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NomeNclature
S  - Sensed trajectory (Arbitrary partial trajectory detected 

   by sensor) 
TD  - Trajectory database (Database of ballistic trajectories 

   from unified launch point)
Sub-TD - Sub-trajectory database (Database of sub-trajectories 

   partitioned into sensing time intervals and translated  
   to origin)

MSST - Most similar sub-trajectory (Sub-trajectory that has 
   smallest distance from sensed trajectory)

MST  -  Most similar trajectory (Whole trajectory that includes 
   MSST)

1. INtroductIoN
This paper addresses the problem of estimating the 

trajectory and launch point of enemy artillery projectiles. For 
tactical and technical reasons, the radar system of field artillery 
generally tracks an arbitrary trajectory at regular intervals for 
only a limited number of seconds. Real-time ballistic trajectory 
radar can track an arbitrary trajectory during a limited time 
by means of information with three degrees of freedom, 
whereas a ballistic trajectory with time varying aerodynamic 
characteristics such as drag coefficient and lift can be simulated 
by equations with six degrees of freedom. Therefore, using 
a kinetic model in a fire control system with radar detected 
information causes an inaccurate estimation of the ballistic 
trajectory and launch point.

Developing the more effective search algorithm in this 
area is an important matter because the time of search of 
launch point is a crucial in this type of applications. However, 
it is difficult to find appropriate references in this area of work. 
There are some existing research reports on launch point 
estimation. A maximum likelihood (ML) estimator based on 
the Levenberg-Marquardt algorithm was applied to estimate 

ballistic missile launch points by using line of sight (LOS) 
measurements from one or more passive sensors1. Batch 
data processing and nonlinear regression, augmented with an 
intercept as a multivariate parameter, have been proposed2. 
Launch point estimation based on data is founded, which 
necessitates a multi-parameter decision process and full search3. 
We proposed a k-NN search based estimation that is parameter 
less for a ballistic trajectory launch point4. But, it didn’t still 
overcome the time complexity of full search. Therefore, in this 
paper, we adapt iDistance which is one of high dimensional 
vector space partitioning algorithms to offer efficient k-NN 
search method for estimating ballistic launch point. 

We study the problem of estimating a ballistic trajectory 
and the launch point using a trajectory similarity search for 
a ballistic sub-trajectory observed by a radar system. The 
major difficulty of this problem is that estimation accuracy 
is guaranteed only when a similar trajectory exists in the TD. 
Accordingly, the TD must consist of numerous trajectories from 
every possible launch point under various launch conditions 
(such as speed and angle). Even if the TD consists of trajectories 
that reflect every possible launch point, time complexity poses 
a serious problem. Therefore, authors proposed a novel data-
based ballistic launch point estimation process that utilizes a 
simplified TD and a simplified sub-TD. Furthermore, we use 
data-space partitioning to reduce the calculation time.

2. SImplIfIed trajectory databaSe
The phrase trajectory similarity refers to temporal 

components as well as shape components. The TD introduces 
temporal issues related with derived parameters of motion 
such as speed and direction5. Figure 1 shows two hurricane 
trajectories that are not similar with respect to matters of speed, 
despite having the same shape and similar locations. All the 
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factors that characterize a trajectory (locality, temporality, 
directionality, and rate of change) can be flexibly formulated. 
This approach is effective not only to query for a similar 
trajectory but also to support trajectory clustering6.

figure 2. (a) trajectories from six launch points (b) trajectories 
from a unified launch point.

figure 3. a way to segment a trajectory to serial sub-trajectories 
data.

Although they are same shapes, trajectories can be 
different by its starting points. If they are moved into the same 
starting point, they can be considered identical trajectory. In 
other words, there are innumerable trajectories which have 
identical shape and different starting point. Thus, to reduce 
the size of TD, we proposed simplified TD by using only the 
relative position of trajectory, i.e. the shape component of 
trajectory. The simplified TD assumed for a ballistic trajectory 
similarity search is the ideal case of a unified launch point 
obtained by parallel transformations along the x- and yaxes. 
Figure 2 shows that the TD is made simple by unifying the 
launch points. under the same conditions, Fig. 2(a) depicts 
trajectories from three different launch points and Fig. 2(b) 
depicts trajectories from a unified launch point.

time period (T), for example 3 s. In this case, only if the time 
lengths of trajectories are identical, the trajectory similarity is 
worth to consideration. Thus, the trajectories in the TD should 
be partitioned into sub-trajectories with time length (T) and 
timestamp interval (t) identical to those of a sensed trajectory. 
The sub-trajectories with sensing time scale are the data by 
moving window. In Fig. 3, ‘data 1’ consists of 30 rows time table 
with 3-d coordinates at interval of 0.1 s. It can be represented 
by 90 dimensional vectors, the first 30 columns represent x 
coordinate, and the second 30 columns represent y coordinate. 
The sub-TD consists of these high dimensional sub-trajectory 
vectors. To check the temporal and shape components of each 
sub-trajectory for similarities with those of the sensed trajectory 
in relative coordinates, the sub-trajectories need to have 
position components relaxed from those given by the original 
whole trajectory. All sub-trajectories are also translated to the 
origin. Eventually, the simplified sub-trajectory database (sub-
TD) consists of sub-trajectories extending from the origin by a 
sensing time interval. Figure 4 shows a conceptual example in 
which a TD is converted into a sub-TD. The 1,366 trajectories 
were divided into 2,188,591 sub-trajectories. For visibility, 
some sub-trajectories are described in detail.

figure 1. Similarity between two hurricane trajectories (van 
Kreveld & luo5).

In our simplified TD, every trajectory has a relaxed 
location component so that similarities in the temporal 
and shape components can be considered. Some trajectory 
conversion processes have to precede the comparison of a 
sensed trajectory with trajectories in the simplified TD. For 
convenience of explanation, we define as follows:

A real coordinate trajectory is the trajectory of a moving • 
object in the real coordinate system. 
A regulated coordinate trajectory is the trajectory of a • 
moving object in a relative coordinate system assuming 
that the object is launched from the origin.
As described above, trajectory similarity is represented by 

timestamps as well as route. For a trajectory similarity search, 
we must compare the direction and length of two trajectories 
at every timestamp. Generally, field artillery radar tracks an 
arbitrary ballistic trajectory using a fixed interval (t) for a short 

To calculate the similarity between trajectories, a 
pair should be compared under identical conditions. Thus, 
through some conversion process, the coordinates of a 
sensed trajectory and trajectories in the TD are realigned and 
synchronized. Figure 5 shows the framework of the trajectory 
conversion process. In the upper box, the trajectories in the TD 
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are converted into a sub-TD by a batch process in advance. 
In the lower box, the sensed trajectory is converted by the 
online process as soon as radar systems observe a trajectory 
and transmit its information. This will be explained in the next 
section. Then, a k-nearest neighbour (k-NN) search to compare 
the transformed sensed trajectory (S′) with trajectories in the 
sub-TD is possible. 

identical time interval. The dissimilarity between the two sub-
trajectories is defined as the integration of the line segment7.

The Euclidean distance between the two points in 
3-dimension can be calculated as follows

2 2 2
, ( ) ( ) ( )P Q x x y y z zD Q P Q P Q P= − + − + −

               (2)

where Pi,Qi is the coordinate on the i-axis of the point P,Q
i=x,y,z
The distance between two sub-trajectories is calculated by 

integration of Eqn. (2) over a time interval. In order to reduce 
the computational complexity, the trapezoidal rule is used. The 
dissimilarity between two sub-trajectories can be approximated 
as follows
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where DP, Q(tk) is the Euclidean distance between two points P 
and Q at the tk

The distances between S′ and all the trajectories in 
the sub-TD can be calculated from Eqn (3). Then, each 
dissimilarity between two trajectories can be used as a weight 
for k-NN estimation. Figure 6(a) shows a sub-trajectory that 
is determined the MSST of S′ based on shape similarity. 
Figure 6(b) shows the concept of a distance measure between 
a pair of trajectories. To avoid overfitting to noise in the data, 
the idea of the MSST is extended to k neighbours (k > 1) as 
the k-MSST. In addition, averaging estimated launch points 
from several similar trajectories can prevent extreme wrong 
estimation that can occur by considering only small nearest 
neighbours. 

di: dissmilarity between S' and each k-MSST (1<i<k)  (4)
figure 5. trajectory conversion framework.

figure 6. (a) most similar sub-trajectory, (b) concept of distance 
measure.

(a) (b)

figure 4.  the concept of converting a td into a sub-td4.

3.2 Weight of elevation
Figure 7(a) shows that sub-trajectories with only 

shape similarity can occur in various parts of several whole 
trajectories. Thus, location component in similarity should 
also be considered in searching for an exact k-NN. Authors 
proposed locational similarity as the similarity weight in k-NN 
estimation. If a sub-trajectory is determined the MSST of S′, its 
whole trajectory is estimated the most similar trajectory (MST) 
for the whole trajectory S. Thus, the location components of 
S and MSST in the TD should be compared. In the TD, the 
position components of the MSST are restored in the MST 
as R. In Fig. 7(b), R is the restored original position of the 

3. k-NN Search
3.1 trajectories Similarities in Shape and time 

dependence
First, we consider similarities in temporal and shape 

components between the sensed trajectory (S) and trajectories 
in the sub-TD. The temporal and shape components represent 
the rate of change in velocity. Where as S is obtained in real 
coordinates, the trajectories in the sub-TD are regulated 
coordinate trajectories in relative coordinates. Thus, the 
location component of S in real coordinates should be relaxed 
by translation to the origin. This translation function and the 
converted S are represented by T(S) and S′ as follows

( )S T S′ =                                                                        (1)
where 

1 1[( , ), , ( , )]
( , , )

n n

i i i i
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The similarity between two points is inversely proportional 
to the dissimilarity, which can be calculated from a distance 
measure. The most similar sub-trajectory (MSST) means the 
first-nearest neighbour; i.e., the trajectory with the shortest 
distance from S′ of those in the sub-TD. Let us define how to 
measure the distance between two trajectories. As a trajectory 
is a time series of points, a sub-trajectory can be regarded 
as a set of line segments whose lengths correspond with an 
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estimated MST in the TD. Since all trajectories in the database 
emerge from a unified launch point by parallel transformations 
in the x- and y-directions, only the difference in elevation 
is considered when comparing locations. The z-coordinate 
difference between the MSST and S is considered the elevation 
weight

max ( ) ( )i t t ih z S z R= −                                                  (5)
where 

( ) coordiate value  at 
( ) coordiate value  at 

t

t i i

z S z S t
z R z R t

= −
= −

consists of high dimensional vector, we apply suitable strategy 
for high-dimensional data structures to solve time complexity 
problem. In recent year, an alternative approach to indexing 
high-dimensional data has been the mapping strategy for data 
space partitioning. The pyramid-technique14 was developed for 
hypercube range queries over a uniform data distribution and 
thus it can only perform the space-based partitioning described 
in Fig. 9(a). As the iDistance15 technique is also capable of the 
data-based partitioning described in Fig. 9(b), it yields high 
performance on real data that are clustered and correlated.

figure 7. (a) Sub-trajectories with only shape similarity and 
(b) location component of sub-trajectory.

(a) (b)

figure 8. (a) ballistic sub-trajectory database and (b) ballistic 
sub-trajectory data.

(a) (b)

3.3. k-NN estimation of launch point
The distance from each k-MSST to S′ is used as a weight 

to influence the launch point estimation. The main concept 
of launch point estimation is that R0 represents the restored 
coordinate or starting point of the MSST in the MST. This 
concept is reversely applied to the starting point of the sensed 
trajectory (S0). Each k-MSST contributes to the estimation as a 
dissimilarity. Finally, a launch point is estimated as follows: 
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                       (6)

where
di : the shape component dissimilarity weight
hi  : the elevation difference weight

4. data Space partItIoNINg
Trajectories are represented by time series data, which 

are typically high-dimensional data. In Fig. 8(a), a ballistic 
sub-trajectory database consists of a dense pattern of similar 
trajectories. In Fig. 8(b), the sub-trajectory data are highly 
correlated because of directivity. The various structures for 
multidimensional data can be divided into two categories, which 
are known as R-trees 8-10and X-trees 11. These types of index 
structures are not appropriate for a high-dimensional dataset 
because of the ‘curse of dimensionality’: as the dimensionality 
increases, the performance deteriorates because of the overlap 
among bounding boxes12,13. Because sub-trajectory data 

figure 9. (a) Space-based partitioning and (b) data-based 
partitioning.

(a) (b)

4.1. k-NN Query algorithm
A k-NN search probes the database for the k objects 

nearest to the given query q. In mapping strategy indexing, 
an NN search starts from a query sphere with radius ∆r. The 
radius of the query sphere increases by ∆r with each iteration 
until the search retrieves the complete answer set of minimum 
radius, which consist of the k nearest neighbours of the query 
point. The algorithm terminates when the vector space distance 
of the furthest object in the answer set is less than or equal 
to that of any object within the current search radius r with 
respect to the query q.

4.2. idistance
iDistance was proposed for efficient k-nearest neighbour 

searches in high-dimensional data spaces14. First, the data space 
is partitioned and a reference point is defined for each partition. 
Second, the distance of each data point from the reference 
point of its partition is indexed with a one-dimensional 
value. Figure 10 shows a two-dimensional data space that is 
partitioned into three clusters before each data point is mapped 
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to a one-dimensional value according to its distance from the 
reference point of its partition.

data and considered a sensed trajectory, the whole trajectory 
was eliminated from the TD. The accuracy was evaluated by 
means of the following definitions:

*#
#
of errorAccuracy

of testing
< j

=  (7)

where error is the distance between estimated launching point 
and real starting point; j*  : tolerance < casualty radius

First, to evaluate the quality of the proposed algorithm, we 
compare the estimation error of the proposed algorithm with 
that of the AN/TPQ-37 Firefinder mobile radar system. We 
examined the behavior of our algorithm by varying the number 
of neighbours from 2 to 50 by increments of 2. In each setting, 
we sampled 100 sub-trajectories randomly. Next, we calculated 
the average estimation error. Figure 12 shows that the average 
estimation error of the proposed algorithm is definitely smaller 
than the baseline of 105 m (average error of AN/TPQ-374).
Moreover, its performance is robust to changes in k, once k 
reaches a certain size. These experiments also performed with 
100 random samples for each setting. Figure 13 shows the 
estimation accuracy versus k for three different tolerances. figure 10.  idistance index.

figure 11. (a) k-NN search with idistance and (b) decision rules 
for partition type.

(a) (b)

Figure 11(a) shows how the k-NN search algorithm with 
iDistance works for a data space with three types of partitions. 
The data space is partitioned into three clusters (C0, C1, C2) 
and each cluster has a reference point (O0, O1, O2). The first 
partition, C0, contains the query point, q. The second partition, 
C1, has no intersection with the query region for search radius 
r0 but intersects the query region when the search radius is 
increased to r1. The third partition, C2, does not intersect the 
query region. A k-NN search in iDistance can shorten the 
calculation time, because only partitions that intersect the 
query region are included. Figure 11(b) shows rules that decide 
the search space. Rule 1 decides which partitions intersect the 
query region and Rule 2 decides which partition contains the 
query point.

figure 12.  average estimation error.
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5. reSultS
We conducted an experiment to demonstrate the efficiency 

of our algorithm using ballistic trajectories simulated by 
commercial software (PRODAS). The 1,366 trajectories were 
divided into 2,188,591 sub-trajectories. We assume that radar 
system senses the position of object at interval of 0.1 s during    
3 s. Therefore, each trajectory was represented by 90-dimension 
variables (3D × 30).  When a sub-trajectory was selected as test 

figure 13.  estimation accuracy by tolerance.
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When the tolerance is 50 m, 20 m, or 10 m, the accuracy is 
about 100%, 90%, or 80%, respectively. Finally, Figure 14 
shows histograms of accuracy versus k for different estimation 
error ranges. The two-phase k-NN estimation performs most 
accurately when k is 30.

Second, to examine the efficiency of iDistance for a k-NN 
trajectory search, we compared the k-NN response time of the 
full search with that of the iDistance search and checked for 
agreement of the k-NN answer sets. We partitioned the data 
space into 4,096 clusters by Kmeans clustering and used ∆r = 10 
as the default. Figure 15 shows the 30-NN response times of 
the full search and the iDistance search. The average response 
times of the iDistance and full searches were 21.7267 ms and 
12.188 s, respectively. Hence, combining k-NN with iDistance 
shortens the calculation time by a factor of roughly 560. 

figure 14. histogram of two-phase k-NN estimation error 
ranges.

figure 15. response times of full search and idistance search.

6. coNcluSIoN
Authors proposed a novel parameterless data-based 

estimation approach for ballistic trajectory launch points. The 
proposed approach uses a simplified trajectory database and 
k-NN estimation. Its average estimation error is definitely 
smaller than the baseline. Moreover, its performance is robust 
to changes in k, once k reaches a certain size. Thus, this 
algorithm overcomes the greatest difficulty of selecting k in 
k-NN estimation. under an ordinary tolerance, the proposed 
search algorithm yields almost perfect accuracy. Because 
we carried out this study with assumed sensing data, we 
experimented under tolerances much tighter than real operating 
conditions and we inferred that the accuracy of our algorithm is 
at least 80%. As ballistic sub-trajectories are high-dimensional 
correlated data, we used a k-NN search with iDistance to reduce 
the time complexity. The average response time was decreased 
by more than 22 ms. Our ballistic trajectory launch point 
estimation approach is highly useful for real-time processes of 
field artillery, because it offers good performance in terms of 
both accuracy and speed.
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