
!CHE INTERNAG BALLISTICS OF A LEAKING GUN* 
\ 

1. In troduotion. - 
The problems arising in the internal ballistics of guns may be classified 

under two broad categories :- (a) physico-chemical problems, (b)  dynamical 
problem. The former deals with such questions as the thermochemistry of the 

. propellant gases and the rate of'bmning of a propellant ; how the rate of burn- 
ing depends on the composition, initial temperature and pressure. Among the 
various theories proposed, we may mention here the theory of Rice and Boys and 
Corner treating the burning of the propellant as an advancing flame zone in a 
gas. By incorporating certain hydrodynamical considerations on turbulence into 
the theory, Corner was able to arrive a t  an estimate cf the effect of "erosion " 
of the propellant gases on the walls of the gun. 

- \ .  

~h-namical problem of the motion of the shot in the &n, which other. 
wise would be simple, is rendered complicated as it has t o  take account of- 

(1) the irreversible prooe'sses in the gun such as the physical shot-start 
pressure, the bore resistance and the heat-loss to the barrel, and 

(2) the flow of the gas behind the shot. 
In the theory of an orthodox gun, the effect of the gas-flow is taken 

, accou~ti of by the so-called " Lagrange corrections ". 
The problem of gas-flow assumes a greater importance in the theory of leak- 

ing guns and of rockets. In recoilless guns and rockets; a suitably designed 
venturi a t  the rear end of the chamber allows the gases to escape, thus provi- 
ding automatically for the absorption of recoil in guns and for providing the 
necessary forward thrust in rockets. Again, in q worn gun in which there is a 
long " runup " before the band engages the rifiing, and in a smooth-bore mortar 
in which the diameter of the projectile is less than the caliber, there is a leakage of 
gas past the projectile. In all these cases, the problem of the gas flow is then 
the familiar hydrodynamical problem of nozzle-flow. 

In this article i brief account is given of the theory of internal ballistics of 
leaking guns. The following schematic diagram will serve to make clear the 
interconnectio~s of the various branches of the subject, attention to which has 
been drawn in the proceeding paragraphs. 

* Based on a talk given in the Defence Science Orghation by Dr. D. S. Xothari, Scienti- 
fic Adviaer to the Minitry of Defence. 
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$2 .  Basic Elquatione.--As in the theory o! orthodox @, we assume 

(I) rate of brning equal to f3 p CC 

(2) inclusion of covolume indepepdent of temperature 

(3) neglect of bore resistance, replacing i t  by either a shot-start 
presswe Po ox an equivalent ~orrection to  B. 

1 n addition we, introduee the foIlowing awmptions peculiar to a leaking gan : 

(4) NO unburnt propellant is b s t  thraugh the nbqzle. 
(5) The gas-flow may be treated as quasi-stc+y, - e- 

(i.e. the flow would be the same under the inskmtaneous pxessures 
asunder &m&y gxtissares). 

(6) The setting up of the backward gas flow by the bursting of the sealing * disc can be assumed to begin instantaneously at  e, eertain pressure 
called the nozzle.start pressure (h). 
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The Lagrange corrections mentioned above in the introduction are derives 
from the conventional approxirr.aticn whit& assumes that the density of the gas 
is independent of position in the gun. For a gun with leakage some allowanae 
must be made for the fact that the quantity of gas in the gun does not increase up 
to the full value and also for the change inthe velocity-distribution in the gas if 
there is backward leaking. These factors:&ay be taken account' of sufficiently 
by replacing C  by k c  (N+ 1-2) where C  is the mass of charge, CN is the mass 
of gas in the gun a t  any instant-and la: is a semi-empirical numerical factor. 
Actually, it is found that it is more convenient to use kCN instead of kCw (N+ 1- 
z), this replacement altering the muzzle velocity and the peak pressure by not 
more than 1% in most cases. We thus _ i d  : 

space-mean pressure = 1  + kCNl6W 
D 

Pressure a t  base of shot =. 
1  + kCN,rn J 

where P is the maximum'pressure anywhere inside the gun a t  *the instant con- 
sidered. 

The classical theory of nozzle flow furnishfs the followk expression for 
the mass-flux : 

Q = ylpr S (R ~ r ) +  . . - . (2) 

where p,, T, sepreaent the pressure and temperature in the reservoir, 8 is 
the area of the throat, and yl is a numerical factor depending on y and whose 

- value for all service propellants is about 0.66. Allowing for friction and heat- 
loss, the value of i,h is taken $0 be 0.63, We indentify p r  with P and T, 
with T. We have then the following equations- 

Equation of gasjflux : 
dN dz C - = c -  SP 
dt d t -P(Rqt  .. . . (3) 

.3fie&j equation* : , 

d - AP-dx dz. 
(NT) = - (Y-1) -- CR 'di, 

sp .E. + @i Tt - ~~i l - (~- l ) r l i ,h  (RT)' (4) 

where E = q pr / (1-ypr ), q = Covolume. 
The term in E can be omitted with a relative error of 7 % at  & =0*35, $n 
tbe first term on the right of the energy equation?' -1 bas been written, as usual, 
instead of 7-1 in order to take into account heat losses. Omitting the E -term, - 
the energy equation becomes : 

d((..)=-(;-l)g$+~o;it- RO a% dz YZ (RT+ . . (lo) 

Equation of state : 

c ) = ~ ~ ~ ~ ( l < k G )  . (6) K o + A x - a  

Here a term (z / 8-N q) has been omitted as being negligible for recoilless 
guns. (KO = initial volume of the chamber). - - --- 

* A simple derivation of the energy equation is givan in the Appendix. 
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d2x ............ &'pation of motion of the shot : W -- = AP 
dt2 (6) 

df oC ............ Rate of burning equation : . D - = - /3 p 
dti (7) 

Fohn equation : z :- (1-fJ ( 1  + O f )  . . . . . . . . . . . .  (8) 

Before the nozzle opens, S=O ; before the shot starts, x=O ; a f k  'hell. burnt " * - 
z=l  and equation (5) has to be replaced by 

This set of equations can always be integrated numerically. The aumerical 
integration is facilitated by writing the equations in terms of suitably defiqed 
non-dimensional variables. For the case when y= 1 (linear rate of burning) 
Corner has given a more rapid, semi-analytical solution, the initial conditions 
being represented by nozzle-stmart and shot-start pressures. The method depends 
upon replacing certain quantities that occur in the integration by suitable a p  
proximations which have been aggested by comparison with a large number of 
numerical integrations. - 

Beduction to equivalent non-lesking gun. 
We now turn to a very useful simplification of the equations whereby we 

may assess the effects of gas leakage by comparison with analogous equations for 
an orthodox gun. The level of approximation is essentially that of the 
" isothermal model " inorthodox gun theory. We make the following assump- 
tions : 

(1) There is no initial resistance. 
(2) The nozzle flow is established a t  a low pressure. 

These assumptions may be partially corrected for by adjusting p, 
I \ 

(3) cc = 1 ; (4) S : Constapt. - 
Por recoilless guns with nozzles of reasonaBly good shapes S/A lies near 
0.65 and in such cases, the temperature shows a rapid drop after the nozzle 
opens, thereafter flattens out, and later shows the increasing rate of fall charac- 
'teristic of normal guns. For most of the period of burning, the gas temperature 
in the recoilless gun lies near 0.9 of the mean temperature in the corresponding 
period of an ordinary gun. We may therefore approximate to both leaking and 
non-leaking guns by giving temperature a mean-value during the period of burn- 
ing. For a normal gun tbis mean is about 0.9 To, while for recoilless guns this 
mean is about 0-85 To a t  S!A =0.7. Thus one effect of leakage may be ex- 
pressed as a decrease in the effective force constant. 

Let h = mean value of RT. 

Then we have from (3)) (5) and (7) with cc = 1 
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kCN 
where a factor 1  $ - has b.een omitted on the right, as its value is never 

6W far from u~i ty .  -- 
The dimen~ionkss parameter is the fundamental quantity expressing the 
effect of leaking on the internal ballistics. For smooth-bore guns and mortare - 
Y + 0.1. For recoilless guns with tubular propellaslt rJ 0-4-0.6. 
We may write (11) as. 

....... P ( K ~ + A ~ -  = c ( ~ - w ) A ( I - ~ )  ( i + o l f )  ..: ( ~ 2 )  

where 6' = $1 ( 1 - T )  ....... , .... (13) 

The corresponding equation for an orthodox gun with a charge C  (1-v) of 
. propellant with mean force constant h  and form factor' 8' would be 

~ ( 1 - 6 1 1  KO + A Z - - ~ - - -  = ~ ( l - q ) h ( l - f )  ( l + B 1 f )  . . . . . . (  14) 

Tbis differs from (12) by ;1 term wGch is important only for high densities of 
loading. 

Thus, up to " allburnt "j the leaking gun behaves almost as if it were an orthodox 
gun with the same dimensions, the smaller charge C  (1-41) : the bigger form 
factor 6' = $1 (1-p) and a force constant reduced as described previously. 

The " effective charge " C ' = C (I-- q) 

If VB is the velocity a t  " burnt " and VE the muzzIe-velocity, then it can be 
shown that, 

*swv, \ 

3 w 1 v ' 2 + 0 . 8 ~ ,  .........-.. cl+- - (16) 
8 x A X Q  , 

\ 

For a recoilless en, S/A rJ 0.65, + y 0.63 so that 

= Cl+C,, say Cl may be regarded as the " part 
that pushes " and " the part that leaks ". In  other words C1 gives energy 
to the projectile, while C, is used up in preventing recoil. 

The following formula has been found fairly satisfactory ~p to nuzzle-velocities 
of 2,000 ft./sec. :- 

C  -- -+ y2 ;-, lY. y =  VE - 
8- 2 '2.3 2 

In an orthodox gun, the muzzle velocity is proportional to (ol~arge , for smgU . , r, 
changes in the charge weight. 

(b.r, 

~ h 4 ,  V. k (I,$) + (1-B'T] - 
~ ~ ' 7 '  k 

, $, , -. ,>" - - 
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Similarly, peak pressure cx ( ~ - q ) ~  + 1-2 'fl . 
1 

and central ballistic parameter M cx --- 
1-Y r J 1 - t - V  

An important and useful point is that these ballistic quantities are linear in $J. 

Influence of design variables for a recoilltgs gun 
One has to consider two types of variations : (a) changes a t  constant throat, 

area which are of use in studying the regularity of the weapoc, and (b).&pngea at 
zero recoil, which are important in deciding the design for hest standard per- 
formance. 

At constant nozzle throat area, the peak pressure and the position of " all 
burnt " exhibit a marked discontinuity of slope on crossing the boundary P,=P,. 
A similar discontinuity is exhibited by the muzzle-velocity for zero recoil, but 
not at  constant throat; area. The results show that, for example, the maxi- 
mum pressure is practically independent of nozzle-start pressure (at constant 
throat area), if PN < PO but when PN > PO; the maximum pressure becomes 
sensitice to PN. This provides a method of determining the relative timibg of 
nozzle opening and shot start. With a series of caxtridge c&s of stronger and 
stronger discs, we plot the peak pressures against thickness. The position of die- 
continuity in the curve gives the h ichess  a t  which PO =PN and hence we can 
estimate the relation between these pressures for the standard disc-thickneqs. 

. The smaller the value of Pn, the smaller are likeIy to be the variations in muzzle- 
velocity and maximum pressure due to round-to-rbund variations in the ~trength 
of the disc. 

The effects of changes in web-sle, of shot weight, or of total shot travel in 
a recoiIless gun are all similar to the corresponding results for a normal gun. 

Other applications. 
The theory explained in the previous paragraphs can be applied to two other 

: (I) the ballistics of a worn orthodox gun, (2) leakage in a smooth bore 
. mortar. In the case of the former the theory enables us to estimate the loss of 

ballistics due to leakage in a gun in any stagsof wear. I n  the case of the mortar, 
the theory has been of value in determining hob the tolerances on the weight 
and dimensions of the bomb are connected wibh the dispersions of muzde 
velocity and the range. 

. Appendix 
Tllc mass of gas that flows through the nozzle in time dt  is Qdt. 

Let this mass oigas be that contained in the Section AR% of the chamber. 



The energy added in time dt 
ciZ 

+ 

= C - dt (To -T) 0,- 
dt 

- CR -- dz 
(To - T) y dt - 

Y-1 
Thisieutiliskd partly in increasing the internal energy of the gas and partly 

the work done. 
R dT 

The increase in internal energy = CN - - dt  dt 
The work done=work done on the shok side IW') 
+work done on the nozzle,side (We) : 

kCN 
3 T +  APV at; Q 

kCN LCN 1 + - I +  -- 
2w1 6W1 

Qdt W" .; p. - (Pressure x change of volume) 
n 

Now P (lip-Y) = RT 
RT 

or l / f p " ~  4- T 

W. = (RT + P?) ~ d t  = . . 
* 

(1 + E) RTQ dt. 
Hence we have 

CR dz R dt dt + (1 + c) QRT. dt - (To-T)-dt =CN- - a t+  -- 
Y-1 dt - y-1 dt kCN 

'+ 6 K  
dz dT y-l +4pv * (7-1 -k '1 QR . . 

4.e. (To-T) - = N - + - -- 
dt dt  CR k c ~ + -  c 1 +  -- 

6Wl 
The equation (3) of the text gives - 

& dN QT . a  . . 
dt C ; ~ t = ~ - - f -  

- .  (1,b) 

Combining (1, a) and (1, b) we get 
dz d 

T~ = (NT) + Y-I CR A'+ kCN [ 1 + (y-1) (1 + &) I 7 . . (1 ,~)  

' + 6 ~  - 
If, as usual, we replace 7-1 by y-1 in the second term on the right in order 
to take account of heat loss, we get - 

dz d QT 

dt dt APV + [ l + ( ~ - l ) ( l + ~ ) l ~  
To -= -(NT) f .- kCN "1+ .- 

+6Wl 
which is identical with the energy equation [Eq (4)] given in the text. 

# 

I .  




