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1. INTODUCTION
Surveillance is the most important facet of maritime

warfare and is undertaken by active as well as passive
sensors. Active methods of surveillance require electro-
magnetic (EM)/acoustic transmissions to be made by the
surveillance platform and hence, are susceptible to interception
by others. So in certain tactical situations, it becomes
necessary to resort to passive techniques as electronic
surveillance measures (ESM) provide instantaneous
measurement of emitter bearing but not its range. In the
ocean environment, two-dimensional bearings-only target
motion analysis is generally used. Ownship monitors noisy
radar bearings from a transmitting target, which is assumed
to be traveling at uniform velocity. The bearing measurements
generated are corrupted with noise. An EW receiver system
on an ownship processes these measurements and finds
out target motion parameters - viz., range, course, bearing
and speed of the target. Here the measurement is nonlinear,
making the whole process nonlinear. Added to this, since
bearing measurements are extracted from single EW system,
the process remains unobservable until ownship executes
a proper manueuvre.

Nardone, Lindgren & Gong1 used maximum likelihood
estimator (MLE) in batch processing to estimate target
motion parameters. In this paper, the MLE in batch processing
is converted into sequential processing. All the elements
of covariance matrix are represented recursively in terms
of measurement equation. These terms are known as
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RECURSIVE SUMS and are maintained throughout the
algorithm. This approach avoids the computational complexity
by computing only the incremental values for every new
bearing measurement. These incremental values are used
to update the RECURSIVE SUMS in covariance matrix.
Only few RECURSIVE SUMS are to be updated on the
arrival of new bearing measurement. This method does not
increase computational burden with more number of samples.

The MLE requires some initial estimate as bearings-
only measurements are available. For bearings-only target
tracking2,  Ristic, et al., have suggested to use a number
of filters in parallel  with different initialisations covering
all possible ranges, speeds, and courses of the target.
Then the number of filters required is in the order of thousands,
and hence, the computation time for the filters becomes
significant. To reduce the number of filters and computation
time, pseudo linear estimator's (PLE) outputs3 have been
used for initialisation of MLE. PLE is developed from least
square estimator in such a way that it is recursive and does
not require any initial estimate. As PLE generates bias in
the estimates, its use is restricted to generate a reasonably
accurate estimate for initialisation of MLE. The accuracy
of this algorithm is improved by adaptively calculating the
weightage of each measurement in terms of its variance
and simultaneously using this with the measurement.  This
work can be considered as an alternate to contributions
by Clark4 et al.,  Aidala5, Song & Speyer6, Grossman7 and
Rao8  and it generates accurate and fast convergent results
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and provides good insight into the bearing-only tracking
problems.

Finally Monte-Carlo simulation is carried out and the
algorithm is tested against several tactical geometries. For
illustration, the results of two tactical scenarios are presented
and it has been observed that the results are satisfactory.

2. MATHEMATICAL MODELLING
The target and ownship movements are modelled as

follows.
Let ( )kX s  be a state vector with target velocity and

position components and is given by

( ) ( ) ( ) ( ) ( )[ ]Ttttts kykxkykxkX &&= (1)

The bearing is the angle from ownship�s platform to
the target, and is given by

( ) ( ) ( )( )krkrkB yx
1tan -= (2)

 where ( )krx  and ( )kry  are the relative range components

at instant k. The measured bearing, ( )kBm  is given by

( ) ( ) ( )kkBkBm g+= (3)

where ( )kg  is error in the measurement and this error
is assumed to be zero mean Gaussian with variance, 2 s .
Let there be k  measurements ( ) ( ) ( )kBBB mmm K,2,1  available
and these measurements are represented by

( ) ( ) ( )[ ]Tmmm kBBBZ ,,2,1 KK= (4)

The likelihood function of the measurements is given
by

( )

( ) ( )( )
2

2

2

1

2

22

1
s

--

=
p÷÷

ø

ö
çç
è

æ

ps
=

iBiBn

i

k
m

eL (5)

Maximum likelihood estimator (MLE) finds out the
components of ( )kX s , (which are functions of bearing
measurement) for which the measurements are most likely.
Maximisation of log L or L gives the same results. As it
is easy to maximise log L than that of L, here maximisation
of log L is used.
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Differentiating wrt SX  and equating to zero, we obtain
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Figure 1. Target motion analysis problem.
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Let us consider the measurements B & B
m 

as shown
in Fig.1. Let the target be initially at P(x

t
, y

t
) and the

ownship be at origin. During t seconds, the target travelled
to Q and the ownship to ( )00 , yxM . For convenience k is
dropped for the time being. Using Fig.1, the following can
be written
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and
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It is assumed that the error in the measurement is of
small magnitude, then
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Let us derive the derivatives of (B-B
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      In general notation

( ) ( )( )
( ) ( )( )

( )

( )

ï
ï

þ

ï
ï

ý

ü

ï
ï

î

ï
ï

í

ì

÷÷
ø

ö
çç
è

æ

¶

¶
-

¶
¶

-

å

=ú
û

ù
ê
ë

é

¶
-¶

-å

=

=

)(

)(
)(

)(

)(
)(

)(sin)()(cos
)(

1
3

1

1

iX

ir
ir

iX

ir
ir

iBiriBr
ir

iX

iBiB
iBiB

s

y
x

s

x
y

mymx
k

i

S

m
m

k

i

(17)

Let us analyse Eqn. (17) when i=1
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where ( ) ( ) ( )101 0xtxxr ttx -+= &                          (19)
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      Substituting Eqns. (19) and (20) in eqn. (18)
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Substituting eqn. (23) & (24) in Eqn (22)
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Similarly

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

-

--

=
¶
-¶

-

)(

)(

)(

)(

)(

))(sin)()(cos)((

)()(
)()(

3

kr

kr

ktkr

ktkr

kr

kBkrkBkr

X

kBkB
kBkB

y

x

x

y

mymx

s

m
m

(26)

Using Eqns. (21), (25) and (26), Eqn. (17) can be written
as
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       Let us expand the first row of vector in Eqn.
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Using Eqn. (29) in Eqn. (28), one can write that
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Similarly, the other three equations can be written as
follows when i=1
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2.1 Sequential Processing
So far, the variance of noise in the measurements is

assumed to be constant for clarity of the concepts. Now
this assumption is relaxed. The amount of error in the
bearing is usually high and is of the order of 2 degree r.m.s.
The measurement is assumed to be available at 1 Hz rate.
It is not possible to track the target using ESM measurements
with the above-mentioned order of noise. Hence, the
measurements are averaged over a fixed period, say 20 s
to reduce the variance of the errors in the measurements
by 4.5 times. At the same time, the variance of measurements
over 20 s is also found out and is used along with the
averaged measurement in the filter equations. This leads
to the auto editing of the measurements, that means, if the
measurement is good (i.e., variance of the error in the
measurement is less); more weightage to that measurement
is given when compared to that of other measurements.

The treatment is now extended from batch processing
to sequential processing using RECURSIVE SUMS (CSUMS,
SSUMS etc.). The effect of all the bearing measurements
in each element of the matrices in Eqn. (32) is maintained
in the form of RECURSIVE SUMS. Whenever a new bearing
measurement is available, only calculations pertaining to
the newly arrived measurement are carried out and added
to the RECURSIVE SUMS. The target state vector at any
instant is used to find out target motion parameters at that
instant. Detailed procedure for the development of RECURSIVE
SUMS is given by Rao3.

The aim is to find out the solution at the instant of
(k+1). For this purpose, all range components in Eqn. (32)
are to be translated to time (k+1). Let us use the format
of well known transformation of equations
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where b(1) = 0
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Similarly

01 0 0 0

00 1 0 0
1

1 2t 0 1 0

1 20 1 0

t

t

x 0

y 0

x

y
r( k )

r ( ) x ( )( k )

r ( ) y ( )( k )t

é ù é ùé ù
ê ú ê úê ú
ê ú ê úê ú+ = -
ê ú ê úê ú
ê ú ê úê ú
ê úë û ë ûë û

&

&

 = 1 1 2( k , )r( ) b( )f -     (36)

where b(2)=
ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

)2(

)2(

0

0

0

0

y

x (37)

M

)4()3()3,2(

)3()2()2,1()1(

brk

brkkr

--f=
--f=+

)()(),1()1( kbkrkkr -f=+ (38)
Substituting for xr  and  yr  components, and carrying

out straight forward manipulations, the R.H.S of eqn. (27)
can be written as follows.
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The SUMS and other terms in PHI and G Matrices
are given as follows. Initially all SUMS are zero. After
obtaining measurement at time k, the SUMS are given by
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10 ]1[)(*)(]1[ -+= kk GSUMSkPkyGSUMS

Parameters Convergence time (s) 

Scenario Initial 
range 
(m) 

Initial 
bearing 

(deg) 

Target 
speed 
(m/s) 

Target 
course 
(deg) 

Ownship 
speed 
(m/s) 

RMS error in 
bearing 

Range Course Speed 

1 18520 210 10.3 45 10.3 2 760 960 040 

2 20000 145 10.3 300 10.3 2 520 1160 820 

Table 1. Scenario chosen for evaluation of the algorithm
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Figure 2. Ownship in S-manueuvre on LOS.

Figure 3(a). Error in range estimate.

Figure 3(b). Error in course estimate.

Figure 3(c). Error in speed estimate.

Figure 4(a). Error in range estimate.

Figure 4(b). Error in course estimate.

Figure 4(c). Error in speed estimate.
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1]2[]3[*]2[ -+-= kkk GSUMSGSUMSktGSUMS (45)

3. SIMULATION AND RESULTS
Simulator is developed to create target, ownship, and

measurements. It is assumed that the initial position of the
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ownship is at the origin and bearing is considered wrt true
north 0o to 360o, clockwise positive. Target and ownship
movements are updated every second. All one-second samples
are corrupted by additive zero mean Gaussian noise, as
shown in Table 1. The EW receiving system is assumed
to be available on ownship and two typical scenarios are
considered for evaluation of algorithm. It is also assumed
that the bearing measurements are available continuously
every second. The bearing measurements are pre-processed
over 20 s to reduce the variance. The solution is updated
every 20 s. During the updating interval time, the solution
will be extrapolated at the rate of 1 s. The ownship is
assumed to be doing �S� manoeuver on the line-of-sight
at a turning rate of 3o/s, as shown in Fig. 2. When the
solution from PLE is stabilised, which is usually after first
manoeuver of ownship, it is used as initial estimate for
MLE. Then onwards, the estimated state vector is used
to find out target motion parameters and to update the
various SUMS for further processing. For evaluation, it
is assumed that the errors allowed in the estimated target
motion parameters are 11 per cent in range estimate, six
degrees in course estimate, and twenty per cent in speed
estimate. The estimates in Monte-Carlo simulation over 50
runs are shown in Figs 3 and 4. It is observed that range,
course, and speed estimates with required accuracies are
obtained from around 17th minute onwards.

For conceptual clarity, the target is assumed to be
moving at constant velocity. For tracking a manoeuvring
target, a fixed number of latest measurements in sliding
window can be used to track a manoeuvring target. (Through
Monte-Carlo simulation, the author noticed that minimum
15 measurements in sliding window are required for this
purpose.)

4. LIMITATIONS  OF  THE  ALGORITHM
The algorithm cannot provide good results when the

measurement noise is beyond 3o rms. When the target is
going away wrt the ownship by > 60o, the bearing rate
decreases substantially with the increase in number of
samples. In such situation, it is very difficult to track the
target. In general, these two situations are constraints to
any type of filtering technique.

5. CONCLUSIONS
Maximum likelihood estimator is proposed to develop

a passive tracking filter to track a ship.  In this paper the
algorithm developed by Nardone1,   is extended with sequential
processing. Here RECURSIVE SUMS are introduced and
updated whenever the new bearing measurement is available.
The estimated target state vector at any instant is used
to calculate the target motion parameters at that instant
and to update the SUMS for improved solution at the next
instant. PLE outputs are used for the initialisation of MLE.

From the simulation, it is observed that the results are
satisfactory. Hence, MLE is recommended as an effective
approach for bearings-only passive target tracking.
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