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ABSTRACT

The Bayesian method is superior to the classical statistical method on condition of small sample test.
However, its evaluation results are not so good if subjective prior information is intervened. The success
probability assessment about the success or failure tests of weapon products focussed in this paper, and a
fusing evaluation method based on information entropy is proposed. Firstly, data from equivalent surrogate
tests is converted into the prior information of an equivalent source by the information entropy theory.
Secondly, the prior distribution of the success probability is identified via the Bootstrap method, and the
posterior distribution is provided by the Bayesian method with the information of prototype tests in succession.
Lastly, an example is given, and the results show that the proposed method is effective and valuable.
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1. INTRODUCTION
The new-style weapons are usually costly, and a lot

of geodesic equipments are needed with high precisions.
The experiments about those weapons are usually enormous,
complicated and with high investments. As a result, it is
impossible to accomplish a great deal of prototype tests.
So it is difficult to evaluate the performance of the weapons
effectively just by data from a few prototype tests. Therefore,
a lot of equivalent surrogate tests are usually put up to
extend the information, including physical surrogate tests
and simulations. Those equivalent surrogate tests are
heterogeneous. It is obviously very important to seek
advanced evaluation methods with all useful information
adapting for weapons.

Both the classical statistical method and the Bayesian
method can be used for estimating the success probability.
However, on condition of small sample test, the classical
statistical method is unfit, and the Bayesian method is
preferred1-5.

For the Bayesian method, it is a key problem to present
the prior distribution by information from different kinds
of tests. Different prior distributions of the success probability
denoted as P , can be got from different types of heterogeneous
information sources, and they should be fused into one
integrated prior distribution logically. Then a series of
conclusions can be derivable using the Bayesian theory.
Generally speaking, the key of fusion is to identify the
weights of different prior distributions logically1,2.

Many relative studies have been done. A lot of researchers
mainly put up linear models in terms of the distribution
parameter to choose the weights. A few researchers put
up non-linear models based on fuzzy operator theory1-5.

However, if the built models were not so exact, the corresponding
calculated weights would not be accurate. Consequently
the evaluating results at last would not be good.

In success or failure tests, the prior distribution of
the success probability P  follows a b distribution in a
homogeneous environment. Subjective experiential information,
which takes distribution function ( )Pp  as (0,0)b ,

(1 / 2,1 / 2)b  or (1,1)b  via Jeffreys principles, is usually
intervened to identify the distribution parameters1,2,6,7. However,
when quantity of the samples are very small, the evaluating
results are eventually various as ( )Pp takes the three different
values mentioned above. It is consequently very difficult
to choose the correct distribution function ( )Pp  in
applications.

This paper focusses on the evaluation of the success
ratio and the information from equivalent surrogate tests
is converted into the prior information in the equivalent
tests based on the information entropy theory8,9. Then the
prior distribution of success probability is identified by
the Bootstrap method. At last the posterior distribution
is provided by the Bayesian method with data from prototype
tests.

2. HETEROGENEOUS   INFORMATION
CONVERSION
Due to the information entropy theory, the information

is a decreasing, monotonous, and additive mapping of
probability. The average information in terms of discrete
variables is defined as following:

1

ln
K

i i
i

H P P
=

= -å                                        (1)

where, iP is the happening probability in the ith source,
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and K is the total number of sources.
Assume the number of independent heterogeneous

sources is N. The respective success times is is and the
respective failure times is f

i
, then total number of the ith

kind of tests is i i in s f= + . The success probability of the
i th source is ip , while the failure probability is1 ip- . As
a result, the average information of every test provided
in the i th source is given by:

[ ln (1 ) ln(1 )]i i i i iH p p p p= - + - -                         (2)

Then, the information of all tests provided in the ith

source is given by i in H , and the information of all tests
provided in all sources is given by:

1 1

[ ln (1 ) ln(1 )]
N N

i i i i i i i
i i

I n H n p p p p
= =

= = - + - -å å            (3)

All heterogeneous sources are to be converted into
the prior information in an equivalent source. Assume that
the number of the relative success times is 0s and the
number of the relative failure times is 0f , then total number
of the equivalent tests is 0 0 0n s f= + . Let the success
probability and the failure probability of the equivalent
source be P and 1�P, respectively. So the information
provided in the equivalent source is given by

0[ ln (1 ) ln(1 )]I n P P P P¢ = - + - -                            (4)

Take the maximum likelihood estimator (MLE) µ
ip  of

ip , and µP  of P as:

µ µ
0 0/ , /i i i ip p s n P P s n= = = =                            (5)

  Due to the principle that the total information should
be equal, viz. I I¢ = . One obtains:

1
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+ - -

= - =

å

                           (6)

3. ESTIMATOR OF SUCCESS PROBABILITY IN
EQUIVALENT SOURCE
There are four unknown variables, denoted as  0n ,

0f , 0s , and P in Eqn (6). However, there are only three
equations. The estimator of the success probability P in
the equivalent source is therefore expected. Firstly, P is
estimated just with physical surrogate sources, then it is
computed with simulation sources only, at last both of
them were incorporated to estimate P.

3.1 Physical Surrogate Sources
Physical surrogate tests include subsystems tests

and components test of the weapons. They are usually
put up to extend sources. For example, the reliability of
weapons is evaluated. The estimated value of probability
P would be different if the structural models of reliability
were various. Denote the success probability computed
in the physical surrogate sources as P

phy
.

If the structural model of reliability were series-wound,

phyP should be expressed as following:

µ
phy

1 1

N N
i

i
i i i

s
P p

n= =

= =Õ Õ                                         (7)

If the structural model of reliability were shunt-wound,

phyP should be expressed as following:

µ
phy

1 1

1 (1 ) 1
N N

i
i

i i i

f
P p

n= =

= - - = -Õ Õ                        (8)

3.2 Simulation Sources
Simulation is under the principle that the model of

it is similar to the real physical system. However, the
model will not be strictly the same.

 The simulated result would be much reliable if it is
based on the standard of verification, validation and
accreditation (VVA)10. However, if samples were very limited,
the work for VVA would not be accomplished effectively.
As a result, the simulated credibility should be defined
for logical application of simulation sources.

  The evaluating model about the simulated credibility
is:

sim i i
i

C B= åh                                            (9)

where, simC is the simulated credibility, ih is the weightiness

coefficient of the ith simulated part, which satisfies 1i
i

h =å ,
and iB is the veracity coefficient of the ith simulated part.

ih  is usually decided by experts and professionals
subjectively. iB  can be computed according to the reliability
formula by prior information2,11. The simulated result is
denoted as 

11( , , )nU U U¼= and the prototype result as

21( , , )nV V V¼= . The null hypothesis is denoted as 0H ;
here, U and V are in the same population. The alternative
hypothesis is denoted by 1H ; here, U and V are not in the
same population. Denote A as accepting 0H , A º as rejecting 0H ,
and  the success probability computed with the simulated
sources is denoted as simP . The credibility formula by prior
information can be expressed as follows:

0
0

0

1
( | )

(1 ( ))
1

( ) 1

simP P H A
P H

P H
b

a

= =
-

+ ×
-

                    (10)

where, a is the probability of the errors type I, b is the
probability of the errors type II, and 0( )P H is the happening
probability of 0H . 0( )P H is usually given by experts and
professionals, according to fidelity of the thi  simulated
part. The probabilities of the errors type I and the probabilities
of the errors type II, denoted as a and b , are usually
chosen by the aims and desires, and a b=  is usually
given in engineering application.

3.3 Total Sources of Tests
Total sources consist of physical surrogate sources

and simulated sources. As described above, the success
probability computed with physical surrogate sources is
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denoted as phyP , and the success probability computed
with simulated sources is denoted as simP . Then the success
probability computed with total sources should be
expressed  as

µ
sim sim sim phy(1 )P C P C P= × + - ×                              (11)

4. BAYESIAN ESTIMATOR OF SUCCESS
PROBABILITY

4.1 Prior Distribution of Success Probability
A Bernoulli variable is denoted as X , and the value

of the variable is 0 or 1. Let { 1}P X p= = , and let
{ 0} 1P X q p= = = - . Let 

01, , nX XL  denote the historical
sample, which are independent and with identical distribution
(i.i.d). Then,

µ
0

10

1 n

i
i

p X
n =

= å                                        (12)

µ
0nT p p= -                                             (13)

Take $ µ1q p= -  as distributed parameter of the new
Bernoulli population, and resample the new population.
That is to produce a series of random values of Bernoulli
variable by computer, 

1 0

* *, ,
n

X XL , and call them a regenerative
sub-sample.

The average of regenerative sub-sample is:

µ
0*

*

10

1 n

iBoot
i

p X
n =

= å                                       (14)

Then µ µ
*

*
n BootR p p= -  is denoted as the Bootstrap statistic.

Their value will be different as the regenerative sub-samples
are different. So let 

0

(
1

)) (, , j
n

jX X¼  denote the thj  regenerative
sub-sample, for 1, ,j N= K , then one can get

µ µ
( )*

( )* ,   1, ,
j

j
n BootR p p j N= - = K                           (15)

where N>>1. Consequently the experiential distributed
function of *

nR  can be obtained. Take the distribution as
the approach of distributed function of 

0nT . It can be
proved that experiential distribution of *

nR   approaches
to the distribution of 

0nT consentaneously.
After getting the distribution of 

0nT , and then µ
0np p T= - ,

which is the distribution of p could be identified. Let it
be the prior distribution of p and denote it as ( )pp .

In success or failure tests, the prior distribution of
p follows a b distribution, which is defined as ( )pp = Be( , )a b .
According to the Bootstrap method, the average p  and
the variance 2S of the prior distribution can be obtained
b y

( )2

1 1

21 1
,

1

N N

j j
j j

p p S p p
N N= =

= = -
-

å å                   (16)

where, p
j
 is the jth Bootstrap estimate of the parameter

p, j=1,...,N.

Let the average p  and the variance 2S  be equal to
the expectation and the variance of b distribution. Hence

2

2( ) ( 1)

a
p

a b
ab

S
a b a b

ì
=ï +ï

í
ï =
ï + + +î

                             (17)

Then the estimator of the parameter a and b can be
solved by Eqn (17).
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                                    (18)

4.2 Posterior Estimator of Success Probability

Suppose there are n prototype samples 1, , nx x¼ ,

where ~ ( | )ix f x p , ( 1, , )ix i n= ¼  is the i.i.d sample. Based
on the Bayesian theory, the posterior distribution ( | )p Xp
of the success probability p can be obtained from the
prior distribution ( )pp and the prototype samples

1( , , )nX x x= ¼  by the following formula:

( ) ( | )
( | )

( ) ( | )

p f x p
p X

p f x p dp

p
p

p
Q

=
ò                             (19)

where, Q  is the domain of  p, and it is usually given as
[0,1]. The point estimator and confidence interval of p are
therefore easy to obtain.

Suppose that the number of total prototype tests
times is m and the number of relative success times is
n. Since the prior distribution of p is ( )pp = Be( , )a b , it
is concluded by formula (19) that the posterior distribution
is ( | )p Xp = Be( , ( ))a n b m n+ + - . Hence, the point estimator
is:

µ a n
p

a b m

+
=

+ +
                                          (20)

Given the confidence level d, the confidence lower
limit LR of p  is defined as

1
( | )

LR
p X dpp d=ò                                      (21)

Hence, LR  can be solved by the following formula:

( )

0

(1 ) 1
b m n

i a b m i i
a b m L L

i

C R R d
+ -

+ + -
+ +

=

- = -å                 (22)

5. SIMULATION RESULTS AND ANALYSIS
The target capture probability is an essential criterion

of radar detecting capacity. It will be taken as a evaluation
example to show the effectiveness of the above mentioned
method.

For some missiles, aiming at target on sea, it is impossible
to evaluate the target capture probability effectively by
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data from very small number of prototype tests. Results
of surrogate tests, including simulations, tests aiming at
target on ground and tests with missile hung on airplane,
are fused to evaluate target capture probability. Tests
aiming at target on ground and tests with missile hung
on airplane are all physical surrogate tests.

Factors affecting the target capture probability mainly
consist of the target, the clutter environment, and the
missile velocity. The compare tests aiming at target on
ground to the prototype tests, the target, and the missile
velocity are the same, but the clutter environment is different.
The compare tests with missile hung on airplane to the
prototype tests, the target and the clutter environment
are the same but the missile velocity is different; The
compare simulations to prototype tests, fidelity and similarity
of the simulated model are considered.

Tests aiming at target on ground are regarded as
subsystem tests, while tests with missile hung on airplane
are component tests. Both of them are independent of
each other, and the target capture probability can be calculated
with sources of physical surrogate tests by Eqn (7).

While considering simulations, the sea clutter, the
electromagnetic scatter of target, and the ballistic trajectory
are needed to be simulated. Hence simulated credibility
can be calculated with sources of simulations by Eqn (9).
Simulated total launching times and relative success times
in capturing target of physical surrogate tests, simulations
and prototype tests are shown in Table 1.

Weightiness coefficients and veracity coefficients of
the three simulated parts are shown in Table 2. The simulated
credibility is C

sim
 = 0.905, with data simulated in Table 2.

Taking 0.5a b= = , hence the success probability computed
in total sources is µ 91.81P =  % with data in Table 1 by
Eqn (11). Total launching times and relative success times
in the equivalent tests are afterwards n

0
 = 1006, s

0
 = 924

by Eqn (6).

After computing prior information in an equivalent
test, the prior distribution of p is shown in Fig. 1 by the
Bootstrap method. Parameter a and b of prior distribution
is a=896, b=80 by Eqn (18), with data in Fig. 1.

The results of the method proposed in this paper
were compared with the results of the classical statistical
method and the classical Bayesian method, the confidence
level is set as 0.95d = :
(1) Consider the classical statistical method, that is to

say, only the data of prototype tests can be used.
The point estimator and the confidence lower limit
of target capturing probability are µ 100%p =  %,

22.36LR =  %. It can be seen that the results are too
conservative, since times of the prototype samples
are too small and data of surrogate tests are not used.

(2) Consider the classical Bayesian method. The posterior
distribution of target capturing probability is

( )pp = Be(943,82) , with data in Table 1. The point
estimator and the confidence lower limit of target
capturing probability are µ 92p =  %, 90.56LR =  %. It
can be seen that the results are hazardous, since the
heterogeneity between the surrogate tests and the
prototype tests is not considered, and the data of
prototype tests are inundated with the data of surrogate
tests sequentially.

(3) Consider the method based on information entropy
theory in this paper. After calculating the prior distribution

( )pp = Be(896,80) , the posterior distribution of the
target capturing probability is ( | ) Be(898,80)p Xp =
via the Bayesian formula. The point estimator and the
confidence lower limit of the target capturing probability
are µ 91.82p =  %, 90.33LR =  %. Since the prior
distribution in the equivalent source is identified by
the Bootstrap method, the subjective experiential factors
are then not brought in. So the evaluated results are
effective and logical.
When using the fusing evaluation method proposed

in this paper, one can notice:

 Total 

times 

Success 

times 

Tests aiming at target on ground 3 3 

Tests with missile hung on airplane 20 18 

Simulations 1000 920 

Prototype tests 2 2 

Table 1. Target capturing results of all tests

 
Weightiness 

coefficient 

Veracity 

coefficient (%) 

Sea clutter 0.3 90 

Electromagnetic scatter 0.3 85 

Ballistic trajectory 0.4 95 

Table 2. Weightiness and veracity data of simulations

Figure 1. Prior distribution of target capture probability.
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(1) In success or failure tests, the situation that the success
probability is 1 or 0 sometimes appears. In this situation,
the value ln 0 doesn�t exist when Eqn (6) is calculated.
In the actual calculation one needs to add a proper
decimal fraction. It can be seen that the information
is zero in the situation of none invalidation or none
success.

(2) Estimator of the success probability p in the equivalent
source involves two parts: physical surrogate tests and
simulations. Success probability in physical surrogate
tests, phyP ,  has various estimators in different situations.
Different situations are required to be considered and
compute phyP . In terms of simulations, weightiness coefficients
and veracity coefficients of different simulated parts
need experts and professionals to evaluate. Only
when phyP and simC were computed exactly one should ensure

veracity of success probability p in the equivalent source.

6. CONCLUSIONS
 In this paper, the data from multi-source heterogeneous

tests is converted into the prior information of an equivalent
source by the information entropy theory. Then the prior
distribution of success probability is identified via the
Bootstrap method, and the posterior distribution is given
by the Bayesian formula with information of prototype
tests in succession. The example shows that the proposed
method is effective and valuable.

The method proposed is applicable in other field of
success or failure tests.
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