INFLUENOE OF COMPOSITE GHARGES ON MAXIMUM PRESSURE AND MUZZLE VELOCITY

By Shri N.S. Venkatesan, Defence Science Organisation, Ministry of Detence, New Delhi, and Shri G.C. Patni, Maharaja's College Jaipur.

Introduction

The problem of the composite charges has been discussed in the "Theory of the Interior Ballistics of Guns" by Corner (1) and in the "Internal Ballis-tics"- His Majesty's Stationery Office Publication (2) by reducing the problem to one of an equivalent single charge. In (2) only a particular case of two charges with different shapes and web sizes of the same propellent is considered. An approximate solution is obtained by making use of a modified form factor. Corner (1) considers the more general problem of two charges of different shapes, sizes, and composition. The problem is reduced to that of a single equivalent charge with adjusted parameters.

In this paper we give a direct treatment of the general problem based on the Hunt-Hinds system. We derive expressions for the maximum pressure and muzzle velocity and study the variation in these with the ratio of the charge weights for a given total charge. In order to obtain closed expressions we make the usual assumption regarding Co-volume, viz., that the Co-volume of the gases equals the specific volume for each propellant. It is also assumed that $\gamma_{1}=\gamma_{2}$ since γ is practically the same for most propellants.

Basic Equations

The basic equations with a single charge have been derived in H.M.S Publication [2] and in our case they become

$$
\begin{equation*}
\frac{\mathrm{F}_{1} \mathrm{C}_{1} z_{1}+\mathrm{F}_{2} \mathrm{C}_{2} z_{2}}{A}=\mathrm{p}\left(1+\frac{x}{l}\right)+\frac{\gamma-1}{2 \mathrm{Al}} w_{1} v^{2} \tag{1}
\end{equation*}
$$

where $w_{1}=1.05 w+\frac{\mathrm{C}_{1}}{3}+\frac{\mathrm{C}_{2}}{3}$
$w_{1} \frac{d v}{\overline{d t}}=A p$
$z_{1}=\left(1-f_{1}\right)\left(1+\theta_{1} f_{1}\right)$
$u_{2}=\left(1-f_{2}\right)\left(1+\theta_{2} f_{2}\right)$
$\mathrm{D}_{1} \frac{d f_{1}}{d t}=-\beta_{1} \mathrm{p}$
$\mathrm{D}_{2} \frac{d f_{2}}{d t}=-\beta_{2} \mathrm{p}$
जोग
where $C_{1}, F_{1}, \beta_{1}, D_{1}, \theta_{1}, f_{1} ; z_{1}$ refer to first"charge
and $\mathrm{C}_{2}, \mathrm{~F}_{2}, \beta_{2}, \mathrm{D}_{2}, \theta_{2}, f_{2}, \mathrm{z}_{2}$ refer to second charge.

MUZzie VRLoctit

utra Initially when the shot stants

$$
x=0 ; v=0 ; f_{1}=f_{10} ; f_{2}-f_{20} ; z_{1}=z_{10} ; z_{2}-\mathrm{z}_{20}
$$

Let

$$
\left.\begin{array}{l}
\frac{\beta_{1}}{D_{1}}=\beta^{\prime} \tag{6}\\
\frac{\beta_{2}}{D_{2}}=\beta^{\prime \prime}
\end{array}\right\}
$$

From (3), and (5A), on integration and using initial conditions we get

$$
v_{1}=\frac{A}{\beta^{\prime} w_{1}},\left(f_{10}-f_{1}\right)
$$

wectisimilary from (3) and (5B) we get
negranther
$v=\frac{\mathrm{A}}{\beta^{\prime \prime} w_{1}}\left(f_{20}-f_{2}\right)$
Hence
$\beta^{\prime} f_{2}-\beta^{\prime \prime} f_{1}=\beta^{\prime} f_{20}-\beta^{\prime \prime} f_{10}$
From (4A) and (7A) we get
$z_{1}=z_{10}+\frac{\beta^{\prime} w_{1}}{A^{2}} v\left(1-\theta_{1}+2 \theta_{1} f_{10}\right)-\frac{\beta^{2} w_{1}^{2}}{A^{2}} \theta_{1} v^{2}$
Similarly

$$
\begin{equation*}
z_{2}=z_{20}+\frac{\beta^{\prime \prime} w_{1}}{\mathrm{~A}} v\left(1-\theta_{2}+2 \theta_{2} f_{20}\right)-\frac{\beta^{22} w_{1}^{2}}{A^{2}} \theta_{2} v^{2} \tag{9B}
\end{equation*}
$$

Let us now define our new variable ?

$$
\begin{equation*}
\xi=1+\frac{x}{l} \tag{10}
\end{equation*}
$$

From (3)

$$
\begin{array}{r}
w_{1} v \frac{d v}{d x}=\mathrm{A} \mathrm{p} \\
\text { i.e. } \frac{w_{1}}{\mathrm{~A} l} v \frac{d v}{d z}=\mathrm{p} \tag{11}
\end{array}
$$

(1.6) Using (9A), (9B), (10) And fin) in (4) *smplifying we get
(h) $\quad \varepsilon v \frac{d v}{d \xi}=\mathbf{K}(a-v)(b+v)$
where

$$
\begin{align*}
& a-b=\frac{1}{\mathrm{~K}}\left[\frac{\mathrm{~F}_{1} \mathrm{C}_{1} \beta^{\prime}}{\mathrm{A}}\left(1-\theta_{1}+2 \theta_{1} f_{10}\right)+\right. \\
& \left.\frac{\mathrm{F}_{2} \mathrm{C}_{2} \beta^{\prime \prime}}{\mathrm{A}}\left(1-\theta_{2}+2 \theta_{2} f_{20}\right)\right] \tag{12B}\\
& \mathrm{ab}=\frac{1}{\mathrm{~K}} \frac{\mathrm{~F}_{1} \mathrm{C}_{1} \mathrm{z}_{10}+\mathrm{F}_{2} \mathrm{C}_{2} z_{20}}{w_{1}} \tag{12C}\\
& \mathrm{~K}^{\prime}=\frac{\gamma-1}{2} \tag{12D}
\end{align*}
$$

Integrating (12) and using the initial conditions, viz.,

$$
\begin{align*}
& v=0, k=1, \text { we get } \\
& v=\left[\left(\frac{a}{a-v}\right)^{a}\left(\frac{b}{b+v}\right)^{b}\right] \bar{K}(a+b) \tag{13}
\end{align*}
$$

From (11) and (12) we have
$p=\frac{w_{1}}{\mathrm{~A} l} \frac{\mathrm{~K}(a-v)(b+v)}{\xi}$
These equations are valid so long as both the propellants are burning.
From (8) we see that if
(1) $\beta^{1} f_{20}>\beta^{\prime \prime} f_{10}$, then f_{2} cannot become zero before f_{1}. Hence oharge C_{1}, must be burnt out earlier.
(2) $\beta^{\prime} f_{20}<\beta^{\prime \prime} f_{10}$, then f_{2} cannot become zero before f_{2}. Hence charge C_{2} must be baxat out earlier.
(3) $\beta^{\prime} f_{20}=\beta^{\prime \prime} f_{10}$, then both the charges will have to be burnt out simulteneously.

Hence we see that two different cases arise, viz.,
(I) The two propellants burn out at different times.
(II) Both the propellants burn out simultaneously. 4 Let Let us for. the sake of definiteness call that propellant which will burn firgt as C_{1}.

Case 1.-We have to consider this in two parts
(i) when only C_{2} is burning.
(ii) when C_{2} is also burnt out.
(i). Eqn(1) becomes

$$
\begin{equation*}
\frac{\mathrm{F}_{1} \mathrm{C}_{1}+\mathrm{F}_{2} \mathrm{C}_{2} z_{2}}{A l}=p\left(1+\frac{x}{\eta}\right)+\frac{y-1}{2 \mathrm{~A} l} w_{1} v^{2} \tag{15}
\end{equation*}
$$

Proceeding as above we have

$$
\begin{align*}
& v v \frac{d v}{d \xi}=\mathrm{K}_{1}\left(a_{1}-v\right)\left(b_{1}+v\right) \tag{16}\\
& \text { wheie } \mathrm{K}_{1}=\frac{\mathrm{F}_{2} \mathrm{C}_{2} \beta^{\prime \prime 2} w_{1}}{\mathrm{~A}^{2}} \theta_{2}+\mathrm{K}^{\prime} \tag{16A}\\
& a_{1}-b_{1}=\frac{1}{\mathrm{~K}_{1}}\left[\frac{\mathrm{~F}_{2} \mathrm{C}_{2} \beta^{\prime \prime}}{\mathrm{A}}\left(1-\theta_{2}+2 \theta_{2} f_{20}\right)\right] \tag{16B}\\
& a_{1} b_{1}=\frac{\mathrm{F}_{1} \mathrm{C}_{1}+\mathrm{F}_{2} \mathrm{C}_{2} \mathrm{z}_{20}}{w_{1} \mathrm{~K}_{1}} \tag{160}
\end{align*}
$$

Let the suffix $(2,1)$ denote the position when the charge C_{1} is just burnt out.

From (7A) $v_{2,1}=\frac{A}{\beta^{\prime} w_{1}} f_{10}$
Then $\boldsymbol{q}_{2} ; 1$ is given by equation (13) with $v=v_{2,1}$
Hence

$$
\begin{equation*}
\xi=\xi_{2,1}\left[\left(\frac{a_{1}-v_{2,1}}{a_{1}-v}\right)^{a_{1}}\left(\frac{b_{1}+v_{2,1}}{b_{1}+v}\right)^{b_{1}}\right] \frac{1}{\mathrm{~K}_{1}\left(a_{1}+b_{1}\right)} \tag{18}
\end{equation*}
$$

From (11) and (16) we have in this case

$$
\begin{equation*}
p=\frac{w_{1}}{\mathrm{~A} l} \frac{\mathrm{~K}_{1}\left(a_{1}-v\right)\left(b_{1}+v\right)}{\xi} \tag{19}
\end{equation*}
$$

Equations (18) and (19) give us the velocity and pressure at any point between the position when C_{1} is just burnt out and the position when C_{2} is also just burnt out (i.e; the "fall-burnt" position).

I (ii). Eqn (1) now becomes
$\frac{F_{1} \mathrm{C}_{1}+\mathrm{F}_{2} \mathrm{C}_{2}}{4 \mathrm{trn}}=p\left(1+\frac{x}{l}\right)+\frac{\gamma-1}{2 A l} w_{1} v^{2}$
Proceeding in the same way as in case I(i) we get

$$
\begin{equation*}
\xi v \frac{d v}{d \xi}=\mathrm{K}^{\prime}\left[\mathrm{L}-v^{2}\right] \tag{21}
\end{equation*}
$$

where

$$
\mathbf{H}=\frac{F_{1} C_{1}+F_{2} C_{2}}{K^{\prime} W_{1}}
$$

Initial conditions for this case are that $v=v_{2}$ when $\boldsymbol{\xi}_{\boldsymbol{F}} \xi_{2} \psi$ the suffix 2 denoting the values at "all-burnt",

From (7B)

$$
\begin{equation*}
v_{2}=\frac{A}{\beta^{\prime \prime} \cdot \mathrm{w}_{1}} f_{20}^{\prime} \tag{22}
\end{equation*}
$$

and ξ_{2} is given by equation (18) with $\hat{v}=v_{2}$.
Hence

$$
\begin{equation*}
\xi=\xi_{2}\left[\frac{\mathrm{~L}-\eta_{2}^{9}}{\mathrm{~L}-v^{2}}\right]-\frac{1}{2^{\mathrm{K}^{\prime}}} \tag{23}
\end{equation*}
$$

From (11) and (21) in this case

$$
\begin{equation*}
p=\frac{w_{1}}{\mathrm{~A} l} \frac{\mathrm{~K}^{\prime}\left[\mathrm{L}-v^{2}\right]}{\xi} \tag{24}
\end{equation*}
$$

Hence if v_{3} and ξ_{3} denote the values at the muzzle we have the muzzle velocity given by the relation

$$
\begin{equation*}
v_{3}^{2}=\mathrm{L}\left[1-\left(\frac{\xi_{2}}{\xi_{3}}\right)^{2 \mathrm{~K}^{\prime}}\right]+v_{2}^{2}\left(\frac{\xi_{2}}{\xi_{3}}\right)^{2 \mathrm{~K}^{\prime}} \tag{25}
\end{equation*}
$$

II. $\beta^{\prime} f_{20}=\beta^{\prime \prime} f_{10}$ i.e., when both the charges burn out simetianeously, At "all --burnt" the velocity is given by

$$
\begin{equation*}
v_{2}=\frac{\mathrm{A}}{\beta^{\prime} w_{1}} f_{10}=\frac{\mathrm{A}}{\beta^{\prime \prime} w_{1}} f_{20} \tag{26A}
\end{equation*}
$$

and ξ_{2} is given by (13).

$$
\begin{equation*}
\text { i.e. } \xi_{2}=\left[\left(\frac{a}{a-v_{2}}\right)^{a}\left(\frac{b_{1}}{b+v_{2}}\right)^{b}\right]^{\frac{1}{\mathrm{~K}(a+b)}} \tag{26~B}
\end{equation*}
$$

After all-burnt the equations are the same as in I (ii) and hence

$$
\begin{equation*}
\xi=\xi_{2}\left[\frac{\mathrm{~L}-v_{2}^{2}}{\mathrm{~L}-v^{2}}\right]^{\frac{1}{2 \mathrm{~K}^{\prime}}} \tag{27}
\end{equation*}
$$

$p=\frac{w_{1}}{\mathrm{~A} l} \frac{\mathrm{~K}^{\prime}\left[\mathrm{L}-v^{2}\right]}{\xi}$
and hence $v_{3}{ }^{2}=\mathrm{L}\left[1-\left(\frac{\ell_{2}}{\psi_{3}}\right)^{2 \mathrm{~K}^{\prime}}\right]+v_{2}{ }^{2}\left(\frac{\xi_{2}}{\xi_{3}}\right)^{2 \mathrm{~K}^{\prime}}$
where $v_{2} \& y_{2}$ are given by (26A) and (26B) respectively.

Maximum Pressure.

The following cases may arise, viz, that the maximum pressure occurs when
(a) both the charges are burning.
(b) C_{1} is burnt out and C_{2} is burning.
(c) at the position of " all-burnt".

Case (a). From (14) we have

$$
p=\frac{w_{1}}{A l} \frac{K(a-v)(b+v)}{\xi}
$$

At the position of maximum pressure $d p=0$. So differentiating, simplifying and comparing with (12) we get

$$
\frac{\left(a-v_{1}\right)\left(b+v_{1}\right)}{a-b-2 v_{1}}=\frac{\mathrm{K}\left(a-v_{1}\right)\left(b+v_{1}\right)}{v_{1}}
$$

where the suffix 1 denotes the values at the position of maximum pressure.

$$
\therefore v_{1}=\frac{K(a-b)}{2 K+1} \text { or } v_{1}=a \text { or } v_{1}=-b .
$$

The values $v_{1}=a$ and $v_{1}=b$ are inadmissible.
Hence

$$
\begin{equation*}
v_{1}=\frac{K(a-b)}{2 K+1} \tag{30A}
\end{equation*}
$$

From (13)

$$
\begin{equation*}
k_{1}=\left[\left(\frac{a}{a-v_{1}}\right)^{a}\left(\frac{b}{b+v_{1}}\right)^{b}\right]^{\overline{\mathrm{K}}(a+b)} \tag{30B}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}=\frac{w_{1}}{\mathrm{Al}} \frac{\mathrm{~K}\left(a-v_{1}\right)\left(b+v_{1}\right)}{\xi_{1}} \tag{30C}
\end{equation*}
$$

The conditions for the occurrence of the maximum pressure in this position are

$$
\begin{aligned}
& f_{11}>0 \\
& f_{21}>0
\end{aligned}
$$

Hence from (7A) and (7B) there reduce to

$$
\left.\begin{array}{l}
f_{10}>\frac{\beta^{\prime} w_{1}}{\mathrm{~A}} \frac{\mathrm{~K}(a-b)}{2 \mathrm{~K}+1} \tag{30D}\\
f_{20}>\frac{\beta^{\prime \prime} w_{1}}{\mathrm{~A}} \frac{\mathrm{~K}(a-b)}{2 \mathrm{~K}+1}
\end{array}\right\}
$$

Case (b) :-

$$
\beta^{\prime} f_{20}>\beta^{\prime \prime} f_{10}
$$

Equations (18) and (19) give and p in this case.

$$
\begin{equation*}
p=\frac{w_{1}}{\mathrm{Al}}, \mathrm{~K}_{1}\left(a_{1}-v\right)\left(b_{1}+v\right) \tag{19}
\end{equation*}
$$

Differentiating (19), putting $\mathrm{dp}=0$, simplifying and comparing with (16) we get

$$
v_{1}-\frac{K_{1}\left(a_{1}-b_{1}\right)}{2 K_{1}+1}
$$

Then

$$
\begin{equation*}
{ }_{1}=k_{2,1}\left[\left(\frac{a_{1}-v_{2,1}}{a_{1}-v_{1}}\right)^{a_{1}}\left(\frac{b_{1}+v_{2,1}}{b_{1}+v_{1}}\right)^{b_{1}}\right] \frac{1}{\mathrm{~K}_{1}\left(a_{1}+b_{1}\right)} \tag{31B}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{p}_{1}=\frac{w_{1}}{\mathrm{~A} l} \frac{\mathrm{~K}_{1}\left(a_{1}-v_{1}\right)\left(b_{1}+v_{1}\right)}{y_{1}} \tag{31C}
\end{equation*}
$$

The conditions for the occurrence of the maximum pressure in this positionare

$$
f_{11}=0 ; f_{21} \geqslant 0
$$

Hence

$$
\begin{aligned}
& f_{10}=\frac{\beta^{\prime} w_{1}}{A} \frac{\mathbf{K}_{1}\left(a_{1}-b_{1}\right)}{2 \mathbf{K}_{1}+1} \\
& f_{20}>\frac{\beta^{\prime \prime} w_{1}}{A} \frac{\mathrm{~K}_{1}\left(a_{1}-b_{1}\right)}{2 \mathbf{K}_{1}+1} \\
& \beta^{\prime} f_{20}>\beta^{\prime \prime} f_{10}
\end{aligned}
$$

But in view of the last condition, viz, $\beta^{\prime} f_{20}>\beta^{\prime \prime} f_{10}$,
f_{21} cannot be equal to zero. Henme the conditions are

$$
\left.\begin{array}{l}
\beta^{\prime} f_{20}>\beta^{\prime \prime} f_{10} \\
f_{10}=\frac{\beta^{\prime \prime} w_{1}}{A} \frac{K_{1}\left(a_{1}-b_{1}\right)}{2 \mathrm{~K}_{1}+1} \\
f_{20}>\frac{\beta^{\prime \prime} w_{1}}{A} \frac{\mathrm{~K}_{1}\left(a_{1}-b_{1}\right)}{2 \mathrm{~K}_{1}+1} \tag{31D}
\end{array}\right\}
$$

Case (C). $\beta^{\prime} f_{20}=\beta^{\prime \prime} f_{20}$. In this case the maximum pressure can occur (i) when both the propellants are burning or (ii) at the position of " all-burnt",
(i) has already been dealt with in case (a).
(ii) The conditions for this case are
$f_{11}=0 ; f_{21}=0$ which reduce to

$$
\begin{align*}
& f_{10}=\frac{\beta^{\prime} w_{1}}{A} \frac{K(a-b)}{2 K+1} \\
& f_{20}=\frac{\beta^{\prime \prime} w_{1}}{A} \frac{K(a-b)}{2 K+1} \tag{32}
\end{align*}
$$

It is now our aim to find out how the muzzle velocity and maximum pressure change when the total mass of the propellant is kept constant and the proportion of the charges is varied. Hence let us put

$$
\begin{align*}
C_{1}+C_{2} & =0 \tag{33A}\\
\frac{C_{1}}{C} & =\lambda \tag{33B}\\
\therefore C_{1} & =\lambda C \tag{34~A}\\
O_{2} & =C(1-\lambda) \tag{34B}
\end{align*}
$$

Calculations have been made on a typical gun. Since the purpose of the calculations is only to illastrate the theory, the calculations have been made simple, by some assumptions. Hence the shot -start pressure 说s been taken to be zero and the form fators $\dot{\theta}_{1}$ and θ_{2}. have also been put equal to zero. Further only one propellant characteristic has been varied by 5% at one time, the other things being assumed to be the samas

The changes in M.V. \& Max. Pr̈essure are given below :-

$$
F_{2}=1.05 F_{1} ; \beta^{\prime \prime}=\beta^{\prime} ; \theta_{2}=\theta_{1}=0 ; p_{0}=0
$$

λ	Muzzle velocity ft/sec.	Maximum Pressure tons/sq.in.
0.0	1383.3	7.870
0.2	1372.1	7.231
0.4	1360.7	7.092
0.5	1355.7	7.023
0.6	1349.3	6.955
0.8	1337.7	6.819
1.0	1326.1	6.685

λ	Muzzle velocity $\mathrm{ft} / \mathrm{sec}$.	Maximum Pressure tons/sq.in.
0.0	1371.9	7.370
0.2	1368.2	7.231
0.4	1353.7	7.092
0.5	1349.9	7.023
0.6	1345.2	6.955
0.8	1335.2	6.819
1.0	1326.1	6.685

We are thankful to the Scientific Adviser for suggesting thiss probsem and for this guidance in this work.

References

1. Corner, J., Theory of the Interior Ballistics of Guns-John Witey; New York 1950.
2. H.M. Stationery Office. Internal Ballistics 1951.
MAXIMUM PRESSURE IN TONS PER SQ. INRCH:

muzzle velocity in feet per
SECOND
