A NOTE ON EFFICIENCY OF ROCKEIS.

By S. K. Gupta and A. K. Mehta, Defence Science Organisation, Ministry of Defence, New Delhi.

ABSTRACT

This paper discussas the dependence of efficiency of a rocket on the expansion ratio and the ratio of the initial mass of the rocket and the mass of the propellant. The relation is illustrated by a table and two graphs.
The efficiency of a rocket, η, is defined as the ratio of the kinetic energy of the rocket at the end of burning to the heat energy of the propellant. Thus (Lakatos, 1941)

$$
\begin{equation*}
\eta=\frac{\frac{1}{2}(\mathrm{M}-m) v^{2}}{\mathrm{~J} \cdot \mathrm{H} \cdot m} \tag{1}
\end{equation*}
$$

where M is the initial mass of the rocket,
m is the mass of the propellant,
v_{b} is the velocity of the rocket at the and of burning,
H is the heat of combustion of the propellant and J is the mechanical equivalent of heat.
The velocity at the end of burning is given by

$$
\begin{equation*}
v_{b}=v_{e} \log _{e} \quad \frac{\mathrm{M}}{\mathrm{M}-m} \tag{2}
\end{equation*}
$$

where v_{e} is the effective exhaust velocity given by

$$
\begin{equation*}
v_{e}=\frac{2 \gamma \mathrm{RT}}{\gamma-1}\left[1-\left(\frac{\mathrm{P}_{e}}{\mathrm{P}_{\mathrm{c}}}\right)^{\gamma-1} \gamma\right] \tag{3}
\end{equation*}
$$

where P_{e} and P_{c} are the exit and chamber pressures respectively.
From equations (1), (2) and (3) Lakatos (1941) arrives at the following expression for the efficiency of rockets

$$
\begin{equation*}
\eta=f\left(\frac{\mathrm{P}_{e}}{\mathrm{P}_{c}}\right) \cdot \phi(\alpha) \tag{4}
\end{equation*}
$$

where $\quad \alpha=\frac{M}{m}$

$$
\begin{align*}
& \phi(a)=(\propto-1)\left[\log _{e} \frac{\propto}{\alpha-1}\right]^{2} \tag{5}\\
& f\left(\frac{\mathrm{Pe}}{\mathrm{P}_{\mathrm{c}}}\right)=\left[1-\left(\frac{\mathrm{P}_{e}}{\mathrm{P}_{e}}\right)^{\frac{\gamma-1}{\gamma}}\right] \tag{6}
\end{align*}
$$

Thus the variation of the efficiency with $\mathbf{P}_{e} / \mathbf{P}_{c}$ for various values of α can be studied with the help of eqn. (4). However, P_{e} / P_{C} is not specified for a given rocket while it is related to a fundamental specification A_{e} / A_{t} (A_{e} and A_{t} are the areas of the exit and throat of the nozzle) by

$$
\begin{equation*}
\left.\frac{A_{t}}{A_{e}}=\left(\frac{\gamma+1}{2}\right)^{\frac{1}{\gamma-1}}\left(\frac{\mathrm{P}_{e}}{\mathrm{P}_{c}}\right)^{\frac{1}{\gamma}} \sqrt{\left(\frac{\gamma+1}{\gamma-1}\right)\left[1-\left(\frac{\mathrm{P}_{e}}{\mathrm{P}_{e}}\right)^{\gamma-1}{ }_{\gamma}\right.}\right] \tag{7}
\end{equation*}
$$

In this paper the authors have given a table and a graph expressing the variation of the efficiency with the fundamental specification $\frac{A_{e}}{A_{e}}$ of the rocket for various values of a which will be more useful. Taking $\gamma=1 \cdot 25$, for different values of α and $\mathrm{P}_{o} / \mathrm{P}$ the authors have calculated both $\mathrm{A}_{e} / \mathrm{A}_{i}$ and the efficiency η. Table 1 gives the variation of the efficiency with α and A_{e} / A_{t} which is illustrated graphically by figures I and II.

TABLE 1

Variation of efficiency η with $\mathrm{A}_{e}+\mathrm{A}_{t}$ and α

A_{e} / A_{t}	3	4	5	6	7	8	9
$2 \cdot 16$	$0 \cdot 1213$	0.0915	$0 \cdot 0735$	0.0614	0.0526	0.0461	0.0410
$2 \cdot 81$	$0 \cdot 1375$	$0 \cdot 1036$	$0 \cdot 0833$	0.0695	$0 \cdot 0596$	0.0522	0.0460
$3 \cdot 40$	0.1482	$0 \cdot 1117$	0.0898	$0 \cdot 0750$	0.0643	0.0563	$0 \cdot 0500$
-4.50	0.1623	$0 \cdot 1223$	$0 \cdot 0983$	0.0821	0.0704	0.0616	$0 \cdot 0548$
$5 \cdot 51$	$0 \cdot 1716$	$0 \cdot 1293$	$0 \cdot 1039$	0.0868	0.0744	$\because 0.065$	0.0579
6.33	$0 \cdot 1785$	$0 \cdot 1345$	$0 \cdot 1081$	0.0902	0.0774	0.0678	$0 \cdot 0602$
$7 \cdot 36$	0-1838	$0 \cdot 1386$	$0 \cdot 1135$	0.0930	0.0797	0.0698	0.0620
$9 \cdot 07$	$0 \cdot 1920$	0.1447	$0 \cdot 1163$	0.0971	0.0833	0.0729	0.0648

The authors are extremely grateful to Dr. D. S. Kothari, Dr. R. S. Varma and Mr. M. S. Sodha for their kind interest in the investigation.

REFERENCE

Lakotas E. - Internal Ballistics of Power Driven Rockets, National Defence Research Committee Report No. A-22 (Office of Publication Board, Department of Commerce, Washington) 1947.

Fig. I

Fig. II

