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ABSTRACT

, A numerical solution has been obtained for transient heat transfer in cylinders by appropriate
choice of body conforming grid points. The physical domain is transformed to computational domain
using elliptic prtial differential equation technique, wherein the grid spacing becomes uniform. The
advantage of this method is that the discretisation of transformed equations and accompanying
boundary conditipns becdme very simple. The applicability of this method is very broad, as it can be
used for carrying lout study of any complex domain in contrast to finite difference methods, which have
limited applicability. Detailed. calculations have been carried out to trace the evolution of temperature
distribution from the initial stages to the steadystate for circular cylinder, elliptical cylinder and square
block with circular hole. This paper is aimed for general-shaped bodies and it has been applied to study
transient heat ‘transfqr in combustion-driven shock tube. '

NOMENCLATURE'®

f Any function :

J Jacobian of transformation

P, Q Source functions

t Time :

T ‘ Temperature ‘

Xy ' Coordinates in physical domain

o,By Coefﬁcients in tranlsfprmed partidl
differential dquation |

oy Coefficient of thermal diffusion

En Coordinates in compltational domain

i, j | Variable at point (j, _]I

A | Increment in variable

Superscript oo

n

)

y
Time iteration number

Revised 23{ December 1999

1, INTRODUCTION

Transient heat transfer is important in
atmospheric, earth, biological and technological
sciences. Structural technology depends very much
on transient and steadystate heat transfer studies,
particularly in material selection, for example in
supersonic/hypersonic nozzles, re-entry shields,
chemical and thermal reactor components and
combustion devices.

[3

This investigation deals with the study of
transient heat transfer in different cylindrical
geometry. The analytical study of unsteady heat
transfer in circular cylinder has been carried out by
Carslaw and Jaeger' and Meyer’. However, the
analytical meth|0d involves grappling with Bessel
functions because of circular 'cylindrical shapes.
The analytical study becomes almost impossible for
non-circular and non-rectangular cylinders, and
physical situations which aro ‘not very uncommon

phenomena. The method of grid generation has been
I

ta
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widely used to analyse fluid'flow and heat transfer
problems in complicated domains™. The  heat
transfer problemg involving irregular and complex
cross-sections nge solved by generation of body
conforming grids which may not necessarily be
uniformly spaced within the domain of
investigation. Curvilinear grid of physical (x, y)
‘plane is related to uniform grid of computational
plane (&, 1) through the solution of elliptic partial
differential equation with Drichlet boundary
conditions. The governing heat transfer equation
for irregular-shaped bodies is transformed on to
regular computational plane, wherein it is easy to
setup uniformly spaced nodal pomts The finite
difference analogue of the thermal equatxon and the
accompanying boundary conditions are:solved to
trace steadystate evolution of temperature with
time®®. A thorough review of the body conforming
grid generation technique was carried out during a
refresher course'® on computational fluid dynamics
(CFD) known as ‘CFD-update 1992’ held at the
Indian Institute of Technology, Madurai. This
development is for general-shaped cylindrical
bodies, and detailed calculations have been carried
out to study the evolution of temperature to
steadystate in elliptical cylinder and in a square
block with a circular hole.

The study has also been applied to transient
heating of the driver section of combustion-driven
shock tube. It is observed that for stainless steel
shock tube (internal diameter:12 cm and thickness:
1 cm) subjected to 2500 K at,the inner boundary,
only a millimeter of the thickness senses a rise of
11 Kin 5 ms.

2. FORMULATION & SOLUTION

The distribution of points m the interior of the
domain is determined by solvmg

+&,, =P(x,y) (n

e + My =Q(Y) @

where &,m represent coordinates in the
computational domain and P and Q control the point
spacing in the interior of the physical domain.
Equations (1) and (2) can be transformed to
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computational space by inferchinging thf roles of
independent and dependent variables.

It may bo abserved that fon n functidn £ (&,n),
such that

£ =E(x,) @)
n=n(x,y) 4

Vif=(VEf + & +E))f,
+2(E,m, +8,M,) fi + My M)f

2
+ (V Tl)f n ’ 5)
where
2 ]
v = 4 2 2
ax 6y (6)

 Interchanging the role of dependent and
independent varjables forf(x y) where

x =x(&,n)
y=y(Emn)
fe=x S + 2], Q)
fo=x0fx + 2], (8)

Using Eqns (7) and (8), one gets the values of
fcand f,:

fi= 7 ofe yefy) ©
f, = :} (xe fy =%, fe ) (10)
where
J=(xqu'—}'§xq) '| (1)
For
'

&, =YolJdu &, =—x,1J (12)
Far f=n

N, =y /J, ﬂ,‘]=x§11 (13)
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Using Eqns (5), (11), (12) and (13), Eqns (1)
and (2) transform tof the following system of

quasi-linea% partial diffefential equations: X

!
-‘23% g, == (Pxg+ 0x,) (g

oYy "2[3)’;,. A =—J2(Ij’y§+Qy“) @15)
where

a=x +y?

“ -‘rT:\
B=xex, +ye,
2
+y:
J =2y, = yex,

Equations (14) and (15) can be finite
differenced usjng difference formulae for

1 .
xE,’ xn’ yg'-a )’,,, xggv xﬁ'l’ xﬂ'\’ y&, y§'\ and y'm

which yield
C QG+ ) +x -1 )
B+ j D -x(i+1, -1
o1 | =x-debexG-Li-Dy

2o +7) |+ Yix G, j+1) +x (=)

HJP[P{x i+ -x(i-1 j)}

+ 0, j+)-xG, j-D}]/2 |
(16)

a{y(i+1 H+y(i-1j)}
- 2B{y(i+Lj+D)-y(i+1,j-1)
-y(@-Lj+D+y(-1,j-D}/4
20 +y) | + 7y G, j+D+y G, j-D)
+ [Py G+, )-y(-1)}
+ QU j+D=-y G j-D}}/2
a7

y(@i.j) =

. New valued of x(i, j) and ty(i, J) are obtained
from values of previous iteration and the iterative
process is carried out to ach{evc third decimal
accuragy.

! . .

Heat transfer equation governing the
temperature profile in the physical domain is
given by:

o'1 2T _ 10T
ax2 ayZ ad at (18)

‘ In the computational domain, using
coordinate transformations [Eqns (3) and (4)],
Eqn (18) becomes:

+ Q0T

n

—_T
a, (19)

which governs the temperature profile in
computational domain. Using central difference
analogue for the derivatives of T with uniform grid
spacing A& = An =1,Eqn (19) becomes:

T G, j) = T" G, j)+a, Ar[1/J% {oT, ~ 2T,

4]
+yT,, }+PT, +QT, ] 0)

The equation is iteratively solved for second
decimal accuracy which is achieved by grid
consisting of 99 x 99 points. Computer software
has been developed and used to study the
evolution of temperature in the following cases:

(a) Sta‘inless steel 304 cylindrical shock tube with
!
Inner diameter = 12 cm

Outer diameter = 14 cm

(b) ’ Stairfless steel elliptical cylinder of thickness
1cm

Inner semi-minor axis =5 cm
Inner semi-major axis = 6 cm

(¢) Stainless steel square block with circular hole
Side of square block =4cm

. i .
Diameter of circular hole = 2 ¢cm
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Figure 1. Temperature vs radial distance
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Figure 2. Temperature vs radial distance

3. RESULTS & DISCUSSION

The finite difference Eqn (20) has been solved
iteratively beginning with initial ambient
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temperature (7,). The outer surface of the tube is

supposed to be kept at T, and inter surface raised to
T; at time ¢ = 0. Temperature proﬂl‘es have been
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in different cases of| this Drichlet
boundary value problem with temperature at the
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I \ i ' * NUMERICAL METHOD
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Figure 4. Temperature vs radial distance

t

inner boundary raised to 2500 K and that at the
outer boundary kept at 300 K.

i

l
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Figure 6. Temperature vs radial distange '

Figure 1 gives the temperature profile in the Technology Centre (LASTEC)' shock tube. It is
driven section of shock tube after 5 ms which is observed that about a millimeter of the innet side of
more than the ruri time of Laser Science & the tube senses a rise of 11 K. Figure 2 gives the
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variatipn of temperature profile within the
cylindrical tube with timel Steadystate is reached

after 27.83 s and the temperature profile agrees
250
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within 0.01 per cent of the available analytical

solution for steadyptate'. This result is plotted in
Fig. 3. Morever, this adds to the confidence in the
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Figure 10. Schematic of grids in physical domain

analysis and the body conforining grid generation
technique is applied to study transient heat trarisfer
in elliptical cylinder and square block with circular
hole! Figures 4 to 7 give the evolution. of
temperature in elliptical ¢ylinder of thickneds 1 cm
with major and minor axes of 1 and 10 cm,
respectively. Figure 4 gives temperature profile in
the cylinder along minor' axis after 5 msyand Fig. 5
gives the evolution of temperature to Lteadystate
along minor }axis.‘ Similarly, Fig. 6 gives
temPerature profile in elliptical lcylinder along
major axis at 5 ms and Fig. 7 gives the levolution of
temperature to steadystat‘e along majdr axis. It is
observed that the tempergture profile gets very
close to the steadystate prdfile within first 8 s and
then it takes 20 s more to ',achieve steadystate.
Figure 8 gives the temperaturg profile after 5 ms,
whereas Fig. 9 gives the evolution of tempkrature in
a square block with circular hole. The schematic of
the grids in physical domain i% depicted in Fig. 10.

v

It is observed from Figs 2,5,7 and 9 that the
time taken to reach steadystate increases with the
complexity of the domain. It takes 43 s to reach
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]
steadystate in square block with cirkular hole which
is almost double' the time required to reach
steadystatf in a circular cylinder.
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