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ABSTRACTI

Creep stress~s and strain rates have been obtained for a thin rotating disc having variable
de~sity using Sethrs transition theory. It h'11s been observed that a disc whose density decreases
rad5ally, rotates at higher angplar speed, thus increasing the possibility of a fracture at the bore,
wh~reas for a disc whose density increaseslradially, recedes the possibility ofa fracture. The defont1ation
is signircant for a disc having variable denlsity and rotating at higher angular speed.

compressors, flywheels, etc. The use of rotating
disc in machinery and structural applications has
generkted considerable interest in t~e solid mechanics
domain. Solutions for thin isotropic discs are available
in litera~urel.4. Reddy and SrinathS investigated
the influence of material density or the stresses
and displ.acements of.a rotating disc. It has been
shown that the existence of density gradient in a
rotating disc influences the stresses and displacements
significantly. Chang6 has developed a closed-form
elastic solution for an anistotropic rotating disc
with variable densityl. Wahl7 has obtained creep
stresses in a rotating disc by assuming small deformation,

incompressibility condition, Tresca's yield condition,
a power strain law and its associated flow rule.
Seth's transition theoryB does not require these
assumptions and thus solves a more general problem,
from which cases pertaining to the above assumptions
can be worked out. This theory utilises the concept
of generalised strain measure and asymptotic solution
at the critical points of the differential equations
defining the deformed field. It has been successfully
applied to several problems9-12.

NOMENCLATURE )
I I

e1 Principal finite strain componentII I

a, b Internhl and extetnal radii of the disc
i

{J) I Angular velocity bf rotation

u, v, w Displacement components ,
, I

" 8, z Radial, circul1liferential and axial directions

elj' TIj Strain and st..ess tensors

8ji Kronec~er's detta

p Density q! the disc

eij Strain rate tensor
J

&11

E

!);2

Swaing~r strain measure
.I

Young's modulus
I

pcd'b2/E (speed ~actor); R=r/b; Ro=a/b

Radial stress Jomponent I(T 1£)
I'.

Circumferential stress component (T o0/E)
I

0",

0"/1

I. INTRODUCTIO~ I

SethlJ defined the generalised principal strain

measure as
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In this paper, the creep stresses and strain
rates for a thin rotating disc of variable density
have been calculated using Seth' s transition theory.
The density of the disc is assumed to vary along
the radius in the form as

The stress-strain relaiions 14 are'
I

1;j=Aoijekk +2}leij {i,j=42,3) ~

(6)
where ). and }J are Lame's constkl1ts and e kk is
the first strain invariant. Equation {6) 'for this problem

becomes:

po(r/ b)-m (2)

where Po is the density at r =' .b, and m is the

density parameter. The results obtained have been

presented numerically and graphically. ~T". =').+2,/1' [ err + e eo ]+ 2.uerr

.2;.j1 [ : ]Tep = Tt:Ijj" e rr + e eo .+ 2 .ue eo

4~ =4r=T,e=Tez =0
2 GOVERNING EQUATIONs :7)

Consider a thin disc of variable density with
a central boTe of radius a and external radius b.

The disc is rotating with an angular velocity (0))

of gradually increasing magnitude about an axis

perpendicular to its plane and passing through the
centre. The thickness of the disc is assumed to b.e

constant and sufficiently small, so that the disc is

effectively in a state of plane stress, i.e., the axial
stress Tz: is zero. The components of displacement

in cylindrical coordinates'3 are given by:

Substituting Eqn (5) In Eqn (7), fhe stresses
are obtained as ,

p"{l~r c (2

fJ"{2

=0

too

f:z

C+(1

(8)-fJ), v 0, w (3)u r dz

2.uwhere /3 is a function of r = (X2+y2)1/2 only and d

is a constant. The f~nite components of strain are:
where rfJ' c fJP and c

I
'he equations of equilibrium are all sa~isfied

~[1

:.!.[12

~[1
A .

eo: .

excepte;

dA

eee p2 ] T(}(} +pOJ2t2 0 (9)

(I
~f]

o

e: 4 Substituting Enn (8) in Eqn (9), one gets a
nonlinear differenti~1 equation in /3 asA

e:r

~=~c
I 21-1

, -C)(P+l)"}]

1)"-1 dP

dfJ

C+(2

(2 C)np"+l P(Pwhere P' dp/dr
0)

(p nP{1l)n+jJ'lSubstituting Eqn (4) in Eqn(
components of strain are:

I, the general.ised
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T" = B- AJ rK-IcKp(F)dr -OJ2J prdr

GUPT A, et a/

) in Eqn ( 16),Using boundary conditions

one g9ts :p=

The «ritical pOlints of p in Eqn ( 10) are

-I and p~ :!: 00. The boundary conditions are:
I.

T" = 01 at r = a and r = b. ( 11 )
I A=

SOLhTION :THRdUGH P~INCIP AL
STRESS DIJfFERENCE I I3.

It has been shown9-12 that the armptotic solution

thr?ugh t~e princip~1 stress differ~n~e at the trans.it!on

point p-)- -1 leads to the creep state. The transition

function ~ is defined as Substituting values of A and B in Eqn (16)
one gets: I

2)

7:

(17)

From Eqns (17) and (12), one has

!!.-(Jog R) =
dr . rKexp(F

,

IdP)]
I

P(P + 11)"-I(dP
8)

I Equations ( 17) and ( 18) give creep stresses

for a thin rotating disc of vari~b1e density.
(13)

Substituting the valu,e of d]i/djJ from Eqn
:10) in Eqn (13) and taking asymptotic value p~

-1, one gets: \ i

ISubstituting Eqn (2) in E~ns (17) and (18),
one gets. the stresses. in non-dimensional form as

exp~Fj)dR-~, 2-m

'R2-md
d;: (It!g R)=-

(20)0" r + A1RK exp(F;)an
is D/r'Asymptotic val~e of p as p~ -

D being a constant. I where
I

Integrating Eqn (14) wrt r, one gets:
A1 =

..a2 [ 1.1 R~-nl ]=- -

(2- m)Ro Jl RK-l exp(1'\)dR
(15)

, K
R=~r -Tee =jAr exp (F

where A is a co':nstant of integration, and F;=
n(3 -2C)d R"-m+2 bn

-(2- CY (n =;~

~=~~ ; 2-m:t:O and n-m+2:t:O
n (2-C) n

For a disc made of incompressible9-12 material,
i.e. C~O, the stresses given by Eqns (19) and (20)

become:

Substituting Eqn (16)'in Eqn (9), one gets
I

(16)
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where e. is the strain rate tensor wrt flow parameterI) ,
I, and S.. is the stress-deviatf}r tensor .I) r

Differentiating Eqn (~~ wrt I, one gets:
,

.fl/I~P (26)eee

), Eqn (26)For Swainger measure (i.e. n F
.

becomes:
A R-(3n+l)/2 ( 1::' )0"8=O"r + 2 exp r2 (22)

m = 1
where 6.4

6 O

A2=
5.6

\md
5.2

F1=
3n d Rn-nl+2 bn
-

4 (n-m+2)Dn 4.8

2
1!16 In-= 5)

For the disc having constant density, (i.e. m = 0);

Eqns (21) and (22) become: r4. O

'6
R2

R!o]

3 :2 ~

..,
VI
VI
..,
~

2.8
[3R-(311+1)/2 exp( 1'3 ) (24)0- II =0-,

\
~where \"

2. 0 l
06 ( Q = 11)

~JI R-3(n+I){2 exp(~)d.R

~,

6

and

~=
3nd R"t2 b"

4(n + 2}Dn

or (

2
or ( n = 1).

These equations are the same as obtained by
Shuklall.

0.8

0.4

0.0
The creep strain rates are calculated as follows,

0.4When the creep sets in, the strains should be

replaced by strainrates and the stress-strain relatio~sls

are given by: ~
0.6250500 0.750 0.875 1.000

e. =~ ~ s
9 2"1 9 ,2,3(~j (25) Figure l(a).

R

Creep stresses in a thin totating disc having

variabl~ density (m.= I) along the radius.
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\ These are the constitutive equations used by

Odquist'6 for finding the creep stresses, provided
n = 1 IN.

£00 = -jJ {27)
.

where &00 is the Swainger strain measure.

From Eqn ( ~2), the transition value of /3 is:
I

DISCUSSION4.
.8=(n/2.u}I/I/(TrrLToo)I/1/ (28)

I I

Substitut.ng Eqns (26), (27) and (28) in Eqn

(25), on~ gets':

For calculating the stresses and strain rate

distr;bution based on the above analysis, the following

values have been taken:

.o.2=(po{J)2b2/E)=1,5;m=-1,0,

n=I/3, 1/5,1/7 (i.e. N=3, 5, 7).

Curves have been drawn in Figs l(a), l(b)

and l(c) between stresses a,., .au and radii ratio

R for a rotating disc made of incompressible material
and having variable density. It has been shown in

Fig. I (a) that the cir9umferential stress is maximum

at the internal surface of a dis<1; (density decreases
radially, m = 1) rotating wiFh angular speed

.02 = 5 for n = 113, 115 and 1/7,1 respectively. The

value of these maximum circumferential stresses

decreases at the internal surfaCe of a disc having
constant density (m = 0) (see Fig. I (b)) or density

n .1/]

n. VS

-x-x-x-n = 1/7

" "'-
2 8.\

"'
~
"'
~
:;;

.0 I a': 11

1.2

A\

or 1{1

O~OO 062~ OJ~O O.8'1~ 1JJtO

Figure I(b). Creep stresseslin II thIn rotating disc having
vnriablc dcnsi.~, (111 = 0) along thc radi\l~.

Figure l(c). Creep stresses in a thin rotating disc having
variable density (", = -I) along the radius.

15

where x = (3i2Jit.E. is a constpnt and ,.ti has the
same dimension as that of (lip). -

Since the form in Eqn (29~ is to be valid, one
must have I c

t ~-e
,-..;~ -, " ,
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