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ABSTRACT

}

Aerodynamilc jump for a non-spinning kinetic energy penetrator is neither a discontinuous
change in the direction of motion at the origin of free flight, nor is it the converse, i.e. a cumulative
rcdlrect;on over a domain of infinite extent. Rather acrodynamic jump, for such a projectile, is a
localised redirection of the centre of gravity motion, caused by the force of lift due to yaw over the
r«}latively short region from entry into free flight until the yaw reaches its first maximum. The primary
objective of this paper is fo provide answgrs to the questions like what is aerodynamic jump, what
¢auses it, aind what aspects df the flight trajectory does it refer to, or account for.

NOMENCLATURE

A Projectile cross-sectional area

D Aerqdynamic'drag force

L Aerddynamic lift force

cg Centre of gra}/ity ‘ |

M  Moment due to forces L and D about the
projectile centre of gravity

R Resdltant force

Y Transverse displacement of projectile cg,
measured from tae swerve axis

AJ  Aerodynamic junﬁp

Cp Drag coefficient ‘ :

FF  Free flight l ’

I; Transveise moment of inertia o|f
(symmelric) projectile |

KE Kinetic energy

LD Launch disturbance :

C,. Lift coefficient | ¢

Ci, Derivative of lift coefficient wrt o

C,,,a Derivative of restoring moment

coefficient wrt o !

d Projectile diameter

k Radius of gyration

m - Projectile mass .

s Longitudinal displacementof projectile

+ cg, measured along the swerve axis

t Time |

u cg velocity !

X Transverse displacement ofprojectile cg,
measured from the origina} line of fire,
perpendicular to y and z

y Transverse displacement of projectile cg,
measured from the original line of fire,
perpendicular to x and z

z Longitudinal displacement of projectile
cg, measured along the original line of
fire, perpendicular to x and y

cp Centre of pressure

Gregk symbols

o Projectile yaw angle :

€ , Angle between cg velocity vector and
original line of fire !

A Wavelength of swerve curve

Revised 01 lNow:mber 1999

109



DEF SCI J, VOL 50, NO 2, APRIL 2000

p Air density
Subscripts & s‘uperscripts
0 Origin of free flight

1 First local maximum (positive or
negative) in the swerve curve

-  Vector

- Averaged quantity

A~ Unit vector
Differentiation wrt time

Differentiation wrt the trajectory arc
length,'measured in rod diameters

1. INTROI:)UCTION

The motion of a projectile can be divided into
two general regions: (i) fyee flight (FF) region, and
(ii) launch disturbance (LD) region (prior.to FF).
For instance‘,‘ if the projectile is a gun-launched,
saboted long rod or kinetic entrgy (KE) penetrator,
then the LD region begins in-bore and extends
downrange to the point, where shock waves from
the discarding sabot petals no longer interact with
the rod. The end of the LD region marks the
beginning of the FF region, where the phenomenon
known as AJ occurs. The KE penetrator is chosen
to facilitate the ensuing discussion and illpstrations
on the subject of AJ.

Although AJ occurs in the FF region, its
magnitude is influenced by events that take place in
the LD region. A KE projectile consists of a long
rod with an aerodynamically-shaped nose and
stabilising tail fins. The high mass-density
sub-calibre rod is held centered in the gun bere by a
low mass-density full-calibre sabot. The rod can
undergo small, lateral, cg displacements and
rotations while being propelled longitudinally
down the bore. Such in-bore motion permits the
projectile cg to exit the barrgl with a velocity vector
oriented atan ZCG wrt the instantaneous bore axis.
In addition to the rod moving relative to the bore
axis, the barrel itself can be moved. Thus, the rod
can be launched with the instantaneous pointing
angle of the bore axis, ZPA, different from the
original muzzle sight line.  Furthermore, the
instantaneous bore axis can have a lateral (crossing)
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Figure 1. Hypothetical, plandr cg motion of a KE rod caused
by launch disturbances.
' !

velocity that is {transferred to the Projectile cg
motion. The angular change in the 'projectile cg
velocity due to this barrel crossin’g motion is
denoted by ACV. Outside the gun, it is possible for
asymmetric ' sabot discard to create uneven
mechanical q’nd aerodynamic forces on the rod that
add yet another transyerse cg veloci,ty component,
and redirecti!)n' angle, £SD. The net effect of these
four pre-FF LDs can give the grojectile cg a
cumulative transverse deflection angle, ZLD =
ZCG + LPA + ZCV+ £SD, at the, point where it
enters FF (Fig. 1). Tec,hni'ques to measure these LD
components are discussed by Bornstein', et al.

- After transitioning the LD region, side forces
can continue to influence the lateral motion of the
projectile in the-FF region. These side forces are
aerodynamic in nature ahd cause the projectile cg to
oscillate (swerve) about a mean FF path (swerve
axis), as it travels to the target (Fig. 2). For a typical
KE rod (which is statically stable, near-symmetric,
and virtually non-rolling), the swerve curve can be
approximated by a c'lamped sine wave in both
vertical and jhorizontal directions*. As indicated in
Fig. 2, the swerve axis!can be, and most often is
different from 'the di:;ection given to the projectile
cg as it leaves the LD region. The term AJl, in
particular ZAJ is used to quantify this change in
direction. .

* The effects of gravity and the Coriolis force on the trajectory are not included in this discussion because they gre’not aerodynamic in
nature; if warranted, their influence can simply be superimposed on the swerve motion. ’
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SWERVING MOTION

ENTRY INTO FREE ELIGHT

DOWNRANE
ORIGINAL LINE OF FIRE [

P —

TRANSVERSE c¢g DISPLACEMENT

Figure 2. Characterisation of cg transition into FF region
)

One of the earliest descriﬂtions of A} was
given by Murphy® stating that AJ is the angle
between the bore sightline -and the average
trajectory when the other contributors to jump are.
neglected. Although this definition describes AJ as
an angle, it is actually the tangent of the described
angle. However, for small AJ angles (typically the
case), the angle and its tangent are nearly one and
the same. Neglecting other contributors to jump
means setting, or assuming, ZLD = 0 in the
discussion of Fig. 1. In this case, Fig. 2 would
transform'into Fig. 3.

Figure 3 depicts that the axis of swerve
symmetry is cldsely dligned with the point of
impact on a distant target. In fact, when the FF

i
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. N l
POINT OF IMPACT -_-—¢‘41

Figure 3. Geometrical view of ZA]J, \wglectmg, ZLD

dy

TANGENT LINE, SLOPE

TRANSVERSE cg DISPLACEMENT

Figure 4. Geometrical rendering of Eqn (2)

trajectory approaches infinity, AJ and ZAJ are
defined by

Al llm[ ] ZAJ = tan™' {A}} Al

ey Al, uu

where y represents the transverse cg displacement
and z represents the longitudinal or downrange
displacement . Both Murphy® and Murphy and
Bradley’ begin their discussion of AJ based on
Egn h ). A more detailed expression for AJ, one that
does not neglect other contributors to jump, is put

forth later by Murphy*.
definition states ”

Al=lim|? Ve | &
o z—z, | dz|,

This more general

ZAJ=tan {AJ} ~ A
- @

where y, is the transverse cg dlsplacement and
dy/dz| is the tangent to the cg dlsplacement both
at the orlgm of FF. Figure 4 giles the geometrical
interpretation of Eqn (2). Equations (1) and (2)
define AJ by calling upon the limit as the trajectory
approaches infinity; to some, this may erroneously
infer that AJ is an effect that accumulates with
downrange distance. An alternative kinematical
def'mtlon for AJ can be given as one that does not
invoke an infinite limit, but rather, attributes AJ to a

** The sign donvcnuon for the direction of posmve y in Eqn (1) will determine the s:gn convention for positive AJ.
# Equation (2) here is actually the single-plane equivalent of combining Mufphy s Egns (9) and (10) with gravitational and Coriol

effects neglectk.d |
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TRANSVERSE cg DISPLACEMENS
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Figure 5. Alternative geometrical definitions for ZA)

relatively short segment of the FF trajectory, less
than one-half of one swerve oscillation in length.

2. KINEMATICAL DEFINITION FOR
AERODYNAMIC JUMP ' f

From Eqn (2) and Fig. 4, ZAJ is the angular
change between the tangent to the cg trajectory at
the end of LD region and the axig of swerve
symmetry. Figure 5 shows that the axis of swerve
symmetry runs parallel to the tang'ent to the swerve
curve at any and all of the local swerve maxima’
(positive or negative wrt the swerve axis). '

Hence, ZAJ can also be defined as the angular
difference between the tangent to the swerve curve
at the origin of FF and the tangent to the swerve
curve at the first (or second, or third, etc.) local
maximum in the swerving motion. In equation
form, it can be expressed as '

ZAJ=tan™" | = —tan”"" i)-l-l
“cl dz z .
swerve maxima origin of free Right
L9y dy
' dZ Z ywerve maxima dZ 7 otigin of free flight (3)

where the subscripts identify the locations at which
the derivatives are to be evaluated. It is noted that
unlike Eqns (1) and (2), the definition for ZAJ
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Figure 6. Influerice of initial (svyerve) conditionson AJ.
(a) entry into FF at 3, ~ z1 and (b) entry into FF
atzo m217 M 2.

given in Eqn (3) does not call upon the limit as the
trajectory approaches infinity, 1

Even though ZAJ can be d'ef'ined using the
tangent line at any of the local makimum, it is clear
that the minimum distance neededl to establish the
orientation of the swerve axis is the'distance to the
first swerve maximum, z;. T’hereafter; the cg motion
simply oscillates about this 'axis, 'albeit with a
damped amplitude.
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The limitless definition of Eqn (3) facilitates
some additional insight into the kinematic
relationship between ZA] and the initial conditions
at the origin of FF. Take special cases illustrated in
Figs 6(a) and 6(b), unlike Fig. 5, the swerve axes in
these two cases. are nearly parallel with the LD
direction, hence,i ZAJ is nearly zero. From
Fig. 6(a), for ir}.stance, the distance between the
origin of FF, z,,,and the first swerve maximum, zy,
is relatively small, at least in comparison to the
wavelength of the swervd curve, . On the other
hand, in Fig. 6(b), z| - 2, is relatively large, ~ /2.
Contrasting the larger ZAlJlof Fig. 5 with that of
Figs. 6(a) and 6(b), it can be inferred that the largest
ZAJ will occur when z; - z, = A/ In fact, if the
swerve curve is approximated by a sine wave of the
form y = A sin (2n[z-z,)/)), at least for the first
cycle, then, from Eqn (3), the maximum ZAJ would
be given by Y

nlz-
d{ y=A sin(l[%_zi]

[

|£AJ

lzy=z,+M4

A2n
A

To appreciaté the significance of Eqn (4),
Fig. 7 illustrates how ZAJmax varies with 4 and A
for two cases where y conforms to 4 sin(2n[z-z,)/A).
From the kdepiction (and Eqn (4)), a larger 4 and
smaller A produce a larger ZAJ . For large calibre
guns, A may be of tha order of several millimeters,
whereas A is of the order of tens gf meters; hence,
ZAJmax from Eqn (4), wtll be small-of the order of
milliradians. ) .

Figures i5—7 illustrate that the bxis of swerve
symmetry is fixed in space by the time the jrod
reaches its ﬁrstl swerve maximum, as implied by

i

Eqn (3). These also lprovide visible examples that
support the contention that it is not necessary to
take the swerving motion to infinity, as called for in
Eqns (1) and (2), in order to establish the direction
of the swerve axis.

Based on the kinematical developments
discussed here, it is a simple matter to derive a
dynamical expression for AJ. However, before such
an expression can be formulated, it is beneficial to
review some basic aerodynamics. '

3. BASIC AERODYNAMIC FORCES &
MOMENTS ACTING ON A NON-
SPINNING KE PENETRATOR

The force of friction and drag on the projectile
are probably the most fundamental of the
aerodynamic forces. It is commonly expressed as

D -LC,pAlila )

|
and, by virtue of the minus sign, drag is in the
direction opplosite u.

The expression for lift is conventionally
written as

The unit vector direction of the lift force, i, is
perpendicular to the drag force and is in the yaw
plane. In this discussion, yaw is the vertical (z-y)
plane angle, a, between the projettile’s tail-to-nose
axis and the tangent to its trajdctory (or equaHly
suitable, #). It is assumed here that a + o means the
nose of projectile is above w.

For small yaw (e.g. @ < 5°3|
Cc,=C @

Suppose the original direction of fire is defined
to be the positive z-axis, with positive y downward,
and positive x to the gunner’s right. Assume the cg
motion is 2-D planar, in particular, assume (for
illustrational simplicity) that the motion is confined
to the vertical plane, then 1= 22 ryyp as depicted in
Fig. 8.
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Ap < A,
Ab> Aa
A‘AJb,max > «£AJ

TRANSVERSE cg DISPLACEMENT

DOWNRANGE,
Figure 7. Depiction of variation in ZAJmax with amplitude and
wavelength of the swerve curve.
Suppressing the effects of gravity and the
Coriolis force, Newton’s second law for !inear
motion in the y direction* dictates that

®

where a/|a | accounts for the positive or negative
influence of yaw on lift.

The value of € is always small, and it would
expedite the analysis to assume it is zero, however,
such an over simplification is not necessary. The cg
velocity vector, and hence ¢, oscillates about some
mean values, u and €, respectively (in actuality, u is
in the direction of the swerveiams and € is the angle
of the swerve axis wrt the z-axis). If the coordinate
axis z and y a're simply rotated by the angle €, and
thereafter denoted 5 and ¥ , respectively, as shown in

+2.3 | u (KE ROD VELOCITY

Figure 8. lllustrn:}on of thelift and 'drag force directions, as

' well as the cg velocity and the cg and cp locations.
dY(s) ‘=~ = A
m =L'Y+DY
dt

- —%I{IL. 'cos(s ‘—5)} ’*ID‘S}H(S ~€)

o 2|

" e

where the unit vector ¥ is nearly parallel with the
direction of L and nearly perpendicular to D (even
though it may not appear as such in the not-to-scale
illustration of Fig. 9, i.e.

A

§-€~0. Stmilarly, i~ =53 (10)

Simply stated, ﬂqn (9) establishes that lift is
the primary cause of swerle. From Eqns (6) and (7),
lift is proportional to yaw, hence

Al i
dt |oe]i2’ y
*f;pdﬁfCLu N

The expression for o must satlsfy the torque
equatlon viz., ,

dr (12)

mk

where K is the radiué of gyratio}n of the KE rod

about its transverse (x) axis.
: | ]

* If positive y had been defined as up, rather than down, the signs on the right in Eqn (8) wo‘pld be reversed.

4
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In FF region, the axis of the projectile will
oscillate about its cg trajectory (i.e. the swerve
curve). Just as air opposes the forward motion of
the prefectile, it will also’ oppose this oscillating
motion. Hence, there will be a resisting torque,
known as the dampmg moment, that varies with the
yaw ‘rate. As the name implies, the damping
moment causes the yal magnitude to dlmmlsh with
time of flight. !

However, singe it has been argued in Eqn (3)
and Fig. 5 that' ZAJ is established within a
relatively short segment of the trajectory, the effect
of damping on AJ can be ignored. In this case, the
moment M about the cg will only be due to the
resultant force, R=Z+q located at cp (Fig. 8).

Thus, for small a l ‘

A7!=|cg—cp!(lblsma+———-|L|cosp (=x)
A L

~|cg~ cpl[ Dla+ |L|(—x)

(13)
Using Eqns (5-7) in Eqn-(13), yields
v 1 2 ~
=3P Alii| " |eg- cP|a (Cp+C)(=2)
1 12 A
—2—CmupA|u| dox (14)

where C ( =-[C, +C, ]cg— op|/d) s called the
derlvatme of the restormg (bverturnmg, or
pitching) moment coefficient wrt &, and d is the rod
diameter. By definition, C,, is negative for a
statically stable projectile. The co;efﬁcients Cp, Cyy,
and Cp, can all be determined from wind-tunnel
measurgments or numerically predicted using
computational fluid dynamul:s

Substituting Eqn {14) into Eqn (12), one has:

"

'
mk A do. =1C |)/\|lil2 dot
dt “ (15)

Since Cy, is nc‘gulivc for KE projectile, this
differential equation for a is of th‘e form ¢ c—a..

'Such an equation has a sinusoidal solution,
which means Y(s), from Eqn (11), will have a
sinusoidal solution (however, o and Y will be 180°
out of phase). It is nbw proven tha this oscillatory
motion, coupled witb the lift force, can account for
Al in the relatively short region from z, to z;.

4. DYNAMICAL DEFINITION FOR
AERODYNAMIC JUMP

From Egn (3)

AT =tan (D] Lan 1B B
| dzf,, e, , def, di|,
Ly W(z,)=v(z.)

-q AC
4 Zl. z

Hence, £ZAJ can be viewed as a change in slope
of the cg trajectory from z, to z; [or, it can be viewed
as a change in transverse velocity from z, to z,
non-dimensionalised by the longitudinal velocity
(appro"xir'nately constant from z, to z,)].

Equations (35 and (16) define ZAJ in terms of
dy/dz, and to/find its equivalent expression in terms
of d¥/ds, it is necessary to transform from y and z to
Yands. To that end (with the aid of Fig. 9), it can be
showp that

z 16)

y(2)=Y(s)cos€ +(s—s,)sin€

-z, =(S —'_SO)COS € — Y(s)sin £ (17)
and
[1»\’(:), dY(s) cos€ +sinf
dy(z) ds _ ds B
dz s 6——————dY(S) ing
ds
S 4YE) +tang, for d (S),é’<<
ds ds (18)

Combining Eqns (16) and (18), one has

15
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‘A _ ] rl[y !!)t _l!-’i
dz|,, ., '{IZ ‘ ds|, . ds|
_Y ¥ Ps)-r(s)
sl $l, ||

(19)
where the substript notation z), sy (for example)
refers to the point on the swerve curve with
coordinate z; along the z-axis and s; along the s-axis
(Fig. 9). In effect, Eqn (19) states that the difference
in slopes between the two points on the swerve
curve does not change if the coordinate system,
used to describe the curve, is rotated thr'()f»ugh an
angle €.

Combining Eqns (9), (11) and (15), it can be
shown that Y ;

. [ Y C, k*
de(L.Y)dt o e
m dC

m

da
“ (20)

Denoting c, as the yaw rate at entry into FF .

region, and &, 6as yaw rate at the first local
maximum in the swerve curve, then integration of
Eqn (20) from entry into FF region until the first
local maximum in swerve and in yaw yields

HETS)

Y(s,)=¥(sy) ~— I(Z.?)dt
m o @n
“C, k? C, k?
z—I *dd =——2"(a, -G,
o dC,, dc,

Equations (19) and (21)‘can be combined to
show

1(sy)

7\ L ) | VL [(L.Pyde
ds " ds S0 m|u| (o)
Cl k2 ( . )
=————(a, ~Q,
dcm¢|'f| (22)

Equation (22),reveals that ZAJ can be viewed
as a change in the slope of the cg trajectory from z,

116

dvis) Cavis|  «o

3 tan ¢
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] . y
Figyre 9. Swerve-tlxed (s,y) and earth-fixed (z, y) coordinate
system. |

to z, or it can be related to a,change in angular rates
from z, to z) (s, to 5;). Furthermore, the insertion of
the lift correlation in Eqn (20) and its retention in
Eqns (21) apd (22) underscores the physical
explanation that ZAJ is due to the (integrated)
effect of lift, caused by yaw, from z, (s,) to z; (s1).

Equations (19), (21) and (22) could have been
simplified by setting 41/ ds|, ,. =0 (and therefore
Y(s,)=0), since by deﬁnitiBﬁ,'Y(s) is at a local
maxima atrsy, z;. (This would also mean [from
Eqn (18)] that dy/dzlz' , =tang, as marked in
Fig. 9). Morepver, since o and Y are 180° out of
phase, when Y =0,6 =, 'hence, Eqn (22) can be
simplified to f)

) v
A= - —
ds

0% (23)

Also from Eqn (22), it can be seen that £AJ
will increase if either the integrdnd (viz., the lift
force) or the domain of in{egration (viz., the lift
forf:e action time) increases. In component terr}xs
(nating that C,, will always be negative for a KE
rod, and C,_, k, d, and|§2|are all positive), ZAJ will
increase if either (i) C,_lincreases (s? that the lifting
force per degree yaw intreases), (ii) & increases (in
which case, the rod woluld rotate slower, and hence
the lifting force would act longer), (iii)a jincreases
(so that, once,\again, it would take more time to



BUNDY: AERODYNAMIC JUMP FOR LONG ROD PENETRATORS

i ! |

bring the rod to rest), or (iv) C,,, decreases (so tlat
the overturning moment per degree yaw decreases,
again lengtlllenmg the actlon timetfor the lifting
force).

Other equiYalent exprelEsions for AJ that can be
found in the literature inchide:
c, c,I,

/A =— O | S a
T ‘ m| u ’(i(,,’m

my (24)

where the approxirhation sign shown in Eqn (23) is
discontinued fq'r expediency, I, (= mk®) is the
moment of inertia of the (symmetric) projectile
about its transverse axis, and a' is the initial FF
rate of change of yaw wrt the trajectory arc length,
measured in rod diameters (i.e. a’ xda/d[s/d]).

Depending upon the,cdordinate system used,
there may or may not be a negativelsigd on the right
hand side in the equalitiés/identities of Eqn (24).
The convention chosen here (which is also the one
most often adopted-in the field of ballistics), is to
define the positive vertical axis (y) as down, and
positive yaw (a) as up (up, for o, means its nose .is
above the cg velocity vector). However, if the
positive vertical axis was defined as up, like that of
yaw, it would yield a negative sign in the
expressions on the right i in Eqn (24) The plus sign
form of the expression, for ZAJ is the most common
construction®*®’ + There is one other sign variation
that may appear in the literature, if both the positive
vertical axis and positive yaw are deﬁned as down,
then the ?lgn is also negatlvé , in Eqn (24).
Regardless of the srgn conbention for the coordinate
system used, it is always the case ,4that_]ump due to
a’ is in the direction of a .

CONCLUSIONS & DISCUSSION

Equation (3) [or Eqn (16)] provides a limitless
kingmatid definition for ZAJ 4 Which, re-assuringly
leads to the traditional dynamic expression for
<Al Eqn (23). The origins of possible variations
in the sigh conventions of Eqn (24) were explored,

but the paper’s primary objective was to answer the
quesdtions: What is AJ, what causes it, and what
aspect of the flight trajectory does it refer to, or
account for.

For instance, one mlsconceptlon about AJ can
arise from the fact that Eqn (24) only shows a
dependence on the mmal yaw rate at the origin of
FF [concealing the fact that it is actually a
difference in rates, Eqgn (22), that happens to equal
the initial rate, Eqn (23)]. Therefore, some may
conclude that AJ is a point-based phenomenon, i.e.,
it results from (aero) dynamical effects that occur at
the origin of FF | region. Others, seeking a
geometrical explanation for AJ, may forgo the
dynamical definition of Eqn (24) and return to its
origin in the kinematical definition adopted, for
example, by Murphy**. However, those
geometry-based definitions for AJ [viz., Eqns (1)
or (2)] call for the cg coordinates to be evaluated in
the limit of an infinite trajectory. Thus, there is
some risk that those drawing upon these definitions
to explain AJ will erroneously assume that it is a
transformation that accumulates with downrange
distance (not realising that the swerve axis is
actually a constant, established long before the
trajectory reaches infinity).

The central theme of this paper is to show that
Al is neither a change in direction that takes place
at a point, nor is it a curving change that takes place
over a domain of infinite extent, rather it is a
regional transformation. In particular, using an
alternative kinematic definition, it was illustrated
geometrically (in terms of the cg trajectory) and
proven mathematically (based on Newton’s
equatibns of motion) that ZAJ for a (non-spinning)
KE penetrator can be accounted for by the change in
transverse cg velocity—due to lift—acting for the
short period of time and space from entry of the
projectile into FF region until it reaches its first
local maxima in yaw (or swerve).
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