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1. INTRODUCTION
Nowadays, it is an active research area to perform 

autonomous cooperative air-to-ground target attack (CA/
GTA) missions by multiple unmanned combat aerial vehicles 
(multi-UCAV)1. However, it is quite difficult to coordinate the 
strike operation of multi-UCAV, especially for time-critical 
missions that require precise timing and sequencing of tasks 
and operations. In order to accomplish the mission successfully, 
UCAVs need to generate detailed cooperative execution plans 
to lead themselves well to penetrate through enemy threat 
areas, avoid the collisions with obstacles or each other, fly 
into the allowable attack regions (AARs) simultaneously or in 
sequence, and then perform weapon delivery operations. The 
cooperative trajectory planning for CA/GTA is vital to achieve 
the mission goals. It is really one of the key challenging 
technologies, due to its high dimensionality, severe equality 
and inequality constraints involved, and the requirement of 
spatial-temporal cooperation of multi-UCAV, and has recently 
received extensive attentions2.

To date, various algorithms3-7 have been developed to solve 
this cooperative planning problem, including several collision-
avoidance techniques and time adjustment strategies. McLain3, 
et al.  used coordination variables and coordination functions 
based strategies to achieve cooperative timing among teams of 
vehicles, by coordinating the velocity and path length of each 
vehicle. Kaminer4, et al. proposed a solution to the problem 
of coordinated control of multiple unmanned aerial vehicles 
(multi-UAV) to ensure collision-free maneuvers under strict 
spatial and temporal constraints. Bollino5, et al. addressed the 
optimal path planning of UAVs in obstacle-rich environments 

and proposed the collision-free path planning for multi-UAV 
using optimal control techniques and pseudospectral methods. 
Lian6 introduced a differential flatness based approach to 
optimally formulate the cooperative path planning for multi-
agent dynamical systems considering spatial and temporal 
constraints, and parameterized the curves by B-spline 
representations. Kuwata7, et al. presented a cooperative 
distributed robust trajectory optimization approach, using RH-
MILP with independent dynamics but coupled objectives and 
hard constraints. The above investigations have given several 
valuable strategies in the cooperative planning, but they failed 
to tackle the point-to-region cooperative trajectory planning for 
CA/GTA missions under consideration directly, which needs to 
integrate both the spatial and temporal constraints on the level 
of the trajectory planning. To address the trajectory planning, 
a novel cooperative trajectory planning algorithm for multi-
UCAV in performing the CA/GTA missions is presented. 

2. PROBLEM FORMULATION
Given a set of stationary ground targets in a terrain region, 

the mission objective is to plan several cooperative optimal or 
suboptimal, dynamically feasible flight trajectories from the 
initial points (IPs) into the AARs, such that multi-UCAV can 
effectively attack the targets with minimum time, maximum 
survivability and target destruction effectiveness. Therefore, 
many factors need to be considered synthetically in the 
cooperative trajectory planning. In this section, the cooperative 
trajectory planning problem is formulated after the modelling 
of AAR, constraints and the objective function.
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2.1 Allowable Attack Region Model
For the point-to-region trajectory planning problem, 

the AARs of targets are defined as the areas where UCAVs 
can effectively perform weapon delivery operations. So, in 
order to plan the accurate and optimal attack trajectories for 
weapon delivery, the AARs and the delivery parameters need 
to be obtained. The AAR of the ith target TARi, denoted as 
R(TARi), is such a set of all feasible release states that TARi 
can be effectively attacked whenever the aircraft is in that 
states. R(TARi) can be formulated as an abstract 6-dimensional 
space8

{ } 6( ) , , , , , .iR TAR x y h v= g y ⊂     (1)

Obviously, R(TARi) is high-dimensional nonlinear space, 
which will make the problem solving much difficult. By 
presetting an appropriate weapon release speed, vr and the flight-
path angle, gr based on estimating the weapon impact effects 
and destruction requirements to the target, and predetermining 
release heading r′y , it can be reduced to a 3-dimensional space
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2.2 Constraint Model
2.2.1 Maneuverability Constraints of UCAVs

The maneuverability constraints impact every phase 
during target attack missions, so they should be met for an 
executable plan. The constraints can be denoted as 
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v v t v t t
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               (3)
where v is the aircraft velocity; g denotes the flight-path angle; 
y  denotes the heading angle; µ  denotes the roll angle; nx and 
nh are the longitudinal and normal components of the load 
factor. min( )⋅ and max( )⋅  represent the minimum and maximum 
boundary values of the value ( )⋅ .

2.2.2 Battlefield Environment Constraints
(a) Threat avoidance: without loss of generality, the 

threat impact  range can be assumed as hemispheres 
approximately, thus threat avoidance constraint can be 
defined as

 ( )o o o o
o

2
( ) , ( ) , ( ) ,  ( 1, 2, , ),i i i ix t x y t y h t h R i N− − − ≥ = 

  (4)
 where the norm 

2
⋅ denotes the Euclidean distance 

between two points; and o o o( , , )i i ix y h  and o
iR  denote the 

origin coordinates and the detection radius of the ith threat, 
respectively.

(b)  No-fly zones (NFZs): herein, an infinite-length cylinder is 
used to describe the NFZs:

  ( )w w w
w

2
( ) , ( ) ,  ( 1, 2, , ),i i ix t x y t y R i N− − ≥ =            (5)

 where w w( , )i ix y and w
iR  denote the origin coordinates and 

the radius of the ith NFZ.

2.2.3 Terminal Constraints

In the point-to-region trajectory planning, weapon 
delivery point (WDPt) as the trajectory terminal of CA/GTA 
needs to be in the AAR, i.e. satisfying the terminal constraints. 
The formula can be denoted as WDPt ( )i iR TAR∈ , that is

a f a f a f( ) , ( ) ,  ( ) ,x x t x y y t y h h t h− ≤ ∆ − ≤ ∆ − ≤ ∆       (6)

where tf is the terminal time, (xa, ya, ha) and (x(tf), y(tf), 
h(tf)) are the coordinates of AAR’s center point and WDPt, 

,  ( ,  )x y h∆ ∆ ∆ are the thresholds of errors.

2.2.4 Cooperative Constraints
During the mission, multi-UCAV should maintain a 

safe distance to avoid collision with each other, i.e. satisfying 
spatial constraint. The model can be denoted as

safe safe v2
( ) ( ) max( ,  ),  ( , 1, 2, , , ),j k j k

i it t d d j k N j kρ − ρ ≥ = ≠   
                                                                                               (7)

where ( ) { ( ), ( ), ( )}j j j j
i i i it x t y t h tρ = is the spatial position of 

UCAVj at the time ti, safe jd is the minimum safety radius of 
UCAVj, and Nv is the total number of UCAVs.

The temporal constraints considered here include 
simultaneous arrival constraint and tight-sequencing constraint, 
which can be described as

f f v0,  ( , 1, 2, , , ),j k
jkt t j k N j k+ ∆ − ≤ = ≠

                   (8)

where f
jt  is the terminal time of UCAVj, jk∆ is the arrival 

interval between UCAVs.

2.3 Objective Function
The objective function of each UCAVj can be defined 

by the weighted sum of the three separate running cost terms 
with appropriate weighting factors t

jw , r
jw  and d

jw , where
t r d 1j j jw w w+ + = . And the objective function of the entire 

team can defined as: 

t t r prd d dest
1 1

min min ( ),
v vN N

j j j j j j j

j j

J J w J w J w J
= =

= = + +∑ ∑        (9)

and three separate running cost terms can be respectively 
defined as
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j j jj j j
i s

i

J t D ntf= = −∑x x        (12)

where 0
jt and f

jt  denote the initial and terminal time of UCAVj. 
The first term

t
jJ , denotes the total fight time of UCAVj. 

min/L vΓ =  is maximum flight time along the straight line 
(L denotes its length) from the IP to the center of AARs. The 
value is predetermined, and can be used to insure the first cost 
term consistent with others. The second term prd

jJ , describes 
the average detection-probability of the nr-radar system to 
UCAVj, where d ( , )jP t r  is the radar detection probability model 
between the trajectory point of UCAVj at the time t and the 
rth radar9. And the third term dest

jJ , is the minimal form of 
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the target damage probability, where f( ( ))j j j
i tD x denotes the 

target damage probability of UCAVj from the ith Monte Carlo 
simulation, and ns is the total simulation times. 

2.4 Cooperative Trajectory Planning Problem 
Formulation
After establishing the above three models, the cooperative 

trajectory planning problem is formulated in the subsection. 
The problem under consideration is a cooperative scenario, 
consisting of Nv similar UCAVs, and the dynamics of UCAVj 
is given by

 v( ) [ ( ), ( ), ],  ( =1, , ),j j j jt f t t t j N=

x x u                     (13)

where 6[ , , , , , ]Tx x y h v= g y ∈  and 3[ , , ]T
x hu n n= µ ∈ denote 

the state and control vectors, which are in accordance with the 
following UCAV kinematic and dynamics equations10

 cos cos ,  cos sin ,  sin ,x v y v h v= g y = g y = g

                 (14)
 

x h h( sin ),  ( cos cos ),  sin ,
cos

g gv g n n n
v v

= − g g = µ − g y = µ
g

                      
                               (15)
where x, y, h are the east, north, and up components of the 
earth-fixed reference frame, and denote longitude, latitude and 
altitude respectively; g denotes the gravity acceleration. Figure 
1 shows the spatial relation of the states.

0 0 0 0

1 f f f
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[ ( ), ( ), ] 0,

j j j j j

j j j j j

t t t

t t t

Φ =

Φ ≤

x u

x u                                           
 (17)

and several inequality and equality constraints,  the individual 
and cooperative constraints, including the state and control 
(i.e., Eqns (3)-(5) and Eqns (7)-(8)), are denoted as:

1

2

T f f v

[ ( ), ( ), ] 0,

[ ( ), ( ), ( ), ( ), ] 0 ,

( , ) 0,  ( , 1, 2, , , ).

j j j

j j j k k

j j k

C t t t
C t t t t t
f t t j k N j k

≤

≤

≤ = ≠

x u
x u x u

                    
  (18)

Note that, the terminal time tf is free. Thus the problem 
is a free terminal time problem. In addition, it is important in 
the problem formulation to scale the variables. The choice of 
scaling will balance the equations for numerical analysis, thus 
improving the accuracy of the solution and the computation 
time11.

3. COOPERATIVE TRAJECTORY PLANNING 
APPROACH
To solve the previous CTP-OCP as quickly as possible, an 

efficient numerically cooperative trajectory planning algorithm 
is introduced, which combines several classical techniques, 
including differential flatness theory, B-spline curves, and 
nonlinear programming. In addition, for the time-critical 
cooperative missions, a novel strategy is proposed to handle 
the temporal constraints.

3.1 Time Cooperative strategy
The time factor of trajectories is an argument of the state 

and control. To deal with temporal constraints, the time along 
the trajectories should be considered separately. In the work, 
the independent intermediate variable (called virtual time here,

[0,1]t ∈ ) is introduced and described as

0 f 0( ) ( ).t t t tt − −                                                         (19)
Such that the trajectories can be generated in the virtual 

time domain from 0 0t =  to f 1t = .
For UCAVs are required to takeoff at the same time, it is 

assumed that the initial time of all UCAVs is zero (i.e. 0 0t = ). 
Thus, the terminal time ft can be written as ft t= t . That is, ft  
denotes the ratio between the true time variable and the newly 
defined virtual time variable. To coordinate the arrival time of 
all UCAVs, the terminal time can be defined as an argument 
in the dynamics to be optimized, designated as fT . Then, the 
following relationship between the virtual time and true time 
domain can be obtained for an arbitrary variable χ

 f
f

( ) ( )( ) ( ) .d t d tt T
dt T d
χ χ ′χ = = = χ t

t
                                   (20)

Especially, the derivative of the speed variable can be 
denoted as

2 2 2 2 2 2
f f( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v t x t y t h t x y h T v T′ ′ ′= + + = + + = t

         
(21)

where the superscript ( ' ) represents the derivative with respect 
to the virtual time. 

According to Eqns (13) and (19), the dynamics can be 
rewritten as

Figure 1. Relation of aircraft position, velocity, flight-path and 
heading angels.

As mentioned above, to generate optimal or suboptimal 
cooperative trajectories, the trajectory planning problem for 
the CA/GTA missions can be formulated as a cooperative 
trajectory optimal control problem (CTP-OCP).

2.4.1 Problem 1 (CTP-OCP) 
Find the trajectories, which drive the system from given initial 

conditions to desired final conditions over time horizons [t0, tf], 
while the cooperative objective function is minimized as follows

( )

v v
f

0
t f 0 r f 0

1

dest

1

d f

min ( , ) [ ( ) / PRD ( ) /

]

)

(

(

)x

x u
= =

= = − Γ + − +∑ ∑ ∫
j

j

N N t
j j j j j j j j

tj j

j j j

J J w t t w t

f

dt t t

w t  (16)
subject to the dynamics equation (i.e., Eqn (13)) and the 
boundary constraints (i.e., the initial and terminal states (i.e., 
Eqn (6))



DEF. SCI. J., VOL. 64, NO. 1, JANUARY 2014

16

f f f

f v

ˆ( ) ( ) [ ( ), ( )] [ ( ), ( ), ]

=0,          ( =1, , )

x x x u x u′ t = ⋅ = ⋅ = t t

′





j j j j j j j j j

j
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Hence, the Problem 1 can be reformulated in virtual time 

domain (VTD) as Problem 2.

3.1.1 Problem 2 (CTP-OCP-VTD)
 Minimize the cooperative cost function (Eqn (16)) of 

all UCAVs represented with respect to the new independent 
variable t as:

   
            (23)

subject to the dynamics in Eqn (22), and  the boundary 
constraints in Eqn (17), written as:

 0

1 f

[ (0), (0)] 0

[ (1), (1), ] 0

j j

j j jT

Φ =

Φ ≤





x u

x u
                                               (24)

and the inequality and equality constraints (Eqn (18)), and 
additional temporal constraints

 1 f

2 f f

T f f v
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x u

x u x u
                   

(25)

3.2 Problem Formulation in the Output space
Due to the complexity in solving this higher dimensional 

space system, the differential flatness approach is introduced to 
transform the system dynamics to a lower dimensional space12. 
To confirm that the dynamics system is differentially flat, the 
spatial trajectory ( )ρ t in virtual time domain and the terminal 
time fT as the flat output vector can be defined as

 f f[ ( ), ] [ ( ), ( ), ( ), ]z TT x y h T= ρ t = t t t    (26)

The original state x and control u can be recovered from 
the flat outputs and their derivatives as follows13

 ( , ),     ( ),    ( )′ξ = = ϕ ξ = α ξz z x u                                 (27)
According to the kinematics equations in Eqn (14), the 

remaining three states using the flatness outputs in virtual time 
domain can be easily described as below

 ( ) ( )2 2 2 2 2( ) ( ) ( )  ,  arctan ,  arctan ( ) ( )v x y h y x h x y′ ′ ′ ′ ′ ′ ′ ′= + + y = g = +  
  (28)

Thus, according to Eqn (15), the control variables can be 
determined as

 ( ) ( )

( )

2 22 2
x f h f f

2
f

( ) sin ,   cos cos ,

arctan cos ( cos ) ,

n v T g n v T g v T g

v v T g

′ ′ ′= + g = g + g + y g

′ ′µ = y g g + g  
    

 (29)

Obviously, the dynamics constraints of this system (i.e. 
Eqns (14-15)) can be automatically satisfied. And the system 
of cooperative planning of UCAVs, including the objective 
function and the constraints, is mapped to a lower dimensional 
output space. Hence, Problem 2 can be modified as problem 3.

3.1.2 Problem 3 (CTP-OCP-VTD in Output Space)
 Solving the problem

v v

f
1 1

1

f
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min ( ( )) [ ( ( (0)), ( (0)), ( (1)), ( (1)), )
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subject to
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   (31)

3.3 Parameterization of the spatial Trajectory
To generate feasible trajectories in a finite parameter space, 

flatness outputs are parameterized in terms of B-spline curves, 
which have been used to represent the trajectory of UCAV to 
minimize computation loads and successfully applied to path/
trajectory planning14.

Without loss of generality, to decrease the computational 
time, the 3-degree B-spline curves are chosen to represent 
the trajectory, whose order equals to 4. Therefore, choosing 
every four neighboring points from the point set as control 
points, a 3-degree B-spline curve can be defined, which is a 
trajectory segment. In addition, it is clearly seen from Eqn (19) 
that the non-decreasing variable t , can be the knot sequence 
of B-spline. Consequently, the ith trajectory segment can be 
described as follows

 1,4 1 2,4 2 3,4 3 4,4 4( ) ( ) ( ) ( ) ( )i i i i i i i i
iB b C b C b C b Ct = t + t + t + t     (32)

Obviously, as ,4 ( ) ( 1, 2,3, 4)i
mb m =t is known, once the 

control point serial i
mC  is determined, the ith trajectory segment 

can be generated by Eqn (32). Thus, the trajectory of UCAV is 
mapped into the control point serial of B-spline curves.

As is previously stated, the spatial trajectory segment ( )iB t  
can be replaced by flatness output variables T[ ( ), ( ), ( )]i i ix y ht t t , 
and simplified as

 
0 1 2 2 3 3 0 1 2 2 3 3

0 1 2 2 3 3

( ) ,  ( ) ,

( ) , ,1] [0
i i i i i i i i i i

i i i i i

x a a a a y b b b b

h c c c c

= + + + = + + +

= + + +

t t t t t t t t

t t t t t ∈
 

                                                                                      
(33)

where 1m
ia − , 1m

ib − , 1m
ic −  are the evaluation coefficients 

determined by the coefficients of the B-spline basis functions.
Once all control points are obtained, the spatial trajectory, 

i.e., the flatness outputs will be generated. Such that, the 
original control variables and remaining state variables, 
as well as the objective function and the constraints, can be 
parameterized (i.e., discretized) by the control point serial. 
Thus, the trajectory will be mapped to control point serial, and 
the complex trajectory planning is transformed into a parameter 
optimization problem. 

3.4 Transformation into a Nonlinear Programming 
Problem
After the flatness outputs have been parameterized in 

terms of B-spline curves, the coefficients of the B-spline basis 
functions can be found by nonlinear programming. 

( )
v v 1

f t f r f d d
1

e t
01

s( , , ) [ / PRD ( ) / 1 ]( )ux x
= =

= = Γ + t t +∑ ∑ ∫
N N

j j j j j j j j

j j

J J T w T w d T w f
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First of all, the virtual time horizon of UCAVj denoted 
by [0,1]t ∈  need be uniformity discretized as the c( +1)jN  
collocation points below

 c c c cd 0, 1/ , ...,  , ... , ( 1) / , 1j j j j j
nN N N= t −                    (34)

And the coordinates of collocation points can be written 
as[ ( ), ( ), ( )]j j j

n n nx y ht t t , which can be calculated by the Eqn 
(33). Thus, the continuous-spline curves can be discretized in 

c( +1)jN  points, and the constraints on the B-spline curves will 
be enforced at collocation points.

For the 3-degree B-spline curve under consideration, 
B-spline coefficients of UCAVj for all position outputs can be 
denoted as

1 2 3

1 1 1 2 2 2 3 3 3
1 2 1 2 1 2( , , , , , , , , , , , ) j

j j j

Mj j j j j j j j j
j p p pC C C C C C C C Cζ = ∈   

  
(35)

where 
3

1
j ij

i
M p

=

= ∑   , Pij  is the number of the control points for 

the ith position output of UCAVj , and these coefficients are 
used as the decision variables in the NLP problem.

Thus, the multi-UCAV trajectory planning problem in 
optimal control framework is transformed into a NLP problem, 
i.e. CTP-NLP, given by Problem 4.

3.4.1 Problem 4 (CTP-NLP)
Solving the problem

 

v

v f
, 1

f

f

min  ( ,  ),      

s.t.    ( ,  ) 0,   1, 2, ,
        ( ,  ) 0,   1, 2, ,

NK

N

j
T j

r n

s n

F T K M

g T r r
h T s s

ζ∈ ∈ =

ζ =

ζ ≤ =
ζ = =

∑
 





                            (36)

where ζ  is a decision vector of cooperative planning, described 
as v1 2( , , , )Nζ = ζ ζ ζ  , nr  and ns  are the total number 
of the inequality and equality constraints of all UCAVs, 
respectively.

Then the resulting CTP-NLP problem can be solved 
through well developed algorithms, such as the sequential 
quadratic programming. In the paper, the SNOPT software 
toolbox is used due to its advantages in solution effectiveness 
for the large-scale NLP problems15. 

4. sIMULATIONs AND REsULTs
The basic ideas presented in this paper are illustrated in the 

following two scenarios. The common parameters of models in 
our simulations are listed in Table 1.

The experimental test environment is a rectangle area of 
30 × 40 km2, as shown in Figs. 2 and 4. All the results presented 
below are generated using TOMLAB/SNOPT software toolbox 
on a 2.4-GHz Core 2 CPU, 2G RAM computer running with 
MATLAB R2009b. The weighting factors t

jw , r
jw  and d

jw  
are set as 0.4, 0.3, and 0.3, by using trail and error. And the 
minimum safety radius of each UCAV dsafe is set as 500 m. 
The first initial guesses of the optimization parameters can be 
generated by using the B-spline interpolation of the lines from 
the IPs to the AARs of the targets. Then, the multiresolution-
based iterative strategy8 is used to generate some ‘good’ initial 
guesses to the solver, which can reduce the number of iterations 
required to solve the NLP problem. The specified maximum 
number of collocation points is set as c,max 100N = . Moreover, 
it is assumed that the target assignment is already completed 

Table 1. state and control constraints of UCAVs

Item Minimum value Maximum value

Flight altitude (m) hmin = 200 hmax = 8 000

Airspeed (m/s) vmin = 60 vmax = 300

Flight-path angle (deg) min 89g = − max 89g =

Roll angle (deg) min 80µ = − max 80µ =

Tangential load factor (G) nx,min = -0.725 nx,max = 0.91

Normal load factor (G) nh,min = -3.2 nh,max = 8

Figure 2. Two collision-free UCAV trajectories with arriving 
simultaneously.

h(
m

)

(Total flight time=110s)

y(m)x(m)

before.
4.1 scenario 1: Cooperative Trajectories of Two 

UCAVs Arriving simultaneously
In this scenario, two UCAVs cooperatively attack two 

stationary ground targets while avoiding a series of static 
obstacles/threats detected and collision en route, and satisfying 
aircraft dynamics constraint, especially simultaneous arrival 
constraint. UCAV1 and UCAV2 start at each IP, i.e., IP1 
(10 km, 2 km, 2 km) and IP2 (17 km, 2 km, 2 km). Then they 
fly into the AARs of two targets: Target 1 (4.2 km, 34 km, 
0 km) and Target 2 (14 km, 40 km, 0 km), respectively. 
The other three initial states and control inputs are given by

1 2
0 0 [220 / , 0 , 90 ]m s= =  

 x x and 1 2
0 0 [0 , 0g,  1g]= = u u . Thus 

1 465 sΓ = and 2 530 sΓ = . The collision-free trajectories of 
the UCAVs and their arrival time, i.e. the total flight time, are 
shown in Fig.2. In addition, the approximate weapon trajectories 
are drawn to simulate the attack process. The time histories 
of the UCAVs’ states (v, g, y) and control inputs x h( ,  ,  )n nµ  
are shown in Fig.3. The average detection-probabilities of 
UCAVs are 0.12 and 0.17, and the target damage probabilities 
of UCAVs are 0.851 and 0.762, respectively. It is clear that 
the resulting trajectories are smooth, and the constraints on 
these variables, especially the cooperative constraints are all 
satisfied (Table 1), which means the resulting trajectories are 
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feasible and safe.

4.2 scenario 2: Cooperative Trajectories of Multi-
UCAV Arriving in sequence
In this scenario, three UCAVs attack two stationary 

ground targets cooperatively. The only additional requirement 
is that the UCAVs arrive at their AARs in sequence rather 
than simultaneously, and the intervals between UCAVs 
are equal, denoted as 12 23 30 s∆ = ∆ = . The coordinates of 
IP1, IP2 and two targets are the same as Scenario 1, and the 
third IP is IP3 (4 km, 2 km, 2 km). The result of the previous 
finished target assignment is that the UCAV1 and UCAV2 
attack Target 1 and UCAV3 attacks the other one. The initial 
remaining three states and control inputs of the UCAV3 are 
preset as 3

0 [220 / , 0 , 90 ]m s=  

x and 3
0 (0 ,  0g,  1g)= u . Thus

1 465 sΓ = , 2 438 sΓ = and 3 576 sΓ = . Figure 4 shows the 
overall collision-free attack trajectories of multi-UCAV and 
their arrival time. It can be clearly demonstrated that the 
UCAVs can avoid all obstacles or threats and successfully fly 
into the AARs in sequence to perform weapon delivery. Figure 
5 shows the distance between each pair UCAVs. From it, one 
can find that the minimum distance is more than the minimum 
safety radius of dsafe = 500 m. Figure 6 shows the time histories 
of the UCAVs’ states (v, g, y) and control inputs x h( ,  ,  )n nµ . 
The average detection-probabilities of UCAVs are 0.133, 0.092 
and 0.12, and the target damage probabilities of UCAVs are 
0.813, 0.901 and 0.724, respectively. Obviously, the resulting 
trajectories are feasible and safe for all the constraints listed in 
Table 1 are satisfied.

5. CONCLUsIONs
This paper is devoted to exploring the cooperative 

collision-free trajectory planning for multi-UCAV performing 
the CA/GTA missions. A novel cooperative planning approach 
is proposed in optimal control framework, based on differential 
flatness, B-spline curves and nonlinear programming. 

Figure 5. Distance between each pair UCAVs.
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Figure 3. state and control time histories of the two UCAVs.
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Figure 4. Three collision-free UCAV trajectories with arriving 
in sequence.
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To integrate weapon delivery constraints in the problem 
formulation, an approximate AAR model is established. 
Moreover, the notion of the virtual time is introduced to handle 
the temporal constraint. Instead of solving an OCP over a high-
dimensional continuous space, the NLP problem of very low 
dimension has been solved successfully, over a much smaller 
space. The proposed approach can efficiently solve the point-
to-region trajectory planning problem with integrating the 
spatial and temporal constraints on the trajectory level, whose 
validity is illustrated with some simulation results finally. 
Further efforts may be made to analyse some uncertain factors 
in the true battlefield environment and carry out the research 
on the real-time cooperative trajectory planning.
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