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ABSTRACT
)

Aerodynamic jump for a non-spinning kinetic energy penetrator is neither a discontinuous

change in the ,dir~ction of motion at the origin of free night, nor is it the converse, i.e. a cumulative

r~direc4on over a domain of infinite extent. Rather aerodynamic jump, for such a projectile, is a

localise~ redirection of the centre of gravity motion, caused ~ the force of lift due to yaw over the

r4latively short region from entry into free flight until the yaw reaches its first maximum. The primary

objective of this paper is to provide answtfrs to the questions like what is aerodynamic jump, what

liauses it, !lnd wh~t aspects df the flight trajectory does it refer to, or account for .

d Projectile diameter

k Radius of gyration

m ' projectile mass

s Longitudinal displacement lof projectile
, cg, measured along the swerve axis

Time

cg velocity

Transverse displacement ofJprojectile cg,
measured from the originaJ line of fire,
perpendicular to y and z

Transverse displacement of1projectile cg,
measured from the original line of fire,
perpendicular to x and z

Longitudinal displacement of projectile
cg, measured along the original line of
fire, perpendicular to x and y

cp Centre of pressure

Gref'k symbols

Projectile yaw angle

E I Angle between cg velocity vector and
()ril:\illllllill(;()rrir(; I

Wavelength of swerve curve
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Projectile cross-sectional arec\
Aerqdynamic'drag force I

Aerqdynamic lift force

Centre of gravity 1
I.

Moment due to forces L and D about the
projectile centre Ojf gravity

I
Resultant force

Trans~erse displ~cement of projectile cg,
measured from t:1e swerve axis

Aerodynamic jur~p
Drag coefficient I ~

Free fli 1ht ~

Transve se moment ot inertia of

(symme ric) projectile
Kinetic energy

Launch disturbance :
Lift c1efficient I ;~

Dcrivative of lift coefficient wrt a

Oerivativ.: of restorilJg moment
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p Air density

subscripts & s~perscripts

o Origin of, free fligllt

First local maximum (positive or
negative) in the swerve curve

-+ Vector

Averaged quantity

" U nit vector

Differentiation wrt time

Differentiation wrt the trajectory arc
length, 'measured in rod diameters

I
figure I. Hypothetical, plan4r cg motion or a KE rod caused

by launch disturbances.
, ,

velocity that is transferred to the trojectile cg

motion. The angular change in the projectile cg

velocity du; to this barrei crossin'g motion is

denoted by 4CV. Outside the gun, it is possible for

asymmetric: sabot discar~ to create uneven

me~hanical ~nd aerodynamic forces on the rod that
add yet another transverse c~ velocifY component,

~nd redirectib" angle, LSO. The net effect of these
four pre-FF LOs can give the qrojectile cg a
cumulative transverse deflection angle, LLO =

LCG + LPA + LCV+ LSO, ht the, point where it
I

enters FF (Fig. 1). TeCrhniques to measure these LO

components are discussed by Bornsteinl, et al.

I. INTRODuCTION
t

The motio,n of a projectile can be divided into
two general regions: (i) f--ee flight (FF) region, and

(ii) launch disturbance (LO) region (prior. to FF).
For instance, if the projectile is a gun-Iiunched,

saboted long ~od or kinetic entrgy (KE) penetrator,, .
then the LO region begins in-bore and extends

downrange to the point, where shock waves from
the discarding sabot petals no longer interact with

the rod. The end of the LO region marks the

beginning of the FF region, where the phenomenon

known as AJ occurs. The KE penetrator is chosen

to facilitate the ensuing discussion and illrstrations

on the subject of AJ.

Although AJ occurs in the FF region, its

magnitude is influenced by events(that take place in
the LO region. A KE projectile consists of a long

rod with an aerodynamicatly-shaped nose and

stabilising tail fins. The high mass-density

sub-calibre rod is held centered in the gun b~re by a
low mass-density full-calibre sabot. The rod can

undergo small, lateral, cg displacements and
rotations while being propelled longitudinally

down the bore. Such in-bore .motion permits the

projectile cg to exit the barre;1 with a velocity vector

oriented at an LCG wrt the instantaneous bore axis.

In addition to the rod moving relative to the bore

axis, the barrel itself can be moved. Thus, the rod

can be launched with the instantaneous pointing

angle of the bore axis, LPA, different from the

original muzzle sight line. Furthermore, the

instantaneous bore axis can have a lateral ( crossing)

.After transitionil"!g the LO region, side forces

can continue to influence the lateral motion of the
I

projectile in the- FF region. These side forces are

aerodynamic in nature and cause the projectile cg to

oscillate (swerve) about a mean FF path (swerve

axis), as it travels to the target (Fig. 2). For a typical

KE ro.d (whi9h is statl.l-ally stable, near-symmetric,

and vIrtually non-rolllng), the swerve curve can be

approximated by, damped sine wave in both
vertical and ,horizorttal directions*. As Indicated in

Fig. 2, the swerve a'fisl can be, and most often is

different from the diJection given to the projectile

cg as it leave~ the LO region.. The term AJ, in
I

particular LAJ is used to qual:\tify this change in

direction.
--* The effects of gravity and the Coriolis force on the trajectory are not included in this discussion because they ~re.not aerodynamic in

nature; if warranted, their inl1ue~ce can simply be superimposed on the swerve motion. ,
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Figure 4. Geometrical rendering or Eqn (2)

trajectory approaches infinity , AJ and LAJ are

defined by

Jim [ ! ] ; LAJ = tan-1 {AJ} ~

l"",,~ z AJ, LAJ
AJ AJ

I
where y represents the transverse cg displacement

and z repr~sents the longitudinal or downrange

displacement--. Both Murphy2 and Murphy and

Bradley3 begin their discussion of AJ based on

Eqn t, ). A morc detailed expression for AJ, one that

does not neglect other contributors to jump, is put

forth later by Murphy4. This more general
definltion states #

Figure 2. Characterisationlof cg transition into FF region
I

One of the ea~liest descri~tlons of AJ was

given by M!Jrphl stating that AJ is the angle

between the bore sightline .and the average

trajectory when the o't.her contributors to jump are,

neglected. Although this definition describes AJ as

an angle, it is actually t~e tangent, of the de:scribed

angle. However, for small AJ angles (typically the

case), the angle and its tangent are nearly one and

the same. Neglecting lother contributors to j.ump
means se.tting, or assuming, LLD = O in the

discussion of fig. 1. In this case, Fig. 2 would

transformlinto Fig. 3.

Figure 3 depicts that the axis of sr.verve

symmetr~ is cldsely aligned ""ith the point of

impact on a distant target. In fact, when the FF
j
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AJ = li~ [ .Y-Y ~
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l ' l- lO dl l
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where y() is the transverse cg ;displacement, and
,

dy / dzl is the tangent to the cg displacement, both
.0

at the origin of FF. Figure 4 giJ;es the geometrical

interpretation of Eqn (2). Equations (1) and (2)

define AJ by calling upon the limit as the trajectory

approaches infinity; to some, this may erroneously

infer that AJ is an effect that accumulates with

cJuwlIrllllgc cJi~lIlIICC. All ullcrlllllivc killCIlllllicul

dcfinition for AJ can bc givcn as one that does not

in~oke an infinite limit, but rather, attributes AJ to a

y

~

,"
""

,,
"" I

I
POINT OF IMPACT ---'~

Figure 3. Geometrical view of LAJ, "eglecting LLD
~

,.* The sign donvention for the direction of positive y in Eqn ( 1) will determine the sign convention for positive AJ.

# Equation (2) here is actually the single-plane cquivalcnt of combilling Mutphy's4 Eqns (9) at Id (10) with gravitl1tional and Coriol
effects neglec~d. I
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2. KINEMATICAL DEFINITION FOR

AERODYNAMIC JUMP I

From Eqn (2) and Fig. 4~ L.AJ is the angular

change between the tangent to the cg trajectory at

the end of LD region and the axi~ of swer;;e

symmetry. Figure 5 shows that the axis of swerve
I

symmetry runs parallel to the tangent to the swerve
5

curve at any and all of the local swerve maxima

(positive or negative wrt the swerve axis). I

Hence, L.AJ can also be defined as the angular

difference between the tangent to the swerve curve

at the origin of FF and the tangent to the swerve

curve at the first (or second, or third, etc.) local

maximum in the swerving motion. In equation

form, it can be expressed as

,./:-

/

Zo Z1

DOWNRANGE

I (b)'

Figure 6. Influence or initial (s'ferve) conditions on AJ
(a) entry into FF at ~o "' Zl and (b) entry into FF

Iat Zo "' Zl T }J 2.

} -,tan-! { ~,LAJ = tan -I given in Eqn (3) doles not tall upon the limit as the

trajectory approaches infinity ,ow"" maxi= origin or r... mghl

Even though LAJ can be defined using the
1

tangent line at any of the local maxiplum, it is clear

that the minimum distance needeii to establish the

orientation of the swerve axis is the)distance to the

first swerve maximum,zl. Thereafte;, the cg motion
t

simply oscillate.s about this :axis, )albeit with a

damped. amplitude.

~tll
dy

l~l
(3)...,.,. ",",ima orilm or rn:c nilht

where the subscripts identify the locations at which

the derivatives are to be evaluated. It is noted that

unlike Eqns (1) and (2), the definition for LAJ
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The limitless defi,nition of Eq~ (3) facilit~tes

some additional in~ight into the kinematic

relationship between LA~ and the initial conditions
at the origin ofF;F. Take special cases illustrated in

Figs 6(a) and 6(b),.unlike Fig. 5, the swerve axes in

these two cases. ate nearly parallel with the LO

direction, hencl~, i LAJ is nearly zero. From

Fig. 6(a), for ii,stance, the distance between the
I

origin of FF, Zo , ;and the first s~erve maximum, Z\,
is relatively small, at le~st in aomparison to the

wavelength of the swerv~ curve, I. On the other
hand, in Fig. 6(b), Z\ -~o is relativelly large, ~ f../2.

Contrasting the larger LAJlof Fig. 5 with that of
I.

Figs. 6(a) and 6(b ), it can be inferred that the largest
LAJ will occur when Z\ -Zo = A./(t. ll'I fact, if the

swerve curve is approlxitriated by a sine wave of the
j

form y = A sin (27t[z-zo]/A.), at least for the first

cycle, then, from Eqn (3), the niaximum LAJ would

be given by.

Eqn (3). These also Iprovide visible examples that

support the contention that it is not necessary to

take the swerving motion to infinity, as called for in

Eqns ( 1) and (2), in order to establish the direction
of the swerve axis. I

Based on the kinematical developments
discussed here, it is a simple matter to derive a
dynamical expression for AJ. However, before such
an expression can be formulated, it is beneficial to

review some basic aerodynamics.

3. BASIC AERODYNAMIC FORCES &
MOMENTS ACTING ON A NON-

SPINNING KE PENETRATOR

The force of friction and drag on the projectile
are probably the most fundamental of the
aerodynamic forces. It is commonly expressed as

-tCDPAIUliiD (5)

d1y - A .,
(21t [ Z-Z -Sln --~

I A.
J

and, by virtue of the minus sign, drag is in the

direction opposite ii.ILAJ

The expression for lift is conventionally

writte,n as
IZ.=Z.+)J4

A21t

1.

A
The unit vector direction of the lift force, L, is

perpendicular to the drag force and is in the yaw

plane. In this discussion, yaw is the vertical (z-y)
plane angle, a, b~tween the projet:tile's tail-to-nose

axis and the tangent to its trajdctory (or equaHy
suitable, u). It is assumed here that a + a means the

nose of projectile is above u.

For small yaw (e.g. a < 5°~
I

(7)CL =c

Suppose the original direction of fire is defined

to be the positive z-axis, with positive y downward,
and positive x to the gunner's right. Assume the cg

motioll is 2-0 planar, in particular, assume (for

illustrational simplicity) that the motion is confined

t() tll(; v(.'rticlll plllllt, tht:11 ii c; :; I.)')'"S u(;pict~u ill

Fi&.8.

To appreciat~ th~ significance of Eqn (4),
Fig. 7 illustrates how ~AJmax varies with A and 11.

for two cases where y conforms to A sin(21t[z-zo]/A.).
From the \depiction (and Eqn (4)), a larger A and

smaller 11. produce a la:rger L.AJmax. For large calibre

guns, A may be of th(i order of several millimeters,

whereas 11. is of the order of tens qf meteus; hence,
L.AJmnx from Eqn (4), w~11 be small-ofthe order of

milliradians.1 II I
Figures \5-7 illustrate that the hxis of fwerve

Mymmetry IK fixed ill MpUCt) by tI\e timt) tI\t) \ruc.l

reaches its firstl swerve maximum~ as implied by

;
113
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Suppressing the effects of gravity and the

Coriolis force, Newton's second law for linear

motion in the y direction* dictates that

where the unit vector y is nearly parallel with the

direction of L and nearly ,~erpendicular to .15 ( even

though it may not jlPpear as such in the not-to-scale

illustration of Fig. 9, i.~.,a

~

dy - L-
y ~+i>.y =-

m-- .

dt E-E~9. S~milarly, it ~it =ss
(10)

+IDisin &

(8) Simply s1ated, Iiqn (9) establishes that lift is

the primary cause ofswlerve. From Eqns (6) and (7),

lift is proportional to yaw, hence.I .where a /la I accounts for the positive or negative

influence of yaw on lift. a 11 I'

1~12PAlii12 c;a ':al

dY(s)

dt
m =--

The value of E is always small, and it would

expedite the analysis to assume it is zero, however,

such an over simplification is pot necessary. The cg

velocity vector, and hence E, oscillates about some
--

mean values, u and E, respectively (in actuality, u is

in the direction of the swerve axis and E is the angle
I

of the swerve axis wrt the z~axis). If the coordinate

axis z and y a~e simply rotated by the angle E, and

thereafter denoted s and Y, respectively, as shown in

Fig. 9, then the equation of motion in the y direction

can be written as'

I)

The expression for' a. imust satisfy the torque
...,equatIon, VIZ." ,

mk2 ~(x)=M
dt (12)

where K is the radiu~ of gyratioh of the KE rod

about its transverse (x) axis.

* If positive y had been dcfined as up, rather than down, the signs on the right in Eqn (8) w~)d be reversed.
\
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~

I Such an equation has a sinusoidal solution,

which means Y(s), from Eqn (11), will have a

sinusoidal solution (however, a. and y will be 180°

out of phase). It is nlow proven that this oscillatory

motion, coupled with the lift force, can account for
I

AJ in the relatively short region from Zo to Zt.

DYNAMICAL DEFINITION FOR
AERODYNAMIC JUMP

4.

In FF region, the axis of the projectile will

oscillate abou~ its cg traJ.ectory (i.e. the swerve

curve). Just as air opposes the forward motion of

the projectile, it will also' oppose this oscillating

motion. Hence, ther~ will be, a resisting torque,

known as the damping' moment, that varies ",-:ith the

yaw. rate. As ;the name implies: the damping

moment causes the ya~ magnitude to diminish with
time of flight. ' I

(
However, sinfe it has been argued in Eqn (3)

and Fig. 5 that: LAJ is established withip a

relatively short !.iegment of the trajectory, the effect

of damping on AI.J can, be ignored: In this case, the
-I

moment M about the cg will oply be due to the
---I

resultant force, R = L + ~ located at cp (Fig. 8).

Thus, for small a. I

From Eqn (3)

dy

\~z. ~tlzl -~Il.,
dy

\d; l,
LAJ = tan -tan

-}1 1 lJ

-i z, -ilz.

Y(Z/)-Y(Zo)-

~

M =Icg- cpl(I)jlsin\'.~~lilcosp.

I I

z
-x) :16)

~Icg- cpl(

..

i>1a.'t~lil(-X) (13))

Using Eqns (5-7) in Eqn.(13), yields

Hence, LAJ can be viewed as a change in slope
of the cg trajectory from Zo to Zt [ or, it can be viewed
as a change in transverse velocity from Zo to Zt,
noJ-dimensionalised by the longitudinal velocity
(appro;C;imately constant from Zo to Zt)].

I
Equations (3) and (16) define LAJ in terms of

dy/dz, and tolfind its equivalent expression in terms
of dY/ds, it is necessary to transform fromy and z to
Yand s. To that end (with the aid of Fig. 9), it can be
showp that

Icg- c~la(C D+C "')<-X)

1 j 1 - 1 2' A

2c maP.. U dax

I (14)

y(z) = y(s ) cos e + (s -s o )sin e

Z-Zo =(s-so)cosE-Y(s)sinE (17)

and

dy(z)

dz cas e -~
ds

dz

ds
SInE

where c ma .= -[C D +C 'a ]Icg -'apl/d) is call;d the

derivati"e of the restoring (bverturning, or
pitching) moment coefficient wrt a, and d i$ the rod
diameter. By definition, Cma i~ negative for a

statically stable projectile. The cqefficients CD, CIa.
and Cmal can all be determined from wind-tunnel

measurqments or numerically predicted using
comput~ional fluid dynami~s.

Substituting Eqn {14) into Eqn (12), one has:

'1 d<i11'k' -"" 1. C
Idt 2
I

tJY(.\')

ds

dl'(.\')

ds
(15) + tanE, for ,El«~

(18)

Sinco Gina is nc',Bl\tivc for KE projcctilc, this

differential equation tor a is of the form ~ oc-a.
, 4 Combining Eqns (16) and (18), one has

15
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Ngttre 9. Swerve.rlxed (s ,y ) and earth-fixed (i,y ) coordinate
,

system. 1

whe.re the substript notation ZI, SI (for example)

refers to the point on the swerve curve with

coordinate zl along the z-axis and SI along the s-axis

(Fig. 9). In effect, Eqn ( 19) states that the difference

in slopes between the two points on the swerve

curve does not change if the coordinate system,

used to describe the curve, is rotated thfotugh an

angle f:.

Combining Eqns (9), (I I) and (15), it c;an be
shown that

(i .Y)dt

m

C k2
la

dC
ma

dY~ dd--

(20)

Denoting a o as the yaw rate at entry into FF

region, and a I as yaw rate at the first local

maximum in the swerve curve, then integration of

Eqn (20) from entry into FF region until the first

local maximum in swerve and in yaw yields

to ZI, or it can be related to a!change in angular rates

from Zo to ZJ (so to SI). Furthermore, the insertion of

the lift correlation in Eqn (2q) and its retention in

Eqns (21) a!ld (22) J.lnderscores the physical
explanation that LAJ is due to the (integrated)

effect of lift, caused by yaVf ' from Zo (so) to zl (SI ).

Equations (19), (21) and ('22) could have been
s!implified by setting dYli dsl.", 'I =0 (and therefore
Y(SI ) =0), since by defi1llitibn, Y(s) is at a local
maxima at, SI, Izl. (This would also mean [from

Eqn ( 18)] that dy Iqz
l ' = tan E, as marked in

I '"sI
Fig. 9). Morepver, since a and Yare 180° out of

phase, when y =0,<1. =p, Ihence, Eqn (22) can be

simplified to, 1

1(., )

f<L .Y)dt

1(.0 )

-.1
Y(Sj ) -Y(SO) ~-

m

(21)

C k2
,.. N

-~

-dCm.liil !

dY I -

ds so.lo

LAJ=--
C k2

la .

dC
ma

11, C k2

f I.

11 dCmo .

d<i = ---
-

(dl -do (23)

Also from Eqn (22), it can be seen th<-t LAJ

will increase if either the integrand (viz., the lift

force) or the domain of integration (viz., the lift
-.

force -action ti'me) increase~. In corn ponent terms,
(n~ting that Cma will always be negative for a KE

rod, and CIa' k, d, and I ¥Iare all positive), J(.Aj will

increase if either (i) Cla~ncreases (sp that the lifting

force per dt:gree yaw intreases), (ii} k increases (in

which case, the rod world rotate slow1' and hence

the lifting forc~ would act longer), (iii)<ioincJeases

(so that, once~ again, it would take more time to

Equations (19) and (21) can be combined to

show

LAJ = ~

Ids
II
I

-~lso.Zo

1 I(S, )

-;r;;

, J<i.Y)dt

I(So )

~I-

(22)

Equation (22),reveals that LAJ can be viewed

as a change in the slope of the cg trajectory frol11 Zo

116
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I

I
I I

bring the rod to rFst), or (iv) Cma decreases (so tl\at

the overturning moment per degree ~aw decreases,

again lengt,lening the acti?n time Jfor the lifting

force ).

but the paper's primary objective was to answer the

que9tions: What is AJ, what causes it, and what

aspect of the flight trajectory does it refer to, or

account for .

Other equiyalent expre~sions for AJ that can be

found in the literature inclt!de:

c 1I. I i I

md2C ,-a.o

ma , (24)

where the appro>:id1ation sign shown in Eqn (23) is

discontinued f~T expediency, I, (= mk2) is the

moment of inertia of the (symmetric) projectile

about its transverse axis, and a ~ is the initial FF

rate of change of yaw Vtjrt \he trajectory arc length,

measured in rod diameters (i.e. a: ;E da I d[s I d] ).

Depending upon the, cdordinate system used,
there mayor may not be a negativejsigd on the right

hand side in the equ~liti~s/identities of Eqn (24).

The convention chosen hQ:re (which is also the one

most often adopted.in the field of ballistics), is to

define the positive ver't.ical axis CY) as down, and

positive yaw (a) as up (up, for a, means its nose .is
above the cg velocity vector). However, if the

positive vertical axis was defined as'up, like that of

yaw, it would yidld a negative sign in the

expressions on the right in Eqn (24). The plus sign
form of the expression,foi LAJ is the most common

.'3467 Th . h ... construction' ., 1- ere IS one ot er sign variation

that may ap r ear i,l the litcrature, ifboth the positive
vertical axi and positive yaw are defined as down,
then the rign is, also negativ~li8 in Eqn ~24 ).

Regardless of the sign conVention for the coordinate

system used, it is always the case3,lthatjum~ due to

a;, is in the directi~n of a.: .

I
For instance, one misconception about AJ can

arise from the fact that Eqn (24) only shows a

dependence on the initial yaw rate at the origin of

FF [concealing th~ 'fact that itl is actually' a

difference in rates, fJqn (22), that happens to equal

the initial rate, Eqn (23)]. Therefore, some may

conclude that AJ is a point-based phenomenon, i.e.,

it results from (aero) dynamical effects that occur at

the origin of FF region. Others, seeking a

geometrical explan~tion for AJ, may forgo the
dynamical definition of Eqn (24) and return to its

origin in the kinematical definition adopted, for

example, by Murphy2.4. However, tho~;e
geometry-based definitions for AJ [viz., Eqns (I)
or (2)] call for the cg coordinates to be evaluated in

the limit of an infinite trajectory. Thus, there is

some risk that those drawing upon these definitions

to explain AJ will erroneously assume that it is a

transformation that accumulates with downrange

distance (not realising that the swerve axis is

actually a constant, established long before the

trajectory reaches infinity).

The central theme of this paper is to show that

AJ i's neither a change in direction that takes place

at a point, nor is it a curving change that takes place

over a domain of infinite extent, rather it is a

regional tran~formation. In particular, using an

alternative kinematic definition, it was illustrated

geometrically (in terms of the cg trajectory) and

proven mathematically (based on Newton'-s
equatibns of motion) that L.AJ for a (non-spinning)
KE penetrator can be accounted for by the change in
transverse cg velocity-due to lift-acting for the
short period of time and space from entry of the

projectile into FF region until it reaches its first

local maxima in yaw (or swerve).
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