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Contimllods time-predictive control approach is €mployed to formulate an output tracking
nonlinear, optimal, termjnal guidance .law for re-entry vehicles. The notable features of this
formulation are that the system equations are not linearised and the evaluation of the guidance
equations dogs not need the information of vehicle parameters, such as drag and mass. The
formulation allows to impos¢ the physical constrains on the control inputs, i.e. on the demanded
lateral accelerations throlugh a saturation mapping and the controls are obtained using a fixed point
iteration algorithm which converges typically in a few iterations. Further, a simple method of tuning
the predictior! horizon needed in the guidance equations is presented. Numerical simulations show
that thé guidance law achieves almost zero terminal errors in all states despite large errors in initial

conditions.
1. INTRODUCTION

Extensive research has been carried out in the
area of re-entry guidance and control, and a variety
of schemes for re-entry guidance' as well as for
terminal guidance of ;e-e‘ntry vehicles? have appeared
in the literature. The guidance law designs* are
essentially based on linear control theory. The
performe}nce of these and similar guidance laws
gets deteriorated whenever {hp assumptions of
linearisdtion aré violated. Further, in general, the
guidance law designs based on.I linear techniques
do not address thé problem of control input saturation.

Certain schemes, such as pro‘Portional guidance
and crpss product law, which do not require a
reference trajectory, have also been considered
for terthinal guidance’. However, achieving proper
terminal valuesi for:the dynamic variables with
these techniques are hot easy and also the resulting
contro} may not be loptimal.

' In this study, a recently developed continuous
time-predictive control®’ approach is employed to
formulate an optimal, nonlinear terminal guidance
law with constrained control inputs for re-entry
vehicles. In this approach, the state or output response
of the nonlinear system is predicted by appropriate
expansion, and the guidance law is obtained by
‘pointwise minimising a quadratic performance meastire
based on the error between the predicted response
and the desired response. Since the system equations
are not linearised, the drawbacks of the linear techniques
are overcome. The reason for formulating an output
tracking guidance law instead of the state tracking
one is that, firstly, in a state tracking formulation,
the evaluation of the guidance equations requires
the information about the vehicle parameters, such
as drag which is not very precisely measurable
and, secondly certain states, such as velocity cannot
be effectively regulated®. Ih this study, the
re-entry vehicle is considcred to be moving in a
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two-plane (i.e. having down'range as well as crossrange)
over the flat carth. The cquations of motion have
been modified for the derivation of guidanhce law
by choosing the downrange as an independent variable
in place of tinle, as time as an independent variable
offers inferior results for the reference riding guidance
law?.

The altitude and crossrange have been chosen
as outputs, while the lateral accelerations in vertical
and horizontal planes are the inputs. The guidance
law thus derived achieves input-output feedback
linearisation, necessitating to check the stability
of zero dynamics of the system for overall closed-
loop stability. Also, the guidance law rquires selection
of the prediction horizon which is the interval at
which the system response is predicted. This interval
need not be constant and can be tuned suitably to
achieve better tracking performance. R

2. PREDICTIVE CONTROL

The continuous time-predictive control theory
results in an optimal and nonlinear feedback control
law through minimisation of a performance measure
based on the predicted errors between the actual
trajectory and the reference trajectory. A brief outline
of this approach is presented for the sake of
completeness. Consider a nonlinear system which
is described as

X = f(x)+G(x) u )

Yy =c(x) 2)
where

fAlfs 1] Galge g 3)

and x(H)e X < R" is the state, u(f)e U < R»
represents the control and y(f)e R™ is the output
vector, where X and U are compact sets in R” and
R™ spaces, respectively. The functions f; R"— R",
¢ R"->R" and G: R"—>R"*m are continuously
differentiable nonlinear functions. Suppose that
the desired output trajectory is specified by
9,0 <t < t, which is an outcome of Eqné (1)
and (2) for some feasible reference control u'(?)
eU for all te[0,2].
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at any instant, t€[0,1], the current dontrol, u(t)
determines or influences the output response in
the immediate future, To prédict the response of
the system dueito present control input, the following
procedur? has been followeq:

}

Let A, L 1,...,m, be the lowest order of the
de'rivative of y,, the i compotient of y(t), such that
the component df control appears for[he first time.

Given the present O;ITplll’ of the i}ystem, 1),

Define z(x(r),8) = [zl(x(t),8),...w,zm(x 0,0)]"
where ‘
5 . 4
z,=6L,(c,) 55 () +HLj' (c))
i=1,u,m (4)

where ¢, is the i compohent of vector c(x), § >
0 is a real number designated as the prediction
horizon and Lf‘(c,) denotes the &* order Lie derivative
of ¢, wrt f. To expose fully the influence of u(t)
on y(t+8), for'a small § > 0, one may approximate
each y(¢+38) by an ?xi‘" order Taylor series at .
In doing so, one canlexpress y(t + 8) as a vector
function of u(t) in a compact form as

Yt + 8)my(t) + z[x(1),8] + A(S)WI(x())]u(r)

where A(8)eR"*™ is a diagonal matrix with the
elements on the main diagona_'l being

bl

A =T i=  m
!

and W(x)eR™*™ has each of its rows in the form
of !

w; =[Lgl{ Lfll—l(cl) }, ’!Lgm{ Lfl,-l(‘c,) }], i|= m
t (7)

Similarly, expanding the i* componet of g(¢ + §)
in the A™ order Taylor’s series yields:

| g +8) ~g () +d(,5) (8)
'the i component of d(t,8)e#"’

where
1
{
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where g#is the A" dlfferentlatlon of g, wrt time.
To find, the current control u(1) that improves the
trackmi accuracy at next instant, consider pointwise
minimisatign of the performance index that penalises
the output tracking error at (¢ + 8) and the current
control expenditure u(r).

fv«[} l

. VA - &«
yt+o)—qg(t+o) {:7)7\(?*11?’:)*{1’“4#(5‘)‘

+7uT(t)Rutt) (10)

where O € R "™ is positive definite,and R € R"""
is positive semi-definite weighting matrices. Replace
y(t+8) and q(z + 8) in Eqn (10) by predictions in
Eqns (5) and (8), respectively. The control that
minimises the performance index is obtained by
setting A7/4u equal to zero as

l . .
ut) =-[{ AW(x) } QAW (x)+ R]

[{Am) W(x)} O{ie(t) + z(x,5) - d(t, ) }}
| (1)

wheree(f) 4y () - q(lt) is the current output tracking
error. It has been'shown’ that if W(x) as defined
in Eqn (7) is of full rank, then the control
[Eqn (11)] achieves input-output linearisation and
asymptotic tracking ‘of any given output history

q(#) for R =0 and for any 6 > 0, Q > 0 and if the
relative degree A, < 4. The relative degree of a
system is equal tp the number of times the output
must be differentiated to have the control input
appear explicitly for the first time. When the relative
degree} is more than four, 1t can be shown that the
contrr[)l [Eqn (11)] still achle,ves the input-output
linearisation of the sSlstem but may not guarantee
asymptotic trackmg of output history. The condition
of mvertabrhty of W is equivalent to system [Eqns
(1) and (2)] having relative degree in the terminology

i
of the gedmetric control theory®. When the control
is constrained or bounded, the control command
is obtained through the fixed point iteration algorithm’,
as given by the following theorem:

2.1 Theorem

Consider a system of the form of
Eqns (1)—-(2). Assume that the matrix

Px().6]={p;} =[ {A(O)Wx) }' QA(S)W(x)+ R]
is nonsingular at x(¢). Then for any &> 0:

e The unique optimal control u*(t) to [Eqn (10)]
exists and is the unique solution of the fixed point

equation in u. ' ,

u(e)=s{ﬁ{(AW)TQ(d—z—e)}—[ﬂ{«AWQAW+R)—I]u]
4 plu)
(12)

where all the arguments have been suppressed for
clarity, I is an identity matrix,

-1/2
ﬁg{z >, p,-f-} (13)
=t j=1

and s represents a saturation mapping on some
a c R™, such as

V],(x,t) a; ZU,-(x,t)
si(a)=1{; Li(x,t)<a; <U, x,t)
|y @ SLD)
i=12 m

where L, and'U, are pre-defined functions

e The fixed point iteration sequence {u*} is generated
by:

u* =pu* ), k=12, Vu® eR" (15)

converges to u'(f).

It is straightforward to verify that if the saturation
mapping in Eqn (12) is removed, one gets Eqn(11).
Thus, controller [Eqn (12)] gives the optimal control
in both saturated as well as unsaturated cases. The
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fixed point algorithm is well-suited for computer
implementation, and it converges typically in just

a few iterations.
1

3. GUIDANCE LAW FORMULATION

The continuous time-predictive control is employed
to fomulate the terminal guidance law for a point
mass re-entry vehicle moving in two-plane over
the flat earth. The origin of the coordinate frame
is fixed at the projection of the nominal re-entry
position of vehicle on ground with X-axis pointing
downrange, Z-axis along the local vertical and
positive upward, and Y-axis completing the right
hand system giving the crossrange. The standard
equations of motion* are:

r =Vcosycosy
y =Vcosysiny

h =Vsiny
. D )
=——-—gsiny
m
y = ”*5 _& E‘f,f 4 (16)
14 J
¥= ?c:().x‘ V4

/

where the state x =[ryh Vy y]' are the downrange,
crossrange, altitude, velocity, flight-path angle and
azimuth angle of the point mass vehicle, respectively.
The state y is not to be confused with the output
vector y defined in Section 2: The quantities D and
m are the drag and the mass of the vehicle, g is
the gravitational acteleration, while u, and u, gre
controls, i.e. the lateral accelerations in vertical
and horizontal planes, respectively. It has ‘been
shown® that time as an independent variable for
the nominal riding guidance schemes give inferior
results and so for the derivation of the guidance
law, the downrange, 7, was chosen as an independent
variable instead of time. To this end, the modified
equations of motion with r as independent variable
are:

y'=tany ; h'=tanysecy

n gtany

Vcosy

246

. U e 1

Y =Y cosycosy 1 Vicosy

W
Ve L‘A/‘f"l_]'(,‘(?.'y‘ 174 (17)

where () represents the differential of (.) wrt downrange
variable r. To derive the guidance law, altitude
h(r) and crossrange y(r) were chosen as outputs.
Following the method outlined in Section 2, and
noting that the relative degree for both the outputs
is two, the various quantities required in the control
law [Eqnl1] are: )

. [82 &
A= Dlag{—-z—,—i—] (18)

0 _ V2ecdsty cos’ v |
1 tany tany
W=|—5" 3 2 2 }; g ! 7
V?cos’ ycos™ w V" cos” ycos™ ¥ 19)

L J

e(r) =[e,(r) e,(M) =[r=y") (h=h)Y’ (20)

5 T
lany O g
\ cosy 2 V2 cos® y cos” w

s\ . 2 .
d=[d,d2]r=5‘ | 5y"+§2—y‘" oh +§2—}1

z =[z,zz] T:[&m 7

- e -

0=DiaglQ, 0] R=Diag[R R
|

One important issue in the predictiv# controllers
is the choice of proper Values for thé weighting
matrices and usually thesg quantities are selected
through tdial and error procedure by observing the
simulated responses as there does not exist any
systematic methodology for their selection. Thus
all the quantities required in Eqn (12) aré defined,
and the guidance command' can be obtdined by
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substituting Eqns (18)-(23) in Eqn (12). The saturation
functions L, and €/ are user defined and should
reflect the physical constraints on the control magnitude.
One car observe that the evaluation of the guidance
law dc:ls not require information of the vehicle
paramgters, such as mass, drag and reference area
and also atmospheric qulantitias, such as
density of the, air. The quantities

vy () y f’rJ ¥ (r)and h’ r’r-‘) h(r), b (r)

are nl?lamed whlIe generating the reference trajectory.
In th¢ unsaturated case or when the control input
is not constrained, one cah set the weighting matrix
R to zero in controller [Eqn(11)], if Win Eqn (19)
is nopsingular. In that case, i.c. when the control
input is not constrained, the guidance commands
in suaLu form -are:

I
I

2 p
Y= o V2 cos” yeos” W f |

{ i . L
{mﬂ&'-‘m{‘nmw{ e, +&(tany —y )l—%i} } ’

: = L.
—{ e, +c§[ i -k ] o [1—£—+F;'} } ]
cosiy Veqs® ycos™

i 2
y ='§T ¥ cas® y cos® w{e_, +Stany —y°) - %J‘]
| I
| .

: (24)

The guidance commands [Eqn (24)] are used
to show the closed-loop stability of the ’«:}fsmm

4. CLDSEHLUDIP STABILITY

No genéral pm-;-lf for the closed-loop stability
is available in the literature when the control is
saturated. For the unsaturated case, the closed-
loop stabilityl of the system can be presented for
the case when the weighting R is zero. The guidance
commands [Eqn (24)] represents the unsaturated
version [Eqn (11)] with R =10. To show the closed-
loop stability of llju.: isystmn [Eqn (17)] under the
guidance law [Eqn (24)], first the authors show
the asymptotic tracking of the reference output
trajectory. Consider the crossrange and altitude
equations as given in Eqn (17):

y'=tany; h'=tany sec (25)

Differentiating Eqn (25) twice wrt r (as relative
degree is two for y as well as &) and substituting
Eqn (24), respectively, one gets the tracking error
dynamics for the crossrange and altitude as follows:

9
e, + E-Eﬁ' —5¢=0 (26)
a 8

(]

e, "+ -;—e,,'vr ;—]e_., =0 ; (27
Clearly the error dynamics [Eqns (26)-(27)]
are given by stable linear differential equations
for & > 0 thus assuring asympgotic tracking of the
reference output history for given initial condition
errors. As discussed in Section 2, for R = 0 in
Egn (11), the guidance commands [Eqn (24)] achieves
input-output feedback lincarisation”. From the results
of the geometric control theory, when the summation
of the relative degrees of outputs is less than the
number of system states, zero dynamics'® exists.
The zero dynamics essentially represents an internal
dynamics of the system which becomes unobservable
when the system is subjected to the input-output
linearising controller. Thus for the closed-loop stability
of the system under feedback linearising control
laws, it is necessary that thg zero dynamics of the
system must be stable. In the present case, the sum
of the relative degrees of the outputs is four while
the number of states as seen from Eqn (17) are
five, and thus the closed-loop stability of system
[Eqn (17)] under guldance law [Eqn (24)] is subject
to the stability of the zero dynamics of the system
[Egn (17)]. To this end, anonlinear state transformation
of the state vector in Eqn (17) is obtained as
z=[z,z,]" wherg z, 4 [z, z,, 2, 2, ,1'= Dy'hit'] and
z, represent the states aasnc;atcd with the zero
dynamics of the system. Choosing z.= V, the zero

dynamics of the system in the new coordinates is
given by:

=D Jz vzt 41 ez
zi == =y, t 11\.. "

= 2
' mz z, (28)

1

The stability of the zero dynamics is assessed'
by substituting z = 0 and one can easily verify that
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the zero dynamics of the present system is stable,
thus assuring closed-loop stability for the complete
system [Eqn (17)] under the guidance law
[Eqn (24)].

5. TUNING OF PREDICTION HORIZON

The guidance commands [Eqn (24)] requires

selection of the prediction horizon 6 and it has
been shown that the performance of the guidance
law is very sensitive to the selection of this parameter.
One can note that the prediction horizon represents
the time constant of the error dynamics
[Eqns (26)-(27)] implying small value of this parameter
is desirable for tracking accuracy. However, one
can observe that too small value of this parameter
causes large control as is obvious from Eqn (24),
while large value may result in poor tracking accuracy.
This shows the need for tuning this parameter
appropriately instead of keeping it constant. In
literature, the prediction horizon is usually chosen
by carrying out extensive simulations due to the
lack of any standard methodology for its selection.
Here, a simple but effective way of tuning this
parameter for the present problem has been presented.

Consider the error dynamics [Eqns (26)-(27)].

Solving these equati'ons for initial errors in crossrange
and altitude yields:

e,(r)=e, (O)e_ E(COS{S— + sin %) (29)
-1 r L r
e,(r)=¢e,(0)e ‘?(cos-g+sm:§J (30)

where ey(O) and e, (0) represent the initial errors
(i.e. at r = 0) in the crossrange and altitude from
their reference value, respectively. In the present
problem, the prediction horizon is in meters as the
equations of motion have been modified by choosing
downrange as independent variable. Suppose, itis
desired to bring the magnitudes of the errors in
crossrange and altitude within certain tolerance
+ e and e, respectively, by certain value of
downrange, r, travelled by the vehicle, then from
Eqns (29)-(30) one can obtain an approximate closed
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form solution for 6 at r ='0¥as

{

- r\'
5,(0) = ———

P
'{\5 (UJ

»r

S 31
zn[ o (0)) | 31)

and one chooses the smaller dne from Eqn (31)
as the value of prediction horizon in the guidance
law. Further, one can exploit Eqn {31) for continuously
tuning the value of the prediction horizon. T9q this
end, defining é’y (r) and "h(r) as

5;,(0)““

("j""')

€ |
In(:]g———-ey =y

’

5y(r) ~—

(32)
4 5 .
N (ry—1 ) B

o \r)~ ——

Inl —=——
o
| A

where r represents the downrimge-to-go and r is
the present downrange travelled by the ehicle.
(Here, it is important to note that the downrange,
r is zero at the re-entry point): Then, to ensure that
the value of & is feasible (i.e. & > 0) and also to
ensure that a smaller qne of'the two is used, the

following rules are obtained: !

When e(r)>,0.707€ and e, (r)> 0.707¢,

D

simultaneously: |
5 (r), = min[ai',(r), 8N (33)
W'hen atleast e (r) > 0.707€ ot e, (r)>0.707 €,
8 (r) = max [8(r), 8,("] €D

When e(r) < 0.707¢ and ¢,(r)<0.707€,
simultaneously:

3 (r) =39, 35)
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Figure 1. Crossrange error vs downrange

and
When (r-r r,
8 (h=3, (36)

where & _and 3, a’ e some positive constants and
are used either to ensure that, the value of § is
feasible one or to pre‘vent it from becoming very
small. Thé signs of tolerances € and €, are same
as the signs of the errors e (7) and ¢,(r), respectlvely
so that the natural loganthm in Eqns b] -(32)
exists. To avbid & becoming very small as r—r
a constant value of 3 =3_,,is chosen when
(rFr) < rP Through proper selectién of the tolerances
€, and €, , onecan achieve better tracking performance.
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Figure 2. Altitude error vs downrange
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The tuning of the prediction horizon offers many
advantages. Firstly, it ensure’s large value of &
initially so that the control i5 not excessive due
to large initial tracking errors. It has been shown®
that the output tracking controller based on the
continuous time-predictive control approach offers
stability robustness in the face of bounded uncertainty.
The tuning of the prediction horizon will result in
robustness in performance since the value of prediction
horizon at any instance depends upon the traking
errors at that instance. Next, the value of the prediction
horizon decreases continuously, thus assuring better
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AZIMUTH ANGLE ERROR (deg)

DOWNRANGE {m)
Figure 5. Azimuth angle error vs downrange/

tracking accurancy as the vehicle reaches its destination.
Although the tuning of the prediction horizon by
following Eqns (32)-(33) is for the unsaturated
control, the choice of & obtained through this procedure
holds even when the controls are saturated. There
is no claim th'at this is the best way of choosing
the prediction horizon. However, in the absence
of any standard mehodology to choose this parameter,
the rules presented here are quite logical for the
present application.

6. SIMULATIONS & RESULTS
To assesa‘ the performante of the predictive

control-based guidance law, it is necessary to generate
a reference trajectory for the re-entry vehicle. The
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!
reference traj'ectory is usually obtainqld by employing
certain optimisation téchniques which incorporate
various constyaints, such as physical constraints
of the vehicle and constraipnts imposed on terminal
conditions, while achievin} the mission objectives.
However, to assess the performance of the guidance
law, it is not necessary that the refererice trajectory
be optimal; instead it needs to be just a feasible
solution that satisfies the equations of motion.
The vehicle data needed for this purpose was taken
from the work of R’egan”. The referenge trajectory
was generated by simulating the equatigns of motion
[Eqn (16)] b{y giving open-loop controls and the

x 104
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variables required for evaluation of the guidance
law were stored as a function of the downrange,
r. Since this work deals with a 2-D trajectory,
lateral acceleration in X-Z and X-Y planes were
needed as inputs for the equations of motion.
International standard atmosphere was .used for
obtaining the density as a function of altitude. The
weightings requjred in the controller [Eqn (12)]
were chosen as

O = Diag [10, 10]; R = [0, 0] 37

The prediction horizon was tuned by following
the rulis presented in Section 5. The nominal
downrange, r,as obtained from'the reference trajectory
is 52985 m. Th;a other'quantities needed for tuning
of the predictif)n horizon wefe taken as
=10 m, €,=10 m, §_=,20 000 m,

y

€
5= 500 m and r,=1000{m

Upper limit of 20 000 m was enforced for the
value of 3. The control magnitudes were constrained
through the lsatu'ration mapping defined in
Eqn (14) with |

L,-"TL2= 100 m/s? and U = U,=100 m/s?

Using these values, large number of simulations
were carried out fof various initial condition errors
and the trajectories were analysed for Saturated as
well as unsaturated controls. For saturated control,
Eqn (12) {vas used, while for unsaturated cantrol,
Eqn (11) jwas used. The simulation resylts show
that the guidapce law achieves almost zero teriminal
errors in both cases, i.e. when control is saturated
and also without saturation of controls. It is important
to note fhat the formulation of the guidance law
is output tracking and not the state tracking one.
Thus, regulytion of the butputs y and 4 has resulted
in regulation of the other states as well resulting
in satisfactory termindl errors. Secondly, it was
observed that the initial lateral acceleration démands
were significantly large for unsaturated ¢ontrol
which underlines the need for imposing saturations
on the controls. Th'e large demands for control are
logical since the trackirlg errors are maximum initially.

'When the control saturation is considered, the controls

are obtained using Eqn (12) and it was observed
that the fixed point equation usually converges in

just two to five iterations, making it useful even
for online implementation. The results of one such
simulation are presented in Figs (1)-(8) for the
following initial condition errors:

¥(0) = y (0) + 2000 m
h(0) = h (Q) + 3000 m
V(0) = ¥ (0) +100 m/s
7(0) = 7,(0) + 3°
Ly (0) = y,(0) + 3°

where the reference values of the corresponding
variables are given by suffix n. Figures (1)-(5)
show the state errors, i.e. Y-V h=h, V-V, y-v.,
and g~y as a function of downrange for both
cases, i.e. when the saturation is imposed and without
saturation on control magnitudes. In all the figures,
the solid curves represent the results of the saturating
case (i.e. when the control input is constrained),
while the dotted lines represnt the results when the
control is unconstrained. From the figures it can
be observed that the state erroys reduces smoothly
almost to zero as the destination is reached. However,
the instantaneous tracking errors are found to be
larger for the saturated case' which is obvious.
Figures (6)-(7) give control histories, i.e. lateral
acceleration in vertical plane (u,) and horizontal
plane (u,), respectively and it is clear that for the
controller without saturation, the initial demand is
extremely large which reduces subsequently while
for the constrained control case, the controls get
saturated within the prescribed limits. Figure (8)
sﬁows the corresponding history of prediction horjzon
as obtained from the rules stated in Section 5 by
which the prediction horizon,is tuned between the
limits of 200-20 000 m. From this figure, one can
infer that the variation of this parameter does not
follow any standard pattern, such as linear or exponential
decrement. !

The pertubations in the re-entry conditions
considered for the results might be on higher side
for certain realistic missions. However, the large
values were chosen to show that the predictive
control-based gdidence algorithm can handle
comparatively larger initial errors while delivering
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satisfactory performance. The performance of the
guidance law will certainly' be satisfactory if
the initial errors are smaller than what has been
considered.

7. CONCLUSION

A continuous time-predictive control approach
is applied to formulate a output tracking terminal
guidance law with constrained control for re-entry
vehicles. The notable feature of this formulation
is that the evaluation of the resulting guidance
equations does not require the knowledge of the
vehicle parameters, such as drag and mass. A simple
method for tuning the prediction horizon required
in the guidance law to achieve better performance
is presented. Simulations were carried out for a
variety of errors in initial conditions and results
have been presented for one such case. The results
show that the guidance law achieves almost zero
terminal errors with constrained control for all the
states not withstanding that the formulation of the
guidance law was an output tracking and not the
state tracking one;. The fixed point iteration algorithm
used to compute the control commands converges
in just few cycles, making it viable for online
implementation.
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