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ABSTRAC~
This paper deals witU a new 48-degrees-of-freedom rectangular finite element for analysing

moderately thi(:k, multilayered composite plates. The formulation is based on a kinematics
which allows one to exactly ensure the continuity <londitions for the displacements, and the
t~ansverse str~sses at the interfaces between the layers of a laminated structure and zero
s1lress conditiQns at the top and bottom surfaces of the plate. The shear correction factors
are not requir~d in the formulation, as the transverse shear deformations are defined using
trigonometric 'runctions that are of higher order. The effectiveness of the element is tested
against standard problems concerniI\g statics, vibration and buckling, for which exact three-
dimensional/numerical solutions areiavailable.

ofthos'e developed earlier for homogeneous isotropic
and orthotropic plates and employ a displacement
field which does ndt satisfy continuity requirements
at the interfaces of the composite laminates.
Exhaustive overviews on this topic can be found
from the work of Noor and Buronl, and Kapania
and Racita2. A refined computational model has
been presented by Reddy3. Many higher order
shear deformation theories4-6 have been proposed
for achieving the continuity requirement at the
interfaces and satisfying the stress conditions at
the top and bottom surfaces. Recently, an efficient
plate theory based on a new kinematics utilising
trigonometric functions has been outlined by Touratier7 .

, I
I. INTRODUCTIbN

I

The increased use offibre-reinforced composites
as structural m4mbers in aerospace, nuclear and
marine engine~rfng has resulted in several studies,
such as struct!.1ral modelling, failure and damage
assessment of. comRosite materials. The research
in these areas i's increasing for tpe past few decades.
Owing to the difficulti~'s in obtaining the solution
of three-dimensional problems with general

boundary conditions, theret is a grolwing appreciation
of the importance of deyefoping some approximate
two-dimensional theories and t~e solutions. Since
the solutions based, on 'analytical methods are not

always feasible, numerical procedures like finite
element method .are preferred. The aim of the present work is to develop a

new eight-noded rectangular plate element for the
analysis of composite laminates based on the

theory proposed by Touratier, incorporating the

Many of the existing methods of analyses fo~
multilayered anisotropic plates are direct ex~enslons
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following features !;(z;) = h/7f'sin (1lZ/h) -(h/7f)bss cas (1lZ/h)

(a) A higher-order shear deformation distributions

using trigonometric functions without shear
correction factors

~(z) = h/1l sin (1lZ/h) L;- (h/1l)b44 cas (1lZ/h)

I
g/(k)=0/(k). z+d/(k),i=I,2,,3,4;k=I,2,3,...,N (2)!

where N is the nu~ber of laye~s of the multilayered
structure, h is the total thickness of the laminate,
1t is equal to 3.141592} and b44, bss' o;(k), d;(k) are
coefficients to beidetennmed from contact conditions
for displacements and strFs~es between the layers
and from the boundary conditions on the top and
bottom surfaces of the plate. The ~etails of theseI
coefficients can be found from the wqrk ofTouratier7,
and Beakou and Touratier8.

(b) Inter-layer continuity conditions on displacement
and transverse stresses, and vanishing transverse
shear stresses at the top and bottom surfaces
of the laminate

( c ) Finite element model utilising five-independent-

generalised displacements (three displacements
and two rotations)

The shape functions employed here are H~rmitian
cubic interpolation for the transverse normal
displacement and Serendipity quadratic functions
for in-plane displacements ~nd rotations. The
performance of the element is evaluated through
numerical experiments considering several
problems related to statics, and vibration and
buckling for wh ich exact three-dlmensional analytical
solutions are available in the literature.

The linear strains in tenns of mid:-piane defonnation
,

can be written as

(3)

2. LAMINATED PLATE THEORY

A laminated coli11posite plate is considered "(ith
the coordinates x, y along the in-plane directions
and z along the thitkness direction, respectively.
Using formulation based on shear flexible theory,
the displacements in kth layer U(k), V(k) and W(k) at
a point (x, y, z) from the median surface are
expressed as functions of mid-plane displacement
u, v, wand independent rotation Ox and Oy of
normal in xz and yz planes, respectively as

The mid-plane straips { eO} , bending 'strains
{X},{ro} {due to lower'and highe\- order terms
involved in defining the kinematics, Eqn (I)}, and
shear strains {1'} in E~n (3) are wri~en as

t ( ,
r iJu/~

}iJv/'0/ ;

li+J/ q,t iJv/ Ox

t 02W/ iJx2

}Z} = -l12W/ iJy2

202)1\/ iJxdy

{(J)}=
U(k)(X,y,z, I) + [f.(z)

+g2(k) (Z)

(4)
= u (x,y,t) -z8w/8x

~ gl(k)(z)] { 8w/8x+qx

{8w/8y+(J}, y . If {N} represents the ~e"1brane stress resultants

(N xx' Nyy' Nxy) and {M},{M} represent the bending

stress resultants due Ito lower and higher-order

terms involved in defining the kinFmatics

[( M ,M ,M ),(M--, M yy' M ) ] , one can relate
xx yy xy AA xy , r-

these to membran* strains {EO} and bending strains

{ x.} , { 0) } through :the constitutive relations as

j

i{w/oy+8y

W") (x,y,z,t) = w (X,y, I)
(I

where t is the time. The functions involved in

Eqn ( I) for defining the kinematics are as follows:
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D]{X} + O g~k)

g~k) O

.I; + g[k) !2 + gik)
.

.I; + g[k)

O

g~k)

(5) 0

h + g~k)

g~k)

Z(z) =
(8)

Similarly, the transverse shear stress resultants

{Q} repr~senting the quantities (Qxr Qyz) are related

to the traAsverse { t} strains through the constitutive
relation as I ,

I
Eor a composite laminate of thickness (h), consisting

of N layers with stacking angle tjJk(k=1,2,3 ,N)
the layer thickness (h'J the necessary expressions
for computing the reduced stiffn~ss coefficients of
([Qp]' [Q,]) available in the lite~ature9, are used
here. ,(6)

j

The total potential energy functional ( U) consisting

of energy stored in the plate is given by:

.
The different ma~rices involved in Eqns" (5)

and (6) are defined ~s follows: .

I
U(8} = 2

(9)
h/2

{B} = J

-h/2 i
where 0 is the vector of the degrees-of-freedom
(DOfs) associated with the displacement field in

a finite element discretisation. f is the distributed

force.

h/l

J
-h/l

{E}=

The 'kinetic energy of the plate is written as
hl2

J
-h12

I

X7){D}= r
h/2

J
-h/2

I
h/2

J

-h/2
(10)

hl1

J
-h/2 where the dot over the variable denotes the partial

derivative wrt time and p is the mass density.

The potential energy due to external in-plane
force, N o in x direction is written as

x

1W(IJ) = 2
The matrices Y(z) and Z(z) are g'iven as

N;[iJw/ 8xy d4 (II)

l7}; / Oz + i)g[k) / Oz

iJg~k) / &

Substituting the Eqns (9) -( 11) in Lagrange's

equation of motion, one obtains the governing
l

equation of the plate as

r(z) i=
iJg~k) / Oz

iJf2 / Oz + i)I;~k) / Oz
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tested for rank deficienc):', and is found to be having

proper rank (five zero eig~nvalues-no spurious mode).,
Further, basedlon progressive mesh refinement,
4 x 4 mes~I' idealisation ,is adequate to model the

quarter plate for the analyses considered here.

The element Is also'checked for shear locking

phenomenon considerfnk an isotropic simply

supported squar~ plate with distributed loading,

and the results are shown in Fig. 1. The figureI .

shows that the element is free from locking syndrome.

The aim of the present investigation is to see the

efficacy of the formulation oft'hc new element for

the statics, and vibration and buckling analyses of

laminated composite plates. As such, problems
for which exact solutions available in the literature

are considered here. The simply supported boundary

cond ition assumed here is' given as

{i 2

where [M] is the consistent mass matrix; [K] and
[KG] are the structural stiffness and the geometric
stiffness matrices, respectively; and {F} is the
load vector .

The coefficient in the stiffness and mass matrices

can be rewritten as the product of term having

thickness coordinate z alone and the term containing

x and y. In the present study, while performing the

integration for the evaluation of the stiffness and

mass coefficients, terms having thickness coordinate
z are explicitly integrated, whereas the terms

containing x and yare evaluated using full integration
with 4 x 4 points Gauss integration rule.

ELEMENT DESCRIPTiQN3
v=w=B =iJw/iJ y =O at x=O ay .

u=w=Bx=iJw/iJx=(J at y=O.b
I

The eight-noded rectangular element used here
is based on Hermite cubic function for transverse
displacement, w according to the CI continuity
requirement, S~rendipity quadratic function f~r the
in-plane displacements u, v and rotations Ox' By
Further, the element needs eight nodal DOFs

(u, v, w, ow/ox, ow/ay, o]w/oxoy, Ox' a;) for

all corner nodes and 4-DOFs (u, v, Ox'" O) for the
mid-node of all four sides.

4.1 Static Analysis

Simply Supported Symmetric Sardwich
Square ~)Iate under Uniform Loading

4.

I The geometrical parameters used here are assumed
as a F b = I m, thickness of the orter layer and

cqre or middle'layerare 0.01 m and 0.08 (11, respectively.

The material propertie~ ?fthe core o~ middle layer

are: ..i
RESULTS & DISCUSSION4

Before proceeding for the detailed numerical
computations, the element developed here has been .79311 GPa, GI2=1.O GPa,

I.Ol~ GPa, r,21°.44

3.~156 GPa, 1j:2

=0.608 GPa, G.,
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The properties of the skin or the olJter layers
can be obtained using the'modular ratio C that is

defined as the ratio of m~duli, of skin to core of

the laminate. By varying the modular ra,io C ( =1,

10, 15,50), one can achieve a homogenous brthotropic
plate (C= 1) to ~fairly sandwich'-like platb (C = 50).

The values for th~ normalised transverse displacement
(W) are compartd with the exac~ three-dimensional
analytical solut~on of Srinivas, and Raolo and the

numerical solutions obtained u~ing 20~20 mesh in
stan1dard software (ABAQUS, ANSYS) in Table I.

It is evident that the present result~ are ih agreement

with those of the exact analytic~1 solutions.

~

0.30 I I I --~
1 10 100 1000

ASPECT RATIO la/h )

Figure I. Variation of maximum denection \tith aspect ratio

for the simply supported isotropic square pl,te under

uniform load (qo).
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are same as above. The value of C is assumed as
10. The results evaluated for Ware shown along
with the exact three-dimensional analytical 10 and

nu'merical solutions using 20 x 20 mesh in standard
software (ABAQUS, ANSYS) in Table 2. It"can
be noted that the present results are in agreement
with those of the exact analytical solutions.

4.1.2 Simply Suppor{ed Unsymme/ric Sandwich

Square Pla/.e under Uniform Loading,
.

The geolTIetrical parameters used here are assumed
as a = Ib = I m; thickness of the bottom, top and

middle layers are 0.03 m,lor01 m and 10.06 m,

respectively. the mgterial properties of the core

Table I. Nondimelnsional central dJnection, W [=w(a/2,b/2,

O)G,2(2)/(hq.)1 of a simply su~)ported symmetric three-

layered square sandwich plate under uniform load, q\ 0

3 Simply Suppor/ed Symme/ric Three-Layered

Cross-Ply Rec/angular Lamina/e (0°/90%°)
.

under ~oubly Sinusoidal Loading

4

, The geometrical parameters used are taken as

a = 1 m, b = 3 11}; thickness of the laminate is

varied as 0.25 m, 0.1 m, 0.0.5 m and 0.01 m. All

layers are assumed to be of/equal thickness.

The material properties assumed here are:

E,= 25 GPa, E2=1.0 GPa, , 012= 0.5 GPa, G1J=

0.5 GPa, G2J= 0.25 GPa, Y12= 0.25
GI2(2)-Sfiear modulus.of core

Table 2.
I

Nondimensi+nal centrar deflection, W (=w(aI2,bl

2,O)GI2(2)/(hq.)1 of a simply sjuPPorted unsymmetric

three-Iayered sq.are sandwich plate under uniform
load, q \

\ ., ,

Table 3 depicts the comparison of the present
results for different thickness ratios (a/h) with the
exact three-dimensional solution of Pagano'l and
they are in agreement.Mod1:1lar ratio

C=~O
4.2

I

4.2.
34.59
34.55
28.14
25.54

FREE VIBRATION ANALYSIS

Vibration of Simply Supported Square

Sandwich Plates

"The data tor geometry and material are assumed

to be same as those for static analysis, case 4.1.1.

The fundamental frequency parameter {Q) calculated

here by varying the modular rati9 C {=1,2,5, 10,

and 15) is reported in Table 4 along with those of

exact three-dimensi6nal values ofSrinivas and Raolo

and the numerical solutions using standard software

{ABAQUS and ANSYS). This table shows that
the present results are in good agreement with the
exact solutions. I

-t
Present
Elasticity solution 7

S8R-EI~m.(ABAQUS)

STIF9ItElem.(ANSYS)- ---
GI2(2)-Shear modulus of core

\ I

Table 3. NonJimensional certral deflection, W- (=w(a/2,b/

2,O)hJ E1/(a4q) x ~100( of a simply supportcd

symmetric three-Iayercd cross-ply rectangular
laminate under doubly sinusiodalload, (q ~in (ru:/..
a) sin (7ty/b») .I

Present

Ela~tici~!ution8

Table 4. Nondimen~sional fundamental frequency, .0. 1= (I) (plhJ/CJJ(2»)In) of a simply supported symmetric three-Iayered square

sandwich plate

Modular ratio (C)

5 10 15

0.047410

0.047419

.0.047397

0.047752

0.057031

0.057041

0.057311

0.057731

-

0.077144

0.077146

0.079578

0.080143

0.112037

0.112034

0.127743

0.128623

Present

Elasticity solution7

S8R-Elem,(ABAQUS)

STIF 9 I -Elem.(ANSYS)

C11(2)-Stiffness coefficient of core

1?1
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the numerical solutions u~ing a standard software
(ANSYS). This table reveals that the present values
are in agreement with the exact s?lutions.

4.3.2 BucklilJg of Simply Supporlfd Anli-

Symmetric Cross-Ply Square R/ates
!

4.2.2 Vibration of Simply Supported Anti-
Symmetric Cross-Ply Square Plates

All layers are assumed to be of equal thickness.
The material properties considered here are:

E)=40 GPa, E2=1.0 GPa, .GI2=0.6 GPa. GI3=0.6
GPa, G23=0.5 GPa, 'Y12=0.25 I

The free vibration analysis is carried out considering
the different values for thickness ratio (a/h) and
varying the number of layers and the results are
presented in Table 5 along with'the exact analytical
results based on two-dimensional third-order shearI
deformation theoryl2 (TSDT). This table shows
that the frequency values obtained here are in
good agreement w!th the existing results.

The material properties are the, same as those
for dynamic analysis, ca~e 4.2.2.' The buckling
parameters, obtained consideriqg the different values
for thickness ratio (a/h) and :varying the number
of layers, are compared in T~ble 7 along with the
exacti analytical results based on third-order theoryl2.The agreement between~the two is good.1 .

\
Table 7. Nondimensional critical bucklong load, N".1" xc,

I = N x.,a2/(E2h3)1'2l 'of a simply ~upported anti-

symmetric cross-ply square laminate due to N
.xTable 5. Nondimensional fundamental frequency, a.

[ = ro(pIEJ1I1U2Ih) of a simply supported anti-

symmetric cross-ply square laminate

10

!

10010

100

s. CONCLUSION.First-order theory

The capabilities and accuracy of the new eight-
noded rectangular CI plate elelllent based on Hermitian
cubic polynomial for the transverse normal displacement,
and S~endipity quadratic funct1ons for in-plane
displacements and rotations, have been dembnstrated
for static and dynamiC" analyses of laminated/~andwich
composite platesi ' ,

4.3 BUCKLING ANALYSIS

4.3.1 Buckling ojSimply Supported Square
Sandwich Plates
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