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ABSTRACT

i

Creep stressLs and strain rates have been obtained for a thin rotating disc having variable
density using Seth’s transition theory. It has been observed that a disc whose density decreases
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NOMENCL}ATURE h
n
e Principal finite strain component
[
a, b Internkl and extefnal radii of the disc
|
® |Angular velocity bf rotation

u, v, w Displacement components ’

}
r, 6, z Radial, circumferential and axial directions

e, T, Strain and stress tensors

b‘ij Kronecl:’.er’s delta
Density of the disc

€ Strain r'atle tensor

& Swainger strain measure

Young’é modulus |
Q? parb¥E (speed ]‘actor); R=r/b; R =a/b
o, Radial stress cl.omponent (T /E)

o, Circumferential s‘tréss component (7,,/E)

1. INTRODUCTION .

. . I . N
Rotating discs form an essential part of the
design of rotating machinery, namely, turbines,
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radially, rotates at higher angplar speed, thus increasing the possibility of a fracture at the bore,
reas for a disc whose density increases radri:lly, recedes the possibility of a fracture. The deformation
is signilﬁcant for a disc having variable density and rotating at higher angular speed.

compressors, flywheels, etc. The use of rotating
disc iln machinery and structura]lapplications has
generated considerable interest in the solid mechanics
domain. Solutions for thin isotropic discs are available
in literature’*. Reddy and Srinath® investigated
the influence of matérial density op the stresses
and displacements of.a rotating disc. It has been
shown that the existehce of density gradient in a
rotating disc influences the stresses and displacements
significantly. Chang® has developed a closed-form
elastic solution for an anistotropic rotating disc
with variable density. Wahl” has obtained creep
stresses in a rotating disc by assuming small deformation,
incompressibility condition, Tresca’s yield condition,
a power strain law and its associated flow rule.
Seth’s transition theory® does not require these
assumptions and thus solves a more general problem,
from which cases pertaining to the above assumptions
can be worked out. This theory utilises the concept
of generalised strain measure and asymptotic solution
at the critical points of the differential equations
defining the deformed field. It has been successfully
applied to several problems®'2,

Seth'’ defined the generalised principal strain
measure as
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f g 1(n/2)-1 4
j[l Zu,‘“] de],

(-2¢2)"1

where n is the measure (i »2,3)

In this paper, the creep stresses and strain
rates for a thin rotating disc of variable density
have been calculated using Seth’s transition theory.
The density of the disc is assumed to vary along
the radius in the form as

Po(r/b)™ @)

where p, is the density at r =.b, and m is the
density parameter. The results obtained have been
presented numerically and graphically.

2  GOVERNING EQUATIONS

Consider a thin disc of variable density with
a central bore of radius a and external radius b.
The disc is rotating with an angular velocity ()
of gradually increasing magnitude about an axis
perpendicular to its plane and passing through the
centre. The thickness of the disc is assumed to be
constant and sufficiently small, so that the disc s
effectively in a state of plane stress, i.e., the axial
stress T_is zero. The components of displacement
in cylindrical coordinates’ are given by:

u r B, v 0, w dz 3)

where B is a function of r = (x>+)?)'? only and d
is a constant. The finite components of strain are:

e: %[l (r/}";‘/;’)“}

% <[l ]
1

e 5[1 (1 {1)2] 4
e el 0

where p' dB/dr

Substituting Eqn (4) in Eqn( ), the generalised
components of strain are:
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e.=t[1-(F+8) |
€0 =-,‘,-[1 “ﬂ"] I
e.=1{1-(1-a)"] (5)

€9 =€g;-0; q

The stress-strai'n relafions™ .are:
T,=Ad ey +2ue; (i,j=123)!
(6)

where A and u are Lame’s constants and e, is
the first strain lnvanant Equation (6)‘for this problem
becomes:

T, —<M2# [e,, +e99]+ 2ue,,

TB,B /1+2;1 [err+399]+2'ue9‘9 7)
TL=T,=T,=T),~0

Substituting Eqn (5) m Eqn (7), ‘the stresses
are obtained as

21

T, ““-20-p0l €2 cyp+1)'}

n 1
t, ””{af“( pf2 c+(

z:-z: I, ”'];f/‘:r/;-‘. =0

I

) p+1)}]

(8)

where rf'=fP and C 24

‘he equations of equilibrium are all séqisﬁed
except

d
0 —(r7,,) Tp+pa®* -0 (9)

Substituting Eqn (8) in Eqn (9), one éets a
nonlinear dlfferentILl equation in J as

@ Cmppe 1y _nposr

dﬂ' 2,u
+,B"[' JP

" nP{l C+(2—C)(P+1)"}] 0
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The gritical points of g in Eqn (10) are
P= -1 and P> £ . The boundary conditions are:

]
T,=0lat r=a and r=b. (11)
]

‘ v
3. sOLUTION THROUGH PRINCIPAL
STRESS DIFFERENCE | ‘

It has been shown®'? that the aslymptotic solution
through tt]e principal stress difference at the transition
point P—> —1 leads to the creep state. The transition
function |R is defined as

- .?_‘uﬂ"‘r —
R=T, - Tpy="E—[1-(P+1)'] 2)

rr

d nP

9 (logR)=—

2 "og ) 1=}

(1= (P 1)~ B(P+ 1™ (@P ap)|
l
(13)

Substi}uting the value of dﬂ/dﬂ from Eqn
'10) in Eqn’(13) and taking asymptotic value P>
-1, one gets: | i

d
£ (log R)=—
dr(_og)

Asymptotic valye of p as P> — is D/r,
D being a constant.

Integrating' Eqn (14) wrt r, one gets:
R=T,, —Tpy =Ar® exp (F (15)
where 4 is a cdnstant of integration, and

K=-{n(3-2C)+1}/(2-C) and

F= {HI'I: /2uD" (2 ~( ')} | pr™* dr
Substituting Eqn (15)'in Eqn (9), one gets

T, = B—AIrK-'cxp(F)dr—mz'jprdr (16)

Using boundary conditions

_ ) in Eqn (16):
one gets:

A=

and B=A|jr" "exp(F)dr| atr=a

row|) prdri atr=a

Substituting values of 4 and B in Eqn (16)
l

one gets: .

o ¥ prdr J ¥ exp(F)dr' 5
— Fo’,) prdr

a

”Jh K1

r " exp(F)dr

a7
From Eqns (17) and (12), one has
o |* prdr X
— F
P expl err exp(
8)

yEquations (17) and (18) give creep stresses
for a thin rotating disc of varigble density.

,Substituting Eqn (2) in Eqns (17) and (18),
one gets the stresses in non-dimensional form as

(R pK-1 02 "p2-m
o,=4 z "R exp(F;)dR_?-___m_‘R
o, o,+ AR exp(F) (20)
where
_()2 l_l.RZ—m
4 1R

T 2- m), |' R exp(F)dR

n(3 - 2c)!22 Rn—m+2 bn

k= )
(2-C)'(n-m+2)D"

E=Q-12-Q£; 2-m#0and n—-m+220
n (2-C) n

For a disc made of incompressible®'? material,

i.e. C—0, the stresses given by Eqns (19) and (20)
become:
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- = (R - R3™]
cy=0, + LR " exp(F) (22)
where
Q|1-R;™]
4= (2=m) [1 p=3(n+1)/2 (Y 1m
rd R exp(F;)dR
ind

3)? -(22 Rn—m+2 bn

F= M2 5
2 4 (n-m+2)D"

For the disc having constant density, (i.e. m = 0);

Eqns (21) and (22) become: |
i v )
o, =4y I R 2exp(F)dR- !j R R
ca=0, LR "Vexp(F) (24)
where
!23;17 %]

4, =— —
Rjjl R—A\nﬂ)u cxp(Fg)d.R

and
_ 3nQ*R'Y
7 4(m+2)D"
These equations are the same as obtained by
Shukla''.

The creep strain rates are calculated as follows.

When the creep sets in, the strains should be
replaced by strainrates and the stress-strain relatiohs'®
are given by:

. 3 ..
G=2hS Gj 23 (25)
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where ¢, is the strai'n rate tensor wrt flow parameter
t, and S,.j is the stress-deviatpr tensor.

Differentiating ?qn (5}) wrt ¢, one gets:
cw BB (26)

For Swainger measure (i.e. n = ), Eqn (26)
becomes: '

m=1
6.4

6.0 —— n=1/3
e n= VS

—X——X—X=n = 1/7

‘RESSE
N
(=]

0.500 0.625 0.750 0.875 1000
R

Figure 1(a). Creep stresses in a thin }otating disc having
variable density (m.= 1) along the radius.
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L= (27) I These are the constitutive equations used by
Eg9 =P . : . ole . .
] ., . ! Odquist'® for finding the creep stresses, provided
where ¢,, is the Swainger strain measure. n= UN. 1

From Eqn (}2), the transition value of g is:

ﬁ= (n /2/1)1/" (IT;.’_ L Toa)l/n (28)

Substituting Eqns (26), (27) and (28) in Eqn
(25), ong gets:

)
4. DISCUSSION

For calculating the stresses and strain rate
distrpbution based on the above analysis, the following
values have been taken:

. (1)~ . )

Eg0= 2|30(0, - 0°g) ':} ' (S, /E) (29) 2 =(p,@’b* /E)=1,5;m=-1, 0,
where y = (3/2 llEvis a consthnt and A, has the n=1/3,1/51/7 (i.e. N=3,57)
same dimension as that of (1/E).

Since the form in Eqn (291 is to be valid, one
must have ‘ i

Curves have been drawn in Figs 1(a), 1(b)
and 1(c) between stresses o, 0, and radii ratio
R for a rotating disc made of incompressible material
<t and having variable density. It has been shown in
- E) (3 Fig. 1(a) that the circumferential stress is maximum
; at the internal surface of a dis¢ (density decreases
; radially, m = 1) rotating with angular speed

== 022=5forn=1/3,1/5 and 1/7.} respectively. The
(e i _ value of these maximum circumferential stresses

i g _ ! decreases at the internal surface of a disc having
£t N e R - constant density (m = 0) (see Fig. 1(b)) or density

________ —nz V5

i
J —_—n=13
{
| EEECIE IR V2 |

;
STRESSES
/

Figure 1(b). Creep stresses in » thin rotating disc having Figure 1(c). Creep stresses in a thin rotating disc having
variable (lcnsilﬁ' (m = 0) along the radius. variable density (m = —1) along the radius.
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increasing radially (m = -1) (see Fig. 1(c)). As
reported by Rimrott'’, a material tends to fracture
by cleavage. It is likely to begin as a sub-surface
fracture close to the bore, bécause the largest
tensile stress occurs at this location. This means
that for a disc rotating with higher angular speed
and whose density decreases radially, the possibility
of a fracture at the bore incréases, whereas for
a rotating disc whose density increases radially,
the possibility of a fracture at the bore decreases.

In Fig. 2, curves have been drawn between
the strain rates and radii ratio R for angular speed
£2?=1,5and n = 1/7. It has been observed tlat
a disc havmg variable density and rotating with
angular speed Q2?2 = 1 has negligible deformatlon
whereas the deformation is significant for angular
speed 02?2 = 5,

for m = -1,0,1
2&
Q=1
3)

wv
-
x
Z
o
[-%
p =
e
wr
<
-4
E
<
o0
-
w

0.52

68
Py
2.82 1
2.86
T 1 T T
0500 0625 0750 0.87% )00
R =¢/h

Figure 2. Strain rate components for a thin rotating disc

having variable density along the radius.
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