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ABSTRACT

The steady two-dimensional free convection flow of a Walters fluid (model B’) in a vertical
channel one of whose walls is wavy, has been investigated analytically. The governing equations
of the fluid and the heat transfer have been solved subject to the relevant boundary conditions by
assuming that the solution consists of two parts: a mean part and disturbance or perturbed part. To
obtain the perturbed part of the solution, the long wave approximation has been used and to solve
the mean part, a well-known approximation used by Ostrach has been utilised. The relevant flow and
the heat transfer characteristics, namely the skin-friction and the rate of heat transfer at both the walls

have been discussed in detail.

1. INTRODUCTION

Viscous fluid flow over a wavy wall has attracted
the attention of relatively few researchers, although the
analysis of such flows finds application in different
areas, such as transpiration cooling of re-entry vehicles
and rocket boosters, cross-hatching on ablative surfaces
and film vaporisation in combustion chambers. Lekoudis,
Nayfeh and Saric' presented a linear analysis of compressible
boundary layer flows over a wavy wall. Sankar and
Sinha? studied in detail the Rayleigh problem for a wavy
wall. Lessen and Gangwani’ made a very interesting
analysis of the effect of small amplitude wall waviness
upon the stability of the laminar boundary layer. In all
these problems, the authors have taken the wavy walls
to be horizontal. Vajravelu and Sastri* made an analysis
of the free convection heat transfer in viscous incompressible
fluid between a long vertical wavy wall and a parallel
flat wall. Das and Ahmed® extended this problem to
magneto-hydrodynamic case. Das and Deka® discussed
a numerical approach of this problem.

Non-Newtonian fluids are of increasing importance
in modern technology due to its growing use in many
activities, such as molten plastic, paints, drilling, and

petroleum and polymer solutions. The Walters fluid is
one of such fluids. The constitutive equation for Walters
fluid (model B') is:

o =—pgy+0}

o =2n0e'k —2K0e’ik

where o* is the stress tensor; p, an isotropic pressure;

g, the metric tensor of a fixed coordinate system; x,
i . ik . .

v’, the velocity vector; € °, in the contravariant form

is:

ik = _a;t +v/ek, v jel-v', ek
2
It is the convected derivative of the deformation
rate tensor (e*) defined by .
2e; =v,,; tu, 3)

Here,n, is the limiting viscosity at small rate of
shear which is given by

n =J: N(t)dr and ky= j: Tt N(t)dr ()]
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M(7) being the relaxation spectrum as introduced by
Walters™®. This idealised model is a valid approximation
of Walters fluid (model B’) taking very short memories
into account so that terms involving

J:O t"n(t)dr,n22 5)

are neglected

In this paper, the steady free-convective flow and
heat transfer in a Walters fluid between a long vertical
wavy wall and a parallel flat wall has been studied. The
problem has been solved by a linearisation technique,
‘wherein the solution is made up of two parts: a mean
or zero-order part corresponding to the fully developed
mean flow and disturbed part. To obtain the solution of
the perturbed part, long wave approximation has been
applied and to solve the mean part, the well-known
approximation used by Ostrach® has been utilised. Expressions
for the zero-order® and first-order velocity, temperature,
skin-friction and heat transfer at the walls are obtained.

2. GOVERNING EQUATION OF MOTION

The steady two-dimensional laminar free-convective
Walters fluid flow along the vertical channel has been
considered as shown in Fig.l. The X-axis is taken
vertically upwards and parallel to the flat wall, while the
Y-axis is taken perpendicular to it in such a way that
the wavy wall is represented by Y = e*cos kX and
the flat wall by ¥ = 4. The wavy and flat walls are
maintained at constant temperature T and T, respectively.

The following assumptions are made:

(a) All the fluid properties except the density in the
buoyancy force are constant.

(b) The dissipative effects and the work of deformation
are neglected in the energy equation.

(c) The volumetric heat source/sink term in the energy
equation is constant.

(d) The wavelength of the wavy wall is large compared
with the breadth d of the channel.

The boundary conditions relevant to the problem
are taken as
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Y =
Figure Flow Configuration
U=V=0, T=T, on Y=¢€ coskX
V=0, T=T, on Y=d 6

Introducing the following non-dimensional variables
in the governing equations for velocity and temperature

=X ,.r v _
a’=a v’ v
0= (I-T)T-T), Tis the fluid temperature in

static condition.

P =p*/plv/dy )
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N(7) being the relaxation spectrum as introduced by
Walters™®. This idealised model is a valid approximation
of Walters fluid (model B’) taking very short memories
into account so that terms involving

J‘: t"n(t)dr,n22 )

are neglected

In this paper, the steady free-convective flow and
heat transfer in a Walters fluid between a long vertical
wavy wall and a parallel flat wall has been studied. The
problem has been solved by a linearisation technique,
‘wherein the solution is made up of two parts: a mean
or zero-order part corresponding to the fully developed
mean flow and disturbed part. To obtain the solution of
the perturbed part, long wave approximation has been
applied and to solve the mean part, the well-known
approximation used by Ostrach® has been utilised. Expressions
for the zero-order® and first-order velocity, temperature,
skin-friction and heat transfer at the walls are obtained.

2. GOVERNING EQUATION OF MOTION

The steady two-dimensional laminar free-convective
Walters fluid flow along the vertical channel has been
considered as shown in Fig.1. The X-axis is taken
vertically upwards and parallel to the flat wall, while the
Y-axis is taken perpendicular to it in such a way that
the wavy wall is represented by Y = e*cos kX and Y
the flat wall by Y = d. The wavy and flat walls are

maintained at constant temperature 7' and T, respectively. vE
The following assumptions are made: Figure  Flow Configuration
(a) All the fluid properties except the density in the U=V=0, T=T, on Y=& coskX
buoyancy force are constant. U=V=0, T=T, on Y=d ©)
(b) The dissipative effects and the work of deformation
are neglected in the energy equation. Introducing the following non-dimensional variables
8 gy €q ‘ I . g .
(c) The volumetric heat source/sink term in the energy in the governing equations for velocity and temperature
equation is constant. as
(d) The wavelength of the wavy wall is large compared x= —g y= g u= %‘{ v=
with the breadth d of the channel. 0= (I-T)(T,~T), T.is the fluid temperature in
The boundary conditions relevant to the problem static condition.
are taken as X
5 = p*/p(v/d) )
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Table 1. Skin-friction for case I (m=1)

K 0 } 0.15 0.25
| _— i - .
o o, | o, o, : G, o, o,
-5 1.524625 -1.524767 1.524402 -1.524849 1.524253 -1.524937
-2 2.215911 -2.216038 2.215452 -2.216128 2.215146 -2.216210
0 2.676766 -2.676861 2.676103 -2.676961 2.675661 -2.677061
2 3.137619 -3.137664 3.136715 -3.137679 3.136112 -3.137689
5 3.838895 -3.828833 3.827559 -3.828878 3.826668 -3.828908
8 4.520168 -4.519958 4.518316 -4.520041 4.517082 -4.520097
10 4.981013 -4.980684 4.97877 -4.980797 4.977276 -4.980873
Table 2. Skin-friction for case Il (m=1)
K 0 0.15 0.25
(94 O'“ I O’l (TW O'l l O'” O’]
-5 1.524625 -1.524911 1.524179 -1.525201 1.523881 -1.525350
-2 2.215906 -2.216160 2.214988 -2.216440 2.214376 -2.216527
0 2.676755 -2.676945 2.675429 -2.677246 2.674545 -2.677347
2 3.137600 -3.137691 3.135792 -3.137721 3.134586 -3.137741
5 3.828861 -3.828737 3.826189 -3.828825 3.824408 -3.828885
8 4.520115 -4.519694 4.516411 -4.519857 4.513942 -4.519965
10 4.980945 -4.980283 4.976461 -4.980502 4.973472 -4.980653
ne ins the equation of continuity as ) ,
One obta ceq ty ov ov dp O°v v 3%u 2%v
U—F+V— =+ — 5 ! 3 U—7
ou ov Ox v ay  ox* oy x“oy ox
—+—=0 8
27 @, 3 3 ~3 ~3
u d’v 7 (ZV
) +v s tO——+2u—— +20——
the momentum equation becomes: &y ooy xd 7%
A A a2 52 53 3 2 2 2
ou  Ou g Ju u _|. u 8u udv _ovdu _0uodv
U—+UV—= ——+—+——K| 2u — t20—— 22— ———2-—3-—2——-—
ox oy o x° oy Ox” x“dy o & o oy & x
Bu o u v 3 &u ov | du v % 23
+u tU——+o—+v—— o St 27
&@}2 &2@1 @)3 &@2 5y @
P B 5 ou 8%u ov d*v 4 o v
u O S50 87 =iy b 4—
-6 _———+ oud ; g i‘ . 3(—“( Zf oy Ox~ oy oy° o Oxdy
& ox yix oy Oxoy oy y° ;
0w v _oudPv _oudv and the energy equation as
-3 — —_— - IJ— =
oxdy Ox Ox Oxdy oy oy N .
00 o8 o0 o070
ug'{*l)—a'yﬁ =5 t—+ta
wdv Fuou pgd ® :

subject to boundary conditions:

39



DEF SCI J, VOL 50, NO

Table 3. Skin-friction for case 11l (m=1)

JANUARY 2000

0 0.15 0.25
c, o, Oy C.. Oy l o,
-5 3.04925 -3.049820 3.048357 -3.0 3.047762 -3.050499
-2 4431813 -4.432320 4.429976 -4.4 4.428752 -4.432753
0 5.353511 -5.353890 5.350859 -53 5.349091 -5.354051
2 6.275202 -6.275382 6.271585 -6.2 6.269174 -6.275483
5 7.6577235 -7.657475 7.652380 -7.6 7.648818 -7.657771
8 9.040231 -9.039389 9.032824 -9.0 9.027888 -9.039936
10 9.961892 -9.960568 9.952925 -9.9 9.946945 -9.961308
0,v=00=1 ony=ecosix p = pl1-B (T-T)]
0,v=00=m ony=1 (12) ) )
and also adopting the perturbation scheme
where
o = QFIKT-T), the non-dimensional heat ~ “%2r=#0)+eu(xy) visy)=evxy)
source/sink parameter p(xy) = po(x)+ep (%) 6(xy) = 8,(») +£6,(x.y)
p = nglk, the Prandtl number where the perturbations u, v,, p, and 6, are small

¢ = g*/d, the non-dimensional amplitude parameter

A

kd, the non-dimensional frequency parameter
m = (T-TH(T T, ), the wall temperature ratio
K = 2K /(pd®)

and pg, is the buoyancy term in X-direction, where the
subscript s denotes quantities in the static fluid condition.
Now introducing the non-dimensional quantity as:

G = &g p(T-T)V

the Grashof number and using the equation of state, one
has

40

compared with the mean or zero-order quantmes, Eqns
(8)to (11) yield the following non-dimensional equations:

2 2
44 1Goy=0, =2 % - a (14)
d’
to the zero-order and
fu; Ouy
futed WGttt SR ;|
2% + £y (15)
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Table 5. Skin-friction for case I (m= -1)
' 015 0.25
% s, 5
-5 -0.3482883 1.9555300 -0.3482771 1.9554200 -0.3482697 1.9553790
-2 0.3430082 1.2645570 0.3429959 1.2644910 0.3429876 1.2644130
0 0.8038702 0.8039326 0.8037955 0.8039041 0.8037456 0.8038786
1.2647300 0.3433274 1.2645560 0.3432728 1.2644400 0.3477632
5 1.9560170 -0.3475443 1.9556230 -0.3476755 1.9553600 -0.3477632
2.6472990 -1.0383720 2.6466020 -1.0385890 2.6461370 -1.0387340
10 3.1081520 -1.4989000 3.1072050 -1.4991780 3.1065740 -1.4993640
Table 6. Skin-friction for case II (m= -1)
0.15
Gl ﬂ"\ T
1.9548170 -0.3482575 1.9545370
1.2642500 0.3429657 1.2641950
0.8038772 0.8036208 0.8038160
0.3435357 1.2641480 0.3434630
-0.3470676 1.9541480 -0.3472422
-1.0375990 2.6449590 -1.0378860
-1.4979120 1049740 -1.4982810
. o o Ostrach?. In view of Eqn (13), the boundary condition
ju, 22 Mg oYy G0 in Eqn (12) can be split up into the following two parts:
Efv" dy ox* oy Oxoy
v &% u, u,=0,0,=1 ony=0
it Wiiles 'y Y 6
&y + GO uy=0,0p=m ony=1 (19
(16) 1 =—Re(u6e’“), v; =00 =—Re(96e”‘") ony=0
4h=00,=00,=0 ony=1
o
e (20)
. where the prime denotes differentiation wrt y.
26 Uy 501 P a (] (17)
R W
&y & oy &k 3. METHOD OF SOLUTION
and The solution for the zero-order velocity () and the
zero-order temperature (6,) satisfying the differential
p(, % 9, | 0%, N 2%, Eqn (14) and the boundary conditions (19) are given by
0 1 ay \ &2 @2

to the first-order. In deriving the first equation in Eqn
(14), the constant pressure gradient term
0/0x(p~p,) has been taken equal to zero following

G P
%[(/{1 +2H +6)y—H,y* —2Hy fqv]

Uy =

0, =1+ Hy+ H,y*
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Table 5. Skin-friction for case I (m= -1)

K 0 0.15 0.25
a Gw G, 0'W l o'l
-5 -0.3482883 1.9555300 -0.3482771 1.9553790
-2 0.3430082 1.2645570 0.3429959 1.2644130
0 0.8038702 0.8039326 0.8037955 0.8038786
2 1.2647300 0.3433274 1.2645560 0.3477632
5 1.9560170 -0.3475443 1.9556230 -0.3477632
2.6472990 -1.0383720 2.6466020 -1.0387340
10 © 3.1081520 -1.4989000 3.1072050 -1.4993640
Table 6. Skin-friction for case II (m= -1)
K 0 0.15 0.25
a GW ' 0" UW 0.l o.W ! q
-5 -0.3482946 1.9550360 -0.3482723 1.9548170 -0.3482575 1.9545370
2 0.3430069 1.2643820 0.3429822 1.2642500 0.3429657 1.2641950
0 0.8038698 0.8039941 0.8037204 0.8038772 0.8036208 0.8038160
1.2647290 0.3436446 1.2643800 0.3435357 1.2641480 0.3434630
5 1.9560110 -0.3468069 1.9552230 -0.3470676 1.9541480 -0.3472422
2.6472840 -1.0371710 2.6458890 -1.0375990 2.6449590 -1.0378860
10 3.1081290 -1.4973640 3.1062360 -1.4979120 3.1049740 -1.4982810
3 o o Ostrach?. In view of Eqn (13), the boundary condition
40, S “7" P 2 b1 _ i%i‘l in Eqn (12) can be split up into the following two parts:
oy” oy ox” oy oxoy
_ 6ty +GO, =0 0= ony=0}
&y o ug=00y=m ony=1
(16) u, =—Re(u(,e'”‘) v, =0 6=- Re(%e’“) ony=0
=00,=00,=0 ony=1
601 6Pl ‘02l)l 6201 6301 8301
Uy—= - 7 t—= —Klu 7 Y03
& ¥y &° o oxdy o
ﬁ ) . where the prime denotes differentiation wrt y.
J uy ov L ouy 07Uy |
22— —t-2—2 =] (17)
y o oy ooy | 3. METHOD OF SOLUTION
and The solution for the zero-order velocity () and the
zero-order temperature (6,) satisfying the differential
o0 60,) 90, o8 Eqn (14) and the boundary conditions (19) are given b
PluZsn, 22 )T 20 ag 0 ¢ (19)are given by
o &) & &

to the first-order. In deriving the first equation in Eqn
(14), the constant pressure gradient term
0/0x(p~p,) has been taken equal to zero following

Gy oo s S T B T
—|| 1, 2H+6)y—H,y" Hy” —6)
]WL‘ ' - - J

9. =
Uy =

0, =1+ Hy+ H,y*
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K 0.25
Oy Oy o, G,

-0.6965906 -0.6965460 3.9098360 -0.6965162 3.9096760

0.6860130 0.6859635 2.5285020 0.6859305 2.5284720
0 1.6077390 1.6074400 1.6077560 1.6072410 1.6076330
2 2.5294580 2.5287610 0.6870721 2.5282950 0.6869266
5 3.9120220 3.9104470 -0.6941354 3.9093960 -0.6944846
8 5.2945700 5.2917800 -2.0751980 5.2899200 -2.0757740
10 6.2162590 6.2124730 -2.9958250 6.2099490 -2.9965630

(Ay)=Y

[+ a
H= — H=m+—+1
where H, 5 >

In order to solve Eqns(15) to (18) for the first-order
quantities, it is convenient to introduce the stream
function y, denoted by

B T

Ul =
ay dx

v(xy) = y() 0,(xy)=¢ ()

these equations can be reduced to the ordinary differential
equations:

v v _ v r’[2)_2 + iluo]-f- W[},“ + iAug + iu02.3] + Ki[-luolll

F2ug Ay = 223uhy " - 303 udy + Aully — lsuow] =G’

(22)
and
t" ~ N2t=PiA(uyt +y0}) (23)
subject to boundary conditions
y=0, t=-6) ony=0
y=0 t=-0y ony=1} 24)

If one considers only small values of A (or k<< then
substituting '

42

into Eqns(22), (23) and (24), to the order of A?, the
following sets of ordinary differential equations and
corresponding boundary conditions are obtained:

Ve =G 15=0

Wi = iy § — iy o +ikugws ~ 4y o]+ Gt}
ty = Pilugty +v,05]+1,

P =2y iy — iy, + Ky
= Pz[uotl +w19{)] +1,

27

and

Vo=uy, ¥ =0,t,=-6; 0”)’:0}

vo=0 v,=01=0 ony=1
yvi=0y,=04=0 ony=0
vi=0,¥,=0,4=0 ony=
vy=0,y,=04=0 ony=0
yv5=0y,=01=0 ony=I

Solution for Eqns (25) to (27) consistent
with the boundary conditions, (28) to (30) have
been obtained but not presented here for the
sake of brevity. From these solutions, the first-
order velocity components are given by
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(=]

0.25
-
Oy o,
3.9087300 -0.6966904 3.9085710
2.5280100 0.6858478 2.5278000
1.6074790 1.6071700 1.6073570
0.6866832 2.5281960 0.6865380
-0.6951095 3.9091940 -0.6944846
-2.0772470 5.2895910 -2.0778340
-2.9988580 6.2095620 -2.9996220

-5 -0.6967614 3.9090670 -0.6967188
-2 0.6859352 2.5283730 0.6858828
0 1.6076720 1.6077120 1.6073710
2.5293620 0.6869006 2.5286620
5 3.9118590 -0.6945852 2.9102420
8 5.2941730 -2.0763730 5.2914240
10 6.2156980 -2.9977215 6.2120160
) =ysinAx -y cos Ax G1)
Ly =—Ay, sinAx — Ay, cos Ax|
where Y=y +A%y,, vy ,.=-—).»Gw:j where vy, =iy /G
The first-order temperature is given by
it
01 (to +A- tz)coslx Pt3 smﬁx == ! ’32)

The velocity components (#,0) of the non-Newtonian

fluid are as follows:

uzg[(Hl +2H+6)y- Hy' ~2Hy—6)*

33
—e[w;coslx+w,.sin).x] (33)

u=—s),[w,sin2x—\y,-cos2.x] (34)

The temperature field for the flow is given by

0=1+Hy+Hy’ +£[(t0 +lzt2)wsAx—Pt3 sin?Lx]

4. RESULTS & DISCUSSION

The shearing stress o, at any point in the fluid is
given in non-dimensional form by

dz-— IAX—, TIAXTT
= —uo(y)+8el () +ig e 0, (v)
pv

g

+Ke [3upe™ Bi(y) + uy (y)(iA)e™ & (»)
~u§(7)e™ 0y () + up (V)A2e™ 5, ()

~uy (Y)(ir)e 5 (7)) (36)

At the wavy wall, y = £ cosAx and at the flat wall
y = 1, o becomes
o, =0, +&[u}(0)cos Ax —y3(0) cos Ax +AGy ¥(0) sin Ax
— Ay 3(0)cos Ax] -2 Ao K [y 5 (0) sinAx
+AGy(0)cos Ax]
(37

and

0,=0) +£[7quf '(1)sinix -y (l)cosAx-lzu/'z’(l)cosAx]
+ A K[ AGuy 1)y (1) cas Ax — 20y} (1)sin Ax
JLng(l)cos}x}]
(38)
respectively, where ¢ = u;(0) and o =y} (0) are the

zero-order skin-friction at the walls, and #, (y) and v,(y)are
given by

(39)

u(x,y)=e""u(y), v(xy)=e""0,(y)

['he non-dimensional heat transfer coefficient known

as Nusselt number (V) is given by

(40)

At the wavy wall, y = gcosAx and at the flat wali,
y = 1, N, takes the form

Ny, = N,?o +£[0") (0)cosAx + t'y (Q)coshx

+2% cosAxt'y (0) — Pt's (0)sinix ] (41)
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and

N, =N, +¢ [t() (1)cos Ax + £5(1)A* cos Ax

~ Pj(1)sinAx] “2)

respectively, when N =04(0), N, =05(1).

The purpose of this study is to bring out
the effects of non-Newtonian parameter on
the flow and heat transfer characteristics as
the effects of other parameters have been
discussed in detail by Vajravelu and Sastri*.
The non-Newtonian effect is exhibited through
the non-dimensional parameter (K). All the
corresponding results for Newtonian fluid are
obtained by setting K= 0.

It was noticed from differential Eqn (14)
that the non-dimensional (zero-order) temperature
of the fluid is affected only by the parameter
a and the wall temperature ratio (m) and that
the non-dimensional velocity of the fluid is
affected by the free convection parameter
(G) in addition to the parameters o and m but
not by the non-Newtonian -parameter K. It
has been observed from the expressions in
Eqns (41) and (42) that the heat transfer
coefficients are not significantly affected by
the parameter K. The skin friction at y = 0,
in general, is an increasing function of G,
while that at y=1 decreases with an increase
in G, this behaviour holding for any value of
m. To observe the non-Newtonian effect, the
skin-friction coefficient is presented for various
combinations of the parameters as follows:

Case 111 \Y
5.00 500 10.00  0.00
0.01 0.02 0.0 0.0
j2 0.71 0.71 071 7

Tables (1) to (8) show the behaviours of
the skin-friction at the channel walls for different
cases when m = 1 or —1. It is found from the
tables that the skin-friction at the wavy wall

JANUARY 2000

o, is an increasing function of G, P, A, a
while the reverse behaviour occurs at the flat
wall o, for K = 0, 0.15, 0.25. Again in case
of equal wall temperature (m =1), the skin-
friction at both the walls decreases for increasing
a and K but when the average of the temperatures
of the two walls is equal to that of the static
fluid (m=-1), both | cw| and o, decrease with
increase of a and K.
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