ON THE RELATION BETWEN MAXIMÜM PRESSURE AND SHOT-START PRESSURE

By Shri S. P. Aggarwal and Shri A. Nagaratnam, Defence Science Organisation.

Abstract

A simple linear relation between the maximum pressure and the shot-start pressure has been derived on the basis of a formula given in the Fiat Review of German Science (1939-45) and has been verified to be approximately true, in the case of $3.7^{\prime \prime}$ Howitzer and $5.5^{\prime \prime}$ Gun, Mark III.
In the Fiat Review of German Science* (1939-46), an explicit, expression for the maximum pressure in terms of the shot-start pressure is given, and when expressed in the notation of GM II, it can be written as

$$
p_{1}=\frac{\mathrm{FC}}{\mathrm{~A} \gamma \gamma \mathrm{M}}\left(\frac{\gamma+1}{2 \gamma}\right)^{\frac{\gamma+1}{\gamma-1}+p_{0}\left(\frac{\gamma+1}{2 \gamma}\right)^{\gamma-1}}
$$

where p_{o} is the shot-start pressure.
The above formula has been derived on the assumption of a constant burning surface for the propellant, i. e. corresponding to $\theta=0$.

We see that the relation between the maximum pressure and shot-start pressure comes out to be linear, i.e.

$$
\begin{equation*}
p_{1}=\frac{a}{M^{2}}+b p_{0} \tag{2}
\end{equation*}
$$

where a_{1} and b are constants.
In this paper, it has been verified that this linear relationship is approximately true, and that it is valid for values of θ other than zero also.

The maximum pressures for the various charges 1 to 5 , corresponding to shot-start pressures of $0.5,1.0$ and 1.5 tsi in each case were calculated by G. M. II method for the $3.7^{\prime \prime}$ Howitzer (charge A. N. $017, \theta=1$). The relationship between the maximum pressure and shot-start pressure comes out to be linear for each of the five charges (vide Table I and Fig. 1).

For charge 5, from the calculated values of p_{1} for each p_{0}, a straight line was fitted by the method of least squares, for the equation (2). The values of the constants a_{1} and b in equation (2) come out to $\mathrm{be} \mathrm{a}_{1}=23.1977$ and $\mathrm{b}=0.841$. Hence the relation between p, and p, for the $3.7^{\prime \prime}$ Howitzer is

$$
\begin{equation*}
\boldsymbol{p}_{1}=\frac{23.1977}{\mathrm{M}^{2}}+0.841 p_{0} \tag{3}
\end{equation*}
$$

With the help of this equation, the values of p_{1} were calculated for various values of p_{0} for the other charges (1 to 4) using the appropriate value of M, The calculated values are given in Table 1. A comparison with the values calculated by GM II shows that the above linear relation may be approximately taken to be true, even

* Naturforschung und Medizin in Deutschland, 1939-1946 Band 7 Angewandte Mathematik, Teil V, p. 193.

for vattes of θ different from zero. *

It is easy to see that the equation (1) can also be put in the forms

$$
\begin{align*}
& p_{1}=a_{2} \mathrm{C}^{2} \omega_{1}^{2}+b p_{0} \tag{4}\\
& p_{1}=a_{3} \mathrm{~F}^{2}+b p_{0} \tag{5}
\end{align*}
$$

and that the valtes of the constants a_{2} and a_{3} for $3.7^{\prime \prime}$ How. are $a_{2}=0.0366$ and $a_{3}=2.9528 \times 10^{+18}$.
The values of the shot-start pressures, which give for various charges correct muzzle velocities, as given in range tables for a new gun, are as follows:

	MV.f.E	Shot start pressure tsi
Charge I	513	1.0
Charge II	578	1.0
Charge III	690	1.2
Charge IV	798	1.3
Oharge V	962	1.5

Similar calculations were done for the $5.5^{\prime \prime}$ gun Mark III for charges I to IV. The relation between p_{1} ard p_{i} is again seen to be lineear (yide Fig 2 and table II) : Equation (2) cannot be applied to all the four charges since the web-sizes are not the same for all charges. Bùt equation (2) was verified for charges III and IV for which the web sizes are the same, just as in the case of $3.7^{\prime \prime}$ Hows.. The values of a_{1} and b were respectively;

$$
a_{1}=76.806, b=1.004
$$

for charges III and IV of the $5.5^{\prime \prime}$ gun Mark III.
Table I.
3.7" How.
A. $\mathrm{F} \cdot 017$

[^0]

Relation between Maximum Pressure and Shot-Start Pressure for 3.7" Howitzer.

Frg. 2.
Relation between Maximum Pressure and Shot-Start Pressure for 5.5" Gun Mark III, pressure

$$
\begin{gathered}
\text { Table II. } \\
5.5^{\circ} \text { GUUN MARK III }
\end{gathered}
$$

[^0]: *It may be pernitedout heréthat Mr. N.s. Venkatesan im his paper "A note on the Refation befween Maximum?réssure and Ehot Start pressure (Proc. Nat. Ins. Gè. of Trdsa, Vol XVII No. 4, 1952), has obtained a selation between Py and por for θ er. Accordig to his formula, ever thought the maximum pressure increases with shot-start puessure, he rlation hetween the two cannot be expressed in a dinear Torm,

