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1 ABSTRACT.

Continvojs time-predictive control approach is ~Ployed to formulate an output tracking
nonlinear, optimal, term~nal guidance ,law for re-entry vehicles. The notable features of this
formulation are ~hat the system equations are not linearised and the evaluation of the guidance
equations do~s not need the information of vehicle parameters, such as drag and mass. The
formulation allows to impose the physical constrains on the control inputs, i..e. on the demanded
lateral acceleliations thro~gh a saturation mapping and the controls are obtained using a fixed point
iteration ~Igorithm which converges typically in a few iterations. Further, a simple method of tuning
the predictior1 horiz9n needed in the guidance equations is presented. Numerical simulations show
that the guidance law achieves almost zero terminal errors in all states despite large errors in initial
conditions: I

II. INTRODUCTION. I.' :'I In thIs study, a recently developed continuous

time-predictive control6.7 approach is employed to
formulate an opt~mal, nonlinear terminal guidance
law with cqnstrained control inputs for re-entry
vehicles. In this approach, the state or output response
of the nonlinear system is predicted by appropriate

expansion, and the guidance law is obtained by

'point\yise minimising a quadratic performance measfire

based on the error between the predicted response

and the desired response. Since the system equations

are not linearised, the drawbacks of the linear techniques

are overcome. The reason for formulating an output

tracking guidance law instead of the state tracking

o,ne is that, firstly, in a state tracking formulation,

the evaluation 9f the guidance 'equations requires

th~ information about the vehicie parameters, such
as drag which is not very precisely measurable
and, secondly certain states, such as velocity cannot
be effectively regulated". It1 this study, the
re-entry vehiclo i!\ considercd to be moving in a

-~~-~

Extensive research 'has been carried out in the
area of re-entry guidance and control,rand a variety
of schemes for re-entry guidancel as well as for
terminal guidance ofre-dntry vehicles2-4 have appeared
in the literature. The guidance law designs2.4 are

essentially based on linear control theory. The

perform~nce of these and similar guidance laws

gets deteriorated whenever lhp assumptions of

linearisJtion ar~ violat'ed. Further " in general, the

guidance law designs ba$~d on I linear techniques

do not address thJ problem of cont,rol input saturation.

Certain schemes, such as proportional guidance

and crpss product law, which do not require a

refereqce trajectory, have also been considered

forterrttinal guidances. However, achieving proper
terminal valuesl forothe d~namic variables with
these techniques are ,)Ot easy and also tl)e resulting

~ntro\ may not be 'optimal.
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two-plane (i.e. hhving doW11range as well as crossran/!;e)
OVcf lllc l'Iul curlll. 'l'llc c'qUUtiU,IS of 111utioll have

been modified for the derivation of guidahce law

by choosing tht downrange 3S 311 illdcrcll(lcllf vnrinhlc
iJI plucc ur lilllc, as tiJIlC us all ilIdcpClldcJlt variable

offers inferior results for the reference riding guidance
laws.

Given the pre~ent ()lItplIi of tho ~,Ystelll, y(/),
at any instant, 1e [0,1), the current ~ontrol, U(1)

determines or influences the output response in
tllc immcdillt'f' rlltllrc. To prl!dicl tllc rl:SI)OIISC llr
the system due!to present control input, the following

procedur~ hag been followeq:
t ,

Let Ai, i k ],...,m, be th~ lowest, order of the

derivative ofyi' the jlh ~ompol\ent ofy(1), such that
th~ component df control appears for ~he first time.
Define z(x(t),o) = [ZI(X(t),0),...I,zm(X(t),0)]7'

I

The altitude and crossrange have been chosen
as outputs, while the lateral accelerations in vertical
and horizontal planes are the inputs. The guidance
law thus derived achieves input-output feedback

linearisation, necessitating to check the stability
ofzero dynamics of the system for overall closed-

loop stability. Also, the guidance lawrquires selection
of the prediction horizon which i~ the interval at

which the system response is predicted. IThis interval

need not be constant and can be tuned suitably to

achieve better tracking performance. :1

where

l5A,
+ -LA, ( )).i! :I Cj ,

i = 1 ,...,in

(4)

where c; is the jlh compoi}ent of vector c(x), 0 >
0 is a real numb~r designated as the prediction
horizon and L)(cJ denote's the kth order Lie derivative
of c; wrt f To expose fully the influence of U(I)
ony;(1 + 0), fo~a small 0 > 0, one may approximate
each y;(1 + 0) by an ~:II order Taylor series at I.
In doing so, one canlexpress y(1 + 0) as a vector
function of U(I) in a col1jlpact form as

2. PREDICTIVE CONTROL'

The continuous time-predictive control theory
results in an optimal and nonlinear feedback control
law through minimisation of a performance measure

based on the predicted errors between the actual

trajectory and the reference trajectory .A brief outline
of this approach is presented for the 'sake of

completeness. Consider a nonlinear system which
is described as

where A(8) E Rm " m is a diagon~1 matrix with the

elements on the main diagonal .being
I

i = f(x)+G(x) u
)

y = c(x)

(2)
0).'
). .1 ,

,.

where
A,

= i =
,m

f ~ [Ah
gm] (3)

and x(t)e X r;= Rn is the state, u(t)e u c Rm

represents the control and Y{f)e Rm is the output
vector, where X and U are compact sets in Rn and
Rm spaces, respectively. The functions i: Rn~Rn,
c: Rn~Rm and GT: Rn~Rn "m are continuously

differentiable nonlinear functions. Suppose that
the desired output trajectory is specified by
q(I),O ~ I ~ II' which is an outcome of Eqns ( 1 )
and (2) for some feasible reference control U.(I)
e U for all le [O,lf] .

Wi =[LgI{ Lf).I-I(CJ }, ,ILgm{ LfAI-I(CJ }], ;=
1 \

.,m

(7)

Similarly, expanding the ,"lh componept of q(t + 0)
in the A:h ordqr Taylor's series yields:

\

(8)
\q(/+O):;,:q(/)+d(/,o) ,

where'the fh Component of d(/,o)e ~m
, f Ar
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,
of the geometric control theory9. When the control

is constrained or bounded, the control command

is obtained through the fixed point iteration algorithm 7,

as given by the following theorem:

.+

,
1t5J. i q.(J. i)(t),

~l

(9)i = lj...,m

i
where q :).1) is the A.:h differentiation of q i wrt time.

To find, the current control U(ij that improves the

tracking accuracy at nex~ inst.ant, consider pointwise

minimisati?n of the performance index that penalises
the output ~racking error at (i + 0) and the current
con,trol expepditure Uti). ;:

2.1 Theorem

Consider a system of the form of

Eqns (1)-(2). Assume that the matrix

P[x(t),t5]={Pij}=[ {A(t5)Wtx) }T QA(t5)W(x)+R]

\s nonsingular at x(t).. Then for any O > 0:

.The unique optimal control u.(t) to [Eqn (10)]

exists and is the unique solution of the fixed point
..I

equation In u.

u(t) =S{fJ{(AW) T Q(d -Z-e)}-[fJ{«T

~ p(u)
(10)

+ ~uT(t)Rutt)

(12)
I

where all the arguments have been suppressed for

clarity, I is an identity matrix,

where Q E Rn',' m is positive definite, and R E Rnl ' nl

is positive semi-definite weighting matrices. ~eplace
y(t + 8) and q(t + 8) in Eqn ( 10) by predictions in

Eqns (5) and (8), respectively. The control that

minimises ~he performance index is obtained by

setting dl / t7u equal! to zero as

} -Ill

P~{~I ~l pt {13)

and s represents a saturation mapping on some

a ERm , such as

(11)

ru;
la;

I,;

j
where e(t) ~ y (I) -q(t) is the current output tracking

error. It has been .~hown7 that if W(x) as defined

in Eqn (7) is of full rank, then the control

[Eqn ( 11 )] achieves input-output linearisation and

asymptotic tracking 'of any given output history
q(t) for R = 0 and for any O > 0, Q > 0 and if the

relative degree Aj ~ 4. The relative degree of a

system is equal tp tHe num ber of times the output,
must be differentiated to have the control input

appearlexplicitly for the first time. When the relative

degree is more than four, it can be shown that the
I

cont1l [Eqn '11)] still achi~ves the input-output
linearisation of the system, but may not guarantee

asymptotic tracking of output ~istory. The condition
of invertabiliiy of W is equiv~lent to system [Eqns
( I) and (2)] having relative degree in the terminology

aj ~ Uj(x,t)

Lj(x, t) < aj < Ui

aj $ Lj(x,t)

:x,t)s;(a) =

i = 1,2 m

where Li and J Ui are pre-defined functions

.The fixe.d point iteration sequence {if} is generated

by:

k-
(15)VuO E Rnrk=I,2,),Uk = p(U

converges to u.(t).

It is straightforward to verify that if the saturation

mapping in Eqn (12) is removed, one gets Eqn(ll).

Thus, controller [Eqn (12)] gives the optimal control
in both saturated as well as unsaturated cases. The

(x,t)

(x,t)
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fixed point algorithm is well-suited for computer
implementation, and it converges typically in just

a few iterations.

9, u. I I
y- 1-

-'v2 cosy COSIfI I V2 coslfl

112

(17)
3. GUmANCE LAW FORMULATION

The continuous time-predictive control is employed
to fomulate the terminal guidance law for a point
mass re-entry vehicle moving in t!wo-pla~e over
the flat earth. The origin of the coordinate frame
is fixed at the projection of the nominal re-entr:r
position of vehicle on ground with X-axis pointing
downrange, Z-axis along the local vertical and
positive upward, and y -axis completing the right
hand system giving the crossrange. The standard

equations of motion4 are:

where (.)' represents the different~al of(.) wrt downrange
variable r. To derive the guidanpe law, altitude
h(r) and crossrange y(r) were chosen as outputs.' ,
Following the method outlined in Section 2, and
noting that the relative degree for both the outputs
is two, the various quantities required in the control

law [Eqnll] are:

]82 82 ]A = DiGoL 2'2 (18)

~

w=
19)

r = v cas y ca$1f/

y = Vcasysinlf/

h = Vsiny

.D
V =---gsiny

m
(16)r =

tp= (20)

)I
where the state x = (ryh V r IJI]Tare the downrange,
crossrange, altitude, velocity, fllght-path angle and

azimuth angle of the point mass vehicle, respectively.
The state y is not to be confus'ed with the output
vectory defined in Section 2. The quantities D and
m are the drag and the mass of the vehicle, 9 is

the gravitational acceleration, while ut and u2 ~re
controls, i.e. the lateral accelerations in vertical
and horizontal platies, respectively. It has been
shown8 that time as an independent variable for
the nominal riding guidance schemes give inferior
results and so for the derivation of the guidance
law, the downrange, r, was chosen as an independent
variable instead of time. To this end, the modified
equations of motion with r as independent variable

are:

O t (g'llfl ( o !!::!!!Lz =[ZI~JT=
\ 005 'II

f

I
1
,

I,.
2 \.

8h. +~h.
2

82

2

d=[d1d2]T = ay" + y

R= Diag[R1 R,Q= fJiag[Ql Qll

On~ importdnt issue in the predictivt controllers
is the choice of proper {Ta.1ues for th~ weighting
matrices and usually thes~ quantities are selected
through ttial and 'error proce~ure by observing the
simulated responses as therd does not exist any

I
systematic methodology for their selection. Thus
all the quantities required in Eqn ( 12) arJ defined,
and the guidance command can be obtained by

I

; ,h'=tanysecljl

1) gtany

y'= tan IfI

v'=-
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the zero dynamics of the present system is stable,
thus assuring closed-loop stability for the complete
system [Eqn (17)] under the guidance law

[Eqn (24)].

form solution for b" at r =/ O I as

5. TUNING OF PREDICTION HORIZON

~The guidance commands [FJqn (24)] requires

selection of the prediction horizon .8 and it has

been shown that the performance of the guidance
law is very sensitive to the selection of this parameter .

One can note that the prediction horizon represents
the time const'ant of the, error dynamics
[Eqns (26)-(27)] implying small valye of this parameter
is desirable for tracking accuracy. However, one

can observe that too ,small value of this parameter
causes large control as is obvious from Eqn (2~'),

while large value may result in poor tracking accuracy.
This shows the need for tuning this paramet~r
appropriately instead of keeping it constant. In
literature, the prediction horizon is usually chosen
by carrying out extensive simulations due to the

lack of any standard methodology for its selection.
Here, a simple but effective way of tuning t~is
parameter for the present problem has been presented.

Consider the elJror dynamics [Eqns (26)-(27)].
Solving these equations for initial errors in crossrange

and altitude yield~:

Oh(O)~- ,

I
I Eh

n~ , j
and one chooses the smaller o;ne from Eqn (31 )
as the vaiue of prediction horizon in the guidance
law. Further, one can exploit Eqn t31 ) for continuously
tuning the value of the prepiction horizon. Tcr this
end, defining 8 (r) and &h(r) as

y ,

(31)

(rj-r)

~

8y(r)~-

(32)

i
where r f represents the downr"nge-to-go and r is

the present downrange travelled by the jVehicle.

(Here, it is important to note that the downrange,
r is zero at the re-entry point)1 Then, to ens~re that

the valu'e of O is feasible (i.t. 0 > 0) and also to

ensure that a smaller qne of'the lwo is used, the

following rules are obtained: ,
I

r ('
)--r r

ey(r) =ey(O)e o COS8+sil~8 (29)

f
(--r r

eh(r)==eh(O)e ~ cos-+sin-

8 8

and eh(r» <1.707EhWhen e (r) > 0.707e

simultaneou~ly: !
(3Q)

where e}O) and eh(O) represent the initial errors
(i.e. at r = 0) in the crossrange and altitude from

their reference value, respectively. In the present
problem, the prediction horizon is in meters as the

equations of motion have been modified by choosing
downrange as independent variable. Suppose~ it is
desired to bring the magnitudes of the errors in

crossrange and altitude within certain tolerance
:1: Ey and :l:Eh' respectively, by certain value of

downrange, r s' travelled by the vehicle, tJ1en from

Eqns (29)-(30) one can obtain an approximate closed

O (r), = m;n[ofr), °h(r)] (33)

When at least e (r) > 0.7p7E or eh (r) > 10.707 Eh:

fY y I1 .

O (r) = max [0;(r), °h(r)] (34)

,

and eh(r)s:O.707ehWhen e (r ) ~ 0.707 E
)' I

simultaneously:

(35)° (r) = 0,
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Figure I. Crossrange error vs downrange

and

The tuning of the prediction h'orizon offers many
advantages. Firstly, it ensurels large value of 8
initially so that the control i~ not excessive d.ue
to large initial tracking errors. It has been shown6
that the output tracking controller based on the
continuous time-predictive control approach offers
stability robustness inthe face ofbounded uncertainty.
The tuning of the prediction horizon will result in
robustness in perforl1:1ance since the value ofprediction
horizon at any ihstance depends upon the traking
errors at that instance. Next, the value of the prediction
horizon decreases continuous\y, thus assuring better

wren (r (- r: r,

° (t) = °c2

,
where Scland 0,,2 are some positive constants and
are used either to ensure thatj the value of S is

feasible one or to pr~vent it from becoming very
small. Th~ signs of tolerances E and Eh are same
as the sig~s of the errors ey(r) andYfh(r), respec'tively
so that tHe natural logarithm in Eqns (31 ~-(32)

exists. To avbid S becoming velry small a~ r~r l'
a constant value of S =Oc2 \ is chosen when
(r f-r) < rr Through proper selectibn of the tolerances

Ey and Eh ' one can achiev~ better tracking performance.

(36)
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tracking accurancy as the vehicle reaches its destination.
Although the tuning of the p(ediction horizon by
following Eqns (32)-(33) is for the unsaturated
control, the choiceofo obtained through this procedure
holds even when the controls are saturated. There
is no claim that this is the best way of choosing
the prediction' horizon. However, in the absence
of any standard mehodology to choose this parameter,
the rules pres~nted here are quite logical for the

present application.

I
reference trajJectory is usually obtain~d by employing
certain optimisation tJc.hniques which incorporate
various constraints, subh as physical constraints
of the ~ehicle and constraipts imposed on terminal
conditions, while achievin~ the mission objectives.
However, to assess the performance of the guidance
law, it is not necessary that the refereJce trajectory
be optimal; instead it needs to be ju~t a feasible
solution that satisfies the equations of motion.
The vehicle data needed for t~is purpose was taken
from the work ofRegan". The referenfe trajectory
was generated by simulating the equatiQns of motion
[Eqn (16)] br giving open-loop con~rols and the

6. SIMULATIONS & RESULTS
j

To asses~ the performance of the predictive
control-based guidance law, it is necessary to generate
a reference trajectory for the re-entry vehicle. The

x 10~
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variables required for evaluation of the guidance
Ilaw were stored as a function of the downrange,

r. Since this work deals iWith a 2-D trajectory,
lateral acceleration in X-Z and x- y planes were
needed as inputs for the equations of moti~n.
International standard atmosphere was, used for
obtaining the density as a function ofaltiiude. The
weightings requ1red in the controller [Eqn (12)]
were chosen as

just two to five iterations, making it useful even
for online implementation. The results ofone such
simulation are presented in Figs (1)-(8) for the
following initial condition errors:

y(O) = y n(O) + 2000 m

h(O) = hn(O) + 3000 m

V(O) d V n(O) + 100 m/s

Q =1 Diag [10~ 10]; R = [0, 0] (37) r(O) = r n(O) + 3°

The pred\ction horizon was tuned by following

the rul~s presented in Section 5. The riominal

downrange, r fas obtained from jt~e reference tl*ajectory

is 529g!5 m. Th~ otherlquantities needed for tuning

of the predicti'on horizon wefe taken as
I

I '!/ (0) = ~ (0) + 3°

n

where the reference values of the corresponding
variables are given by suffix n. Figures (1)-(5)
show the state errors, i.e. y - y , h-h , V-V, y -y ,

n n n n

and V"'-'1'n as a function of downrange for both
cases, i.e. when the saturation is imposed and without
saturation on control magnitudes. In all the figures,
the solid curve~ represent the results of the saturating
case (i.e. when the control input is constrained),
while the dotted lilles represnt the results when the
control is unconstrained. From the figures it can
be observed that the state errofs reduces smoothly
almost to zero as the destination js reached. However,
the instantaneous tracking errors are found to be
larger for the saturated case' which is obvious.
Figures (6)-X7) give control histories, i.e. lateral
acceleration in vertical plane (Ul) and horizontal
plane (uJ, respectively and it is clear that for the
controller without saturation, the initial demand is
extremely large which reduces subsequently while
for the constrained control case, the controls get
sjlturated within the prescribed limits. Figure (8)
shows the corresponding history of prediction horizon."
as obtained from the rules stated in Section 5 by
which the prediction horizon, is tuned between the
limits of 200-20000 m. From this figure, one can
infer that the variation of this parameter does not
follow any standard pattern, such as linear or exponentialI
decrement.

Ey=10 m, Eh=10 m, °Cl= ;20000 m,
°c2= 500 m and r,= 10001m

Upper limit of 20 000 m was enforced for the
value bf 0. The control magnitudes were constrained

through the Isaturation mapping defined in

Eqn (14) with I

L,1 L2= lOO m/s2 and U = U = 100 m/s2
I 2

Using these values, large number ofsimulations
were carried out fo~ various initial condition errors
and the trajectories wFre analysed for ~aturated as
well as unsaturated cdntrols. For saturated control,
Eqn ( 12) ~as used, whIle for unsaturated control,
Eqn (11) Iwas used. The simulation reslJlts show
that the guidapce law achieves almost zero tertminal
errors in botii cases, i.e. when control is saturated
and also without saturation ofcontols. It is important
to note that the formulation of the guidance law
is output tracking and not the state tracking one.
Thus, regul~tion of the ?utputsy and h has resulted
in regulation of the other states as well resulting
i~ satisfactory termina'l errors. Secondly, it was
observed that the initiallater~l acceleration demands
were significantly' large for unsaturate.d control
which under~ines t\)e need for im'posing saturations
on the controls. Thle large demands for control are
logical since tlle trackirJg errors are maximum initially.
'When the control saturation is considered, the controls
are obtained ,u§ing Eqn ( 12) and it was observed
that the fixed fioint equation usually converges in

The pertubations in the re-entry conditions

considered for the results might be on higher side

for certain realistic missions. However, the large

values were chosen to show that the predictive

control-based gJidence algorithm can handle

comparatively larger initial errors while delivering
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satisfactory performance. The performance of the
guidance law will certainly I be satisfactory if

the initial errors are smaller than what has been

considered.

2 Kim, M. & Grider, K.V. Tt1rrtlinal guidance
for impact attitude angle constrained flight

trajectories. IEEE Trans. Aerosp.:Electron. Syst.,
f

1973, AES-9, 852-59. I

7. CONCLUSION

A continuous time-predictlve control approach
is applied to formulate a output tracking terminal
guidance law with constrained control for re-entry
vehicles. The not~ble feature of this formulation
is that the evaluation of the resulting guiddnce
equations does not require the knowledge of the
vehicle parameters, such as drag and mass. A si~ple
method for tuning the prediction horizon required
in the guidance law to achieve. better performance
is presented. Simulations were carried out for a
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im plementation.

4

5

York, ~. &' Pastrick, H.L. Optimal term'inal
~uidance with constraints at final time. .I: Rockets
Spacecraft, 1977, 14(6), 381-83. ,

De Virgilio, M.A.; :Wells, G.R. & Sdhiring,
E.E. Optimal guidance for aetodynamically
controlled re-entry vehicles. AlAA 'Journal, 1974,
12(10), 1331-337. I I

Page, J.A. & Roger, R.O. Guidance and control

ofmaneuveri~g re-entry vehicles. Proceedings
of IEEE Conference on Decision and Control,

1977,659,.64. \

6 Lu, P. Optimal predib\ive control of continuous

nonlinear sy,stems. InJ. J. Control, 1995,62(3),
633-'49. I

7

8

9.

Lu, P. Constrained trackiryg control of nonlinear
systems. Syst. Contro/Lell., 1996, 2r, 305-14.

Archer, S.M. & Sworder, 0.0. Sel~ction of
the guidance variable tor re-entry vehicle. J.
Guid. Contro/ Dyn., 1?79,,2(2), 130-38.

Vidyasagar, M. Nonlinear systems ranalysis.
Prentice Hall, Englewood Cliffs, New Jersey,
1993. ,ACKNOWLEDl;;EMENTS

The first author acknowledges ProfS.B. Phadke,
Head of the Dept. of Control Engg, Prof O.C.
Pant, Chairman, OM Faculty and Prof O.S. Mani,
Director and Dean, Institute of Armament Technology
(IA T), Pune, for their motivation and support during
the course of this work.

10. Romano, 1.1,~. & Singh, S.N. 1-0 map inversion,
z~~o dynam\cs and flight c0111trol. IEEE Trans.
Aero. Electron. Syst., 1990"AES-26, 1022-29.

11. Regan, F .1. Re..entry' vehicl~ dynanlics. AIAA
Education Seties, New York, 19~4.

REFEREN CES

Wingrove, R.C. Survey .of at<?mosphere re-
entry guidance and control methods. AlAA Journal ,
1963, 1(9), 2019-29. I I

252



TALOLE & BANAVAR: PREDICTIVE TERMINAL GUIDANCE

Contributors

IMr SE Talole received Iris ME in Aerospace Engineering f~om the Indian Institute of Science, Bangalore,
in 1989 and .joined DROO in the same year. Presently, he is working as Scientist at the Institute of
Armament Technology, Pune. His areas of interest are control systems and flight dynamics. Currently,
he is pursuing his PhO in the area of nonlinear predictive control from Indian Institute of Technology

(IIT), Mumbai.

t
Mr Ravi N Banavar received 'his BTech from IIT. MS from Clemson University and PhD from the
University of Texas at Austin. He joined the Systems and Control Engineering Group at IIT. Bombay.
in \ 993 anld is presently working as Associate Professor. His areas of research include: applied control-

me~hanical. chemical and aerospace applications. \

I

253


