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1.	 Introduction
In recent times, intelligent textiles have been a topic of 

vast interest to academic field as well as industrial field. Smart 
textile or intelligent clothes are defined as the textiles which 
sense and react to environmental conditions or stimuli from 
mechanical, thermal, chemical, electrical, or magnetic sources. 
New fiber techniques, functional fabrics, smart materials, 
advanced microelectronics and artificial intelligence technology 
together with biosensor and conducting fabrics have enabled 
the implementation of usable intelligent clothes.

Performance of defence personnel much depends 
on the comfort, mobility and protection provided by the 
particular textile material. Defence personnel clothing became 
extremely complex due to unprecedented threats by ballistics, 
chemical biological, thermal and hazardous environment.  
Protective clothing for defence personnel should have unique 
characteristics to perform under diverse hostile conditions and 
wide range of threats. In the future, soldier’s clothing will be 
capable of recording, analysing, storing, sending and displaying 
data, and also be able to provide protection of the individual 
combatant, whilst maintaining full operational effectiveness. 
It can be used for protection in a wide array of environmental 
conditions including chemical/biological, ballistics, noise and 
visual enhancing devices, insects and micro organisms in all-
weather conditions.

 In this paper, the advances in energy harvesting textiles, 
controlled release textiles and engineering textiles are 
presented. After reviewing details of recent developments in 
these textiles, the possibility of incorporating these materials 
in the defence clothing has been studied.

2.	 Energy harvesting Textiles
2.1	 Piezoelectric Fibers

Modern military devices such as sensors, actuators, 
communication devices and sighting system rely heavily on 
electrical energy. This energy is provided by means of batteries, 
which add extra weight to the soldiers which in turn affect their 
mobility. To overcome this problem, piezoelectric devices, 
super capacitors, solar cells, lithium ion batteries and other 
energy harvesting devices can be directly incorporated into 
the uniform of the soldiers. In this review we will primarily 
discuss the advancement in piezoelectric devices and super 
capacitors.     

Piezoelectric devices are devices which are able to 
convert mechanical work into electrical energy and vice versa. 
In the field of polymers, poly (vinylidene fluoride) (PVDF) 
was the first discovered piezoelectric polymer material1. PVDF 
consists of four phases, among which β-phase showed strong 
piezoelectric effect. So, numerous efforts have been carried out 
to form β-phase content in PVDF by incorporating clay2, carbon 
nano tube3, mechanical stretching4 and electrospinning5. A 
comparative study on electrospun PVDF blend fiber with polar 
matrix (poly acrylonitrile) and non polar matrix (polysulfone) 
and also studied the synergistic effect of electrical poling, 
mechanical stretching, and dipolar interaction on the β-phase 
formation6. In their study, it has been observed that PVDF with 
polysulfone is not able to persist its ferroelectric properties 
after removal of mechanical stretching by melt recrystallization 
process. By dip coating method, solid piezoelectric film 
consisting of PVDF, acetylene black and BaTiO3

7. But when 
compared to the solid piezoelectric film, porous piezoelectric 
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polymeric membrane can be a prominent candidate in 
applications like hydrophone devices and power sources for 
wearable electronic devices. In addition, He2, et al. developed 
porous poly (vinylidene fluoride-trifluoroethylene) copolymer 
membrane by electrospinning and further hot pressing8. Results 
showed very high value of dielectric constant (d33 = 24.7) when 
compared to electrospinning, due to tight contact between the 
fibers in hot pressing.

Lead zirconate titanate (PZT) is another promising 
piezoelectric material because of its high electromechanical 
coupling coefficient, high dielectric constant and high 
piezoelectric response. Dharmaraj9, et al. fabricated lead 
zirconate titanate fiber, diameter ranging from 200-300nm.  
Xu10 et al. investigated mechanical properties of individually 
electrospun PZT nano fiber and it showed elastic modulus of 
42.99 Gpa. Lead is toxic to our environment so great effort 
has been put to develop synthetic lead free piezoelectric 
material. In this regard, vanadium doped ZnO nano fiber is 
fabricated by electrospinning technique.  Liao11, et al. prepared 
Bi3.15Nd0.85Ti3O12 nano fiber by sol-gel and electrospinning 
technique.

Mimura12, et al. fabricated barium titanate (BaTiO3) 
nanoparticle/poly (2-hydroxyethl methacrylate) (PHEMA) 
hybrid from in-situ synthesized BaTiO3/polymer hybrid 
nanofibers by electrospinning technique12. The effective d33 
value was observed as 6.7 pm/V for hybrid nanofiber with 20% 
PHEMA in their study. Further increase in PHEMA content 
indicated reduction in effective d33 value.

Recently, phase change materials have attracted great 
interest for the thermal energy storage. Fatty acids acquired 
considerable attention as a promising candidate for phase 
change materials (PCM) due to its non-toxicity, high capacity of 
latent heat and good thermal and chemical stability.  But PCMs 
have problem of encapsulation which increase its operating 
costs. To overcome this limitation, different polymer matrices 
such as polymethylmethacrylate, polyethylene oxide13 have 
been investigated to support PCMs. Chen14, et al. prepared 
polyethylene glycol (PEG)/cellulose acetate (CA) composite 

fiber by electrospinning process. In their study, PEG was used 
as PCMs and CA as supporting polymer matrix. 

2.2	S olar Energy
Solar energy is another topic which is being extensively 

studied in recent years as fossil and mineral energy resources 
are approaching inevitable exhaustion. Device which converts 
solar energy directly into electrical energy through photovoltaic 
effect is called a solar cell. Dye sensitized solar cells are the 
new class of thin film solar cells, in which a dye sensitized 
n-type semiconductor oxide film is deposited on a transparent 
conducting glass substrate which is called working electrode or 
photo anode. A platinum coated glass substrate placed parallel 
to photo anode, acts as counter electrode15 as shown in Fig. 1.

   For the fabrication of electrode by the use 1D nanowires, 
nanobelts, nanofibers and nanotubes for DSSCs application, 
different techniques such as metal organic chemical vapour 
deposition16, hydrothermal synthesis17, vapour transport18, 
and electrospinning19 have been reported. Among them, 
electrospinning is proved to be the most effective and versatile 
technique, but lack of adhesion of electrospun fibre on fluorine 
doped tin oxide (FTO) substrate limits its application in DSSCs. 
To improve the adhesion of electrospun fiber on FTO substrate, 
Sining Yu20, et al. employed seed layer before the deposition 
of Al doped ZnO composite nanofibre on FTO substrate. There 
was great improvement in total energy conversion efficiency 
of 0.54% - 0.55% after seed layer treatment of the FTO as 
compared to substrate without seed layer treatment. Francis21, 
et al. fabricated rutile TiO2 nanofibers/rods by electrospinning 
followed by sintering and hot pressing. Result showed energy 
conversion efficiency of 4.17% - 4.56% for TiO2 nanorods and 
1.51% - 1.76% for TiO2 nano fibers. To avoid hot press pre-
treatment in the formation of nano fibers upon sintering, Nair22, 
et al. proposed simple method for the efficient TiO2 nano fiber 
based DSSCs. TiO2 nano fibers were fabricated to nano rods and 
mixed with polyester, after sonication, pachini type paste was 
formed. After polymer evaporation, a highly porous and dense  
film of nano rods is produced on the FTO substrate. Resultant nano 
rods showed energy conversion efficiency of 4.20 per cent.

Figure 1.  Outline of a dye sensitized solar cell15.
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3.	C ontrolled Release Textiles
Most textile materials currently used in military are 

vulnerable to diseases caused by microorganisms. These 
infections are mainly caused by Gram positive Staphylococcus 
aureus (S. aureus), Bacillus subtilis (B. subtilis), and Gram 
negative Pseudomonas aeruginosa (P. aeruginosa) and 
Escherichia coli (E. coli). To avoid infections, antimicrobial 
properties can be imparted to textile material by incorporating 
functional agents on to fibers and fabrics. Usually, drug 
loading into textile material can be achieved by incorporating 
drug during the preparation of the textile material or after the 
formation of it by incubating the drug with them. 

Silver ions have long been known to exhibit strong 
inhibitory and antibacterial activity. Fu Chu Yang23, et al. 
studied antibacterial properties of bamboo charcoal supported 
silver (BC/Ag) and titanium dioxide supported silver fabric 
(TiO2/Ag) by activation and chemical reduction. Obtained 
results in their study demonstrated, killing of 100% Gram-
positive S-aureus strain after 1 h of incubation by non woven 
blank reacted with BC/Ag while non woven blank reacted 
with TiO2/Ag showed same result after 2 h of incubation. Cyril 
Ringot24, et al. elaborated a new antibacterial material by 
grafting mesoerylpophyrin on cotton fabric by the means of 
cellulose azidation followed by click chemistry reaction with 
acetylenic porphyrin and result showed final number of E.coli 
and S. aureus accounts for only 20% of the original count 
after 24 h of incubation. It is hypothesized that incorporating 
antibacterial agent directly into spin dopes, leads to low 
antibacterial efficacy. Introducing antibacterial functionality 
onto nanofiber surface after the nanofibers were produced is 
potential solution to overcome this problem. Lifeng Zhang25, 
et al. prepared PAN nano fibrous membrane by electrospinning 
and treated nanofibrous membrane with hydroxylamine 
aqueous solution to form amidoxime nano fibrous membrane, 
which was coordinated with Ag+ ion. Subsequently the 
coordinated Ag+ ions were converted into silver nano particle. 
They have demonstrated that coordinated membrane with Ag+ 

and with silver nano particle exhibit excellent antibacterial 
property against S. aureus and E. coli and capable of killing 
tested microorganisms in 30 min. In addition, Pant26, et al. 
successfully embedded silver nano particles in electrospun 
TiO2/nylon-6 composite nano fiber through the photocatalytic 
reduction of silver nitrate solution under UV-light irradiation. 

Recently, researchers have extensively focused on 
chitosan because of its favourable physicochemical and 
biological properties such as biocompatibility, non toxicity 
and antibacterial property. Drug release for chitosan system 
follows three mechanisms 
(a)	 drug release from the surface 
(b)	 drug release due to surface erosion 
(c)	 diffusion through the swollen matrix. 

Mechanism of drug release from the surface indicates that 
adsorbed drug dissolves on contact with the release medium. 
Release due to surface erosion also follows drug release 
mechanism. Diffusion mechanism takes place in three step 
(a)	 release system absorbs water
(b)	 matrix swells and become rubbery 
(c)	 diffusion of drug through swollen matrix27. 

Ritger and Peppas proposed an empirical  (1), Mt/M∞= ktn 
for diffusion controlled matrix, in which early release data is 
used to obtain the diffusion parameter28. Where Mt/M∞ is the 
fractional drug release at time t, k is a constant characteristic 
of the drug-polymer interaction and n is an empirical  
parameter of drug release mechanism or diffusion exponent.

Figure 2.  (a) Chitin (b) chemical structure of chitosan27.

Figure 3.	O ptical images agar plate showing zones of inhibition 
after 12 h of incubation for (a) E. coli and (b) B. 
subtilis29.

To study the antibacterial property of copper nano particle, 
Sheikh29, et al. fabricated polyurethane nanofibers containing 
copper nano particle and studied the anti bacterial property 
against E. coli and B. subtilis. Figure 3 showed clear inhibition 
zone for 12 h of incubation in their study.

The treatment of wounds restores integrity of the 
injured tissues and prevents organisms from deregulation of 
homeostasis. An ideal dressing aimed to maintain a moist 
environment at the wound interface, allow gaseous exchange, 
act as a barrier to microorganisms and remove excess exudates. 
It should be non-toxic, non-allergic, non-adherent and easily 
removable without trauma. Schematic presentation of required 
properties of a wound dressing material30 has been shown in 
Fig. 4.

In this regard, Shalumon31, et al. developed sodium  
alginate and PVA composite nano fiber mat through 
electrospinning technique, by incorporating ZnO nano particles 
with different concentration of 0.5%, 1.0%, 2.0%, and 5.0%. 
Results showed, among the entire nano fibrous mats, 0.5% ZnO 
containing mat exhibited best cyto-compatibility for wound 
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dressing. The properties of alginate can be tuned by changing 
chemical composition and molecular weight of polymer. 

Each kind of drug has its own biological half life and is 
effective only when their concentrations in the blood are above 
their minimum effective level. Increasing dose of the drug 
will turn itself into the toxic response region, whereas, having 
selected dose of drug during a period of time is not convenient 
for the patient. So controlled drug release has become a 
prerequisite to achieve therapeutic efficacy and avoid adverse 
side effect over conventional drug dosage forms. Recently 
many researchers have been investigating many controlled 
drug release systems such as films, micelle, hydrogel, and 
microparticles. Li32, et al. generated core-sheath nanofibers 
containing poly (ɛ-caprolactone) (PCL) and silk fibro into 
study controlled drug release. They have conducted in vitro 
fluorescein isothiocynate (FITC) release study to evaluate 
sustain release potential of core-sheath nanofibers. Long time 
release study32 showed in Fig. 5. The core-sheath fiber had 
continuous release kinetics (62.2±4.2 % within 80 h) of FITC 
compared to pure PCL (49±1.8 % within 80 h). 

4.	 Engineering fabrics:
Performance of military personnel can be improved by 

controlling environmental conditions. These conditions can be 
tailored by providing them such dresses which is waterproof, 
flame retardant, chemically protected, thermally insulated, 
and embedded with sensors and electromagnetic shielding 
materials. In this section we primarily discuss the advancement 
in superhydrophobic fabrics, temperature adaptable fabrics, 
flame retardant fabrics, fabrics for body armour and fabrics 
embedded with sensors.

4.1	S uper Hydrophobic Surfaces 
In recent years research groups have focused extensively 

on superhydrophobic surfaces with the contact angle (CA) of 
150o for the application in protective coating, self cleaning 
surfaces, anti-icing/anti-snowing and micro fluidic systems. 
Some superhydrophobic surfaces are available in nature which 
can cause water and even oil to roll-off leaving little or no 
residue and carry away all the surface contaminations. Lotus 
leaf is the best known example of self cleaning surface. The 
SEM images of lotus leaf33-34 have been shown in Fig. 6.

Figure 4.	R epresentation of required properties of wound 
dressing material30.

Figure 5.	L ong term release behaviour of FITC from electrospun 
PCL and core sheath nano fibrous scaffolds32.

Figure 6.	 SEM images of lotus leaf with low and high magnification respectively33-34.
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To realize superhydrophobicity from various substrates, 
many elegant methods such as wet chemical reaction35, 
hydrothermal reaction36, electrochemical deposition37, layer-
by-layer38, chemical vapour deposition39, and polymerization 
reaction40 have been employed. For instance, Ci41, et al. 
developed vertically aligned large diameter double walled 
carbon nanotube arrays. Results showed that when thickness 
of catalyst Fe was fixed about 3 nm by water-assisted chemical 
vapour deposition process then obtained surface exhibited 
water CA of 170°. 

Ogawa42, et al. developed superhydrophobic membrane 
surfaces through electrostatic deposition of a rough layer-
by-layer coating on electrospun cellulose acetate nanofibrous 
membrane and then modified the surface by fluoroalkylsilane 
(FAS). In this study they were able to achieve water contact 
angle (CA) of about 140°. Further, Lifang Wang43, et al. 
developed superhydrophobic thermoplastic polyurethanes 
(TPU) mat modified with hydrophobic nanosilicas by solution 
immersion route. The electrospun TPU mat exhibited improved 
hydrophobicity with the contact angle of 139.2° compared with 
flat TPU mat prepared through spin coating (CA is about 74°). 

A durable superhydrophobic surface has been developed 
by Wang44, et al. In their study super hydrophobic surface 
was obtained by electrospinning PVDF, mixed with epoxy-
siloxane modified SiO2 nanoparticles. SiO2 nanoparticles were 
introduced into PVDF precursor solution to obtain rough 
surface and achieved contact angle was 161.2°.

4.2	T hermal Resistant and Phase Changing 
Material
Defence personnel are exposed to various thermal 

environments, from which their body needs protection. For 
efficient protection of the body, protective clothing requires 
balance between different properties such as, thermal 
resistance, hygroscopicity, water transfer, water vapour (WP) 
permeability, control of dynamic temperature and moisture 
in the clothing skin microclimate.  To maintain constant 
temperature of the body is essential to homeostasis, because 
most enzymes are sensitive to temperature and function only 
in narrow temperature range. In hot conditions, heat must be 
continuously dissipated and regulated to maintain normal body 
temperature. Therefore, thermal protective clothing is needed 
to protect defence personnel against climatic influences. In this 
regard BO-an Ying45, et al. analysed the physical mechanisms 
of heat and moisture transfer through textiles with phase change 
materials (PCM) and studied thermal regulating capability, 
thermal psychosensor intensity (TPI) and static thermal 
insulation performance of textile45.  Results were demonstrated 
that there was no change in thermal regulating capability with 
the change in PCM level while heat flux transfer and TPI were 
increased with increase in PCM level.

Polyimide (PI) is now a widely used material in high 
temperature application because of its excellent fire retardation 
and outstanding thermal stability. Porphyrin rings, rare earth 
compounds and hemicyanine dye46-47 was introduced to PI 
matrix for enhancing its properties. Interaction between organic 
and inorganic phases can be obtained by two methods either by 
physical blending48 or by chemical reaction49. 

Cheng50, et al. prepared PI/europium nanofiber 
electrospinning. Chemical coupling sites between PI and 
europium was directly introduced by the simultaneous 
formation of europium gel and imidization of polyamic acid 
(PAA).  Similarly, Im51, et al. fabricated polyurethane fibers 
using electrospinning process with aluminium hydroxide and 
multi-walled carbon nano tubes as flame retardant additives 
for enhancing its thermal oxidation stability. In this study, 
multi walled carbon nano tubes (MWCNTs) were modified by 
oxyfluorination to improve its dispersivity in the polyurethane 
fibers and aluminium hydroxide were used as energy storage 
tank. Figure 7 exhibited sharp peak due to incorporated 
aluminium hydroxide additives.

4.3	A rmour Design
Armour materials52 are used to provide protection against   

ballistics as well as fragments of ballistics and armour itself. 
Energy required for projectile to penetrate is a function of 
specific modulus, density, tenacity, specific tenacity and 
extension to break. Basic body armour includes ballistic 
vest and plate which provide protection against bullet and 
fragmentation above the velocities of 244 m/s. Development 
of armour materials involved history from raw steel, alloys 
to the high performance fibers like aramid fibers, ultra high 
molecular weight polyethylene fibers, liquid crystal polymer 
matrix fibers and so on53. But the most marketed body armour 
materials are Kevlar®, Spectra®, Dyneema® and Zylon® , in 
which Kevlar was the first concealable body armour developed 
by DuPont54-55.

Recently research groups are emphasising on the 
development of new armour layering concept. This layering 
concept based on the combination of four layers which consists 
very hard 1st layer to deform and fracture the projectile, 2nd 
layer to slow down the shock wave propagation, a 3rd porous 
layer to absorb the shock and 4th layer to provide restriction to 
the porous medium as shown in Fig. 8. Based on this concept, 
Ong56, et al. developed composite plates comprising alumina 
ceramics as 1st layer, Dyneema® HB25 as 2nd layer, porous 
polyurethane as 3rd layer and this porous layer was confined by 
aluminium. Live firing result showed 24 % reduction in target 
deformation against projectile velocity of 475 m/s.

  Feli57 et al. investigated finite element analysis of the 
ballistic perforation of ceramic/composite target in which 

Figure 7.	DSC  curve of electrospun PU fibers containing 
MWCNTs and aluminium hydroxide51.
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ceramic was made of 99.5 % of alumina and back up plate 
of ceramic was composed of Tawron fibers of 50 layers with 
0.4mm thickness. In their study, brittle failure, effect of high 
pressure, high strain rate and large deformation was considered 
to describe the fragmentation of ceramic plate under high 
velocity impact by using Johnson-Holmquist continuum based 
plasticity model. Carrilo58, et al. studied the ballistic behaviour 
of multi layer aramid  fiber/polypropylene (PP) composites 
laminates and compared with the multi layered aramid fiber 
without PP which is shown in Fig. 9. The contribution of PP 
matrix to the system ballistic resistance was also discussed.

the defence personnel, development in textile technologies and 
fabrics will be able to enhance battle uniforms, suits, ballistic 
protection systems and survivability of the army personnel. 
Smart fabrics will help to develop lightweight and high durable 
fabrics with very high strength simultaneously these fabrics 
will be embedded with antibacterial additives, small and 
massive storage devices, microprocessors, super capacitors, 
high resolution displays and water purifiers etc. These advanced 
technologies enable army personnel in striking improvement 
in the battlefield. 

Smart textiles include interdisciplinary research areas 
like materials research, sensor technologies, engineering, 
electronics, computer applications, biosciences and etc. This 
topic covered a large range of applications starting from very 
specialized application of the generally available products. 
So with the current pace of development in smart textile will 
form a ubiquitous part of defence lifestyle. Their clothing will 
become contextually aware and will be able to adjust to the 
change in the environment. 
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Figure 8. Graphical illustration of armour layering concept56.
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Result exhibited that three layer aramide fiber with PP 
matrix was able to clear all tests compared to plain layered 
aramide fiber. Result also showed that increment in permanent 
deformation for both the configuration was the function of 
number of layer before the projectile was stopped.

5.	C onclusions
Development of smart textiles may affect many aspects 

of defence personals lives. New materials integrating novel 
technologies enables smart fabrics to retain its necessary 
wearable and flexible characteristics, which we expect from 
our daily clothing. By integrating these technologies to the 
fabrics will also improve its mechanical, thermal and electrical 
properties. The major problem in wearing computing, sensors, 
actuators, biomedical garments and etc is the durability, 
flexibility and washing cycles for a long period of time. For 
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