as

W(é‘):—g N?[ow/ ] dA (11)

Substituting the Eqns (9) - (11) in Lagrange's
equation of motion, one obtains the governing
equation of the plate as
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M8} +((K]+[Ks ) {S} {F 2

where [M] is the consistent mass matrix; [K] and
[K,] are the structural stiffness and the geometric
stiffness matrices, respectively; and {F} is the
load vector.

The coefficient in the stiffness and mass matrices
can be rewritten as the product of term having
thickness coordinate z alone and the term containing
x and y. In the present study, while performing the
integration for the evaluation of the stiffness and
mass coefficients, terms having thickness coordinate
z are explicitly integrated, whereas the terms
containing x and y are evaluated using full integration
with 4 x 4 points Gauss integration rule.

3 ELEMENT DESCRIPTION

The eight-noded rectangilar element used here
is based on Hermite cubic function for transverse
displacement, w according to the C' continuity
requirement, Sérendipity quadratic function for the
in-plane displacements u, v and rotations &, 6.
Further, the element needs eight nodal DOFs

(u, v, w, Ow/dx, dwldy, 3'w/dx3y, 0, 6) for
all corner nodes and 4-DOFs (u, v, 0, By) for the
mid-node of all four sides.

4 RESULTS & DISCUSSION

Before proceeding for the detailed numerical
computations, the element developed here has been
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Figure 1. Variation of maximum deflection With aspect ratio
for the simply supported isotropic square plz’te under
uniform load (q,).

MAXIMUM DEFLECTION (W)
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tested for rank deﬁcienC)", and is found to be having
proper rank (five zero ei genva‘lues-no spurious mode).
Further, based,on progressive mesh refinement,
4 x 4 mesh' idcalisation is adequate to model the
quarter plate for the analyses considered here.
The element Is also checked for shear locking
phenomenon consider'né an isotropic simply
supported square plate with distributed loading,
and the results are shown in Fig. 1. The figure
shows that the element is free from locking syndrome.
The aim of the present investigdtion is to see the
efficacy of the formulation of the new element for
the statics, and vibration and bUCkImg analyses of
laminated composite plates. As such, problems
for which exact solutiond availabie in the literature
are considered here. The simply supported boundary
condition assumed here is'given as '

v=w=0=0w/0y=0 at x=0,a
u=w=6=0w/dx=0 at y=0,b

4.1 Static Analysis

4. Simply Supported Symmetric Saphdwich
Square Plate under Uniform Loading

' The geomeltrical parameters usdd here are assumed
as a & b =1 m, thickness of the opter layer and
cqre or mlddle’layer are 0.01 mand 0.08 m, respectively.

The material properties Tf the core or middle layer
are:

E, 3.4156 GPa, E, .793ll GPa, G,,=1.0 GPa,
G =0.608 GPa, G, 1.015 GPa, 7,,=0.44

The properties of the skin or the oyter layers
can be obtained using the modular ratio C that is
defined as the ratio of moduln of skin to core of
the laminate. By varying the modular ra}lo C (=1,
10, 15, 50), one can achieve a homogenous brthotropic
plate (C=1)to a‘fairly sandwich-like plat'e (C=50).
The values for the normalised transverse displacement
(W) are comparéd with the exact three-dimensional
analytical solution of Srinivas and Rao'® and the
numerical solut}ons obtained using 20420 mesh in
standard software (ABAQUS, ANSYS& in Tablel.
It is evident that the present results are in agreement
with those of the exact analytical solutions.
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4.12 Simply Supporfed Unsymmetric Sandwich
Sguare Plate under Uniform Loading

The geonietrical parameters used here are assumed
as a = b = 1 m; thickness of the bottom, top and
middle layers are 0.03 m, 0 01 m and '0.06 m,
respectively. The mdterial propertles of the core

Table 1. Nondimensional central déﬂection, W [=w(a/2,b/2,
0)G,,(2)/(hq )] of a simply suﬁ)ported symmetric three-
layered square sandwich plalte under uniform load, ¢,

Modular ratio ()

l,ul‘}mi’:, solution
T A T3 A i o1 2 - .
lem,(ABAQUSY 181.36 35.83 B9

| .e 09
STIF91-Elem.(ANSYS) 181.31 35.83 24.89

Gu(2)-Sllear modulus, of core

i
Table 2. Nondimensiénal central deflection, W [=w(a/2,b/
2,0)Gu(2)/(hzo)| of a simply supported unsymmetric
three-layered quare sandwich plate under uniform
lo?d’ q, ’

Modplar ratio
c=jl0

i —
Present
Elasticity solution’
S8R-Elem.(ABAQUS)
STlF9lelem (ANSYS)

G,,(2)-Shear modulus of core

Table 3. Nond‘umens:onal ce?ltral deflection, W** [=w(a/2,b/
2,00k’ E, Na'q) x}100] of a simply supported
| symmetrlc three-layered cross-ply rectangular
laminate under doubly sinusiodal load, lq, sfln (nx/

a) sin (ny/b))

alh 1 H 20 ) Hf\f)

Present

Elasticity solution®

IMENT OF COMPOSITE LAMINATES

are same as above. The value of C is assumed as
10. The results evaluated for W are shown along
with the exact three-dimensional analytical'® and
numerical solutions using 20 x 20 mesh in standard
software (ABAQUS, ANSYS) in Table 2. It-can
be noted that the present results are in agreement
with those of the exact analytical solutions.

4 3 Simply Supported Symmetric Three-Layered
Cross-Ply Rectangular Laminate (0°/90°/0°)
under Doubly Sinusoida:l Loading

* The geometrical parameters used are taken as
a=1m, b =3 m; thickness of the laminate is
varied as 0.25 m, 0.1 m, 0.05 m and 0.01 m. All
layers are assumed to be of equal thickness.

The material properties assumed here are:
E= 25 GPa, E,=1.0 GPa, , G = 0.5 GPa, G =
0.5 GPa, G,,= 0.25 GPa, y,,= 0.25

Table 3 depicts the comparison of the present
results for different thickness ratios (a/h) with the
exact three-dimensional solution of Pagano'' and
they are in agreement.

4.'2 FREE VIBRATION ANALYSIS

4.2. Vibration of Simply Supported Square
Sandwich Plates

' The data for geometry and material are assumed

to be same as those for static analysis, case 4.1.1.
The fundamental frequency parameter (Q2) calculated
here by varying the modular ratip C (=1, 2, 5, 10,
and 15) is reported in Table 4 along with those of
exact three-dimensional values of Srinivas and Rao'
and the numerical solutions using standard software
(ABAQUS and ANSYS). This table shows that
the present results are in good agreement with the
exact solutions. !

Table 4. Nondimen’sional fundamental frequency, Q [= o (p/h¥/C,,(2)]'?) of a simply supported symmetric three-layered square

sandwich plate

Modular ratio (C)

5 10 15
Present 0.047410 0.057031 0.077144 0.098103 0.112037
Elasticity solution’ 0.047419 0.057041 0.077146 0.098104 0.112034
S8R-Elem,(ABAQUS) -0.047397 0.057311 0.079578 0.106485 0.127743
STIF 91-Elem.(ANSYS) 0.047752 0.057731 0.080143  0.107226 0.128623

C,,(2)-Stiffness coefficicnt of co?c
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4.2.2 Vibration of Simply Supported Anti-
Symmetric Cross-Ply Square Plates

All layers are assumed to be of equal thickness.
The material properties considered here are:

E,=40 GPa, E;=1.0 GPa, , G,=0.6 GPa, G,,=0.6
GPa, G,,=0.5 GPa, y,,=0.25 |

The free vibration analysis is carried out considering
the different values for thickness ratio (a/h) and
varying the number of layers 'and the results are
presented in Table 5 along with the exact analytical
results based on two-dimensional third-order shear
deformation theory'? (TSDT). This table shows
that the frequency values obtained here are in
good agreement with the existing results.

Table 5. Nondimensional fundamental frequency, Q°
[ = o(p/E,)\*a’/k] of a simply supported anti-

symmetric cross-ply square laminate |

TSDT®

a’h Layers (N) Present

10

100

* First-order theory

4.3 BUCKLING ANALYSIS

43.1 Buckling of Simply Supported Square
Sandwich Plates

The data for geometry and material are the
same as those given for static analysis, case 4.1.1.
The buckling parameter, N is evaluated using
the present formulation by varying the modular
ratio C (=1, 2, 5, 10, and 15). The results are
described in Table 6 along with those of exact
three-dimensional values of Srinivas and Rao and

Table 6. Nondimensional critical buckling load, N°

[=N_/A,) (12/n*)(b/h)] of a simply supported
symmetric three-layered square sandwich plate due

to N,
Modular ratio (C)
1 2 5, 10 15
Present 2,808 3334 4.119 4272 4099

Elasticity solution’ 2770 3330 ' 4.046 4200 4.037
STIF 91-Elem.(ANSYS) 2807 3418 4391 5.052 5.356
A,,- Extensional stiffness coefficient
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the numerical solutions usling a standard software
. 1

(ANSYS). This table reveals that the present values

are in agreement with the exact sél)lutions.

43.2 Buckling of Simply Supported Anti-
Symmetric Cross-Ply Square‘v Plates

The material properties are the same as those
for dynamic analysis, case 4.2.2." The buckling
parameters, obtained considering the different values
for thickness ratio (a/h) and wvarying the number
of layers, are compared in Table 7 along with the
exact analytical results based on third-order theory'2.
The agreement between‘the two is good.|

!

Table 7. Nondimensional critical buckling load, N*_,
| = N_aY(E,k*)] 'of a simply dupported anti-
symmetric cross-ply square laminate due to /V,

i |

Present

a’h Layers (N) ISDT?

10

1
100
10 | 35.096

e e i

"
* Tirct w .
* First-order theory

5. CONCLUSION

The capabilities and accuracy of the new eight-
noded rectangular C' plate element based on Hermitian
cubic polynomial for the transverse normal displacement,
and Serendipity quadratic functions for in-plane
displacements and rotations, have been demfnstrated
for static and dynamic analyses of laminated/Sandwich
composite plates; ‘ !
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