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1.	 Introduction
Multiple-input Multiple-output (MIMO) systems have 

the potential to dramatically improve the performance of radar 
systems over single antenna systems. The MlMO extensions 
to radar have been introduced in 20031. The notion of MIMO 
radar is that there are multiple radiating & receiving sites 
and the collected information is processed together. MIMO 
radars can be considered as a generalization of multistatic 
radar concepts. Figure 1 shows the basic structure of MIMO 
radar. Recognizing the connection between MIMO wireless 
communication and MIMO radar could help motivate new 
radar concepts. Some traditional radar examples that could be 
described within MlMO context are synthetic-aperture radar 
(SAR) and fully polarimetric radar. 

The MIMO radar is introduced as a concept2 that 
capitalizes on the radar cross section (RCS) scintillations with 

respect to the target aspect in order to improve the radar’s 
performance. Establishing the direction of the received signal 
in order to locate the target, known as direction finding (DF), 
is one of the important tasks of MIMO radar. The MIMO 
mode of multifunction digital array radars (DARs)3  are well-
suited to functions involving broad searches. The MIMO radar 
processing techniques that utilize multiple space-time coded 
waveforms with multiple receive phase centers improves the 
surveillance performance4.

The MIMO radar offers diversity gain in improving the 
detection/estimation performance5, and spatial resolution gain 
in enhancing the resolution performance6. The performance 
of MIMO radar in detecting slow moving target is illustrated 
by an application to airborne ground moving-target indication 
(GMTI) radar7. The potential resolution improvement of MIMO 
radar is related to an increase in the virtual array size. Adaptive 
techniques are known to have much better resolution and 
interference rejection capability than their data-independent 
counterparts. MIMO radar makes it possible to use adaptive 
localization and detection techniques directly, unlike phased-
array radar8-10. The combination of the longer illumination 
and the larger aperture of the MIMO radar provides for the 
possibility of improved minimum detectable velocity for 
GMTI systems. The self-interference mitigation property of 
MIMO radar makes it applicable in medical field also11. 

Fundamentally, there are two basic categories of MIMO 
radar according to the antenna configuration12 namely bistatic 
MIMO radar13 and colocated MIMO radar14. Bistatic MIMO 
radar uses transmit antennas separated far from each other. 
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Figure 1. Illustration of basic MIMO radar.
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Given differences in observing angles on a particular target, 
the spatial transmit diversity gain can be obtained. According 
to their receive antennas, this class can be further divided 
into two kinds of configurations. The first kind is with the 
conventional receive array, like the phased array, performs 
direction finding15. This is called mixed MIMO setup16. The 
second is with the widely-separated antennas, leading to the 
spatial receive diversity gain. In this case, improved parameter 
identifiability and estimation accuracy can be obtained. This 
configuration is known as statistical MIMO. In co-located 
MIMO radar, the transmit antennas are closely spaced such 
that the RCS observed by the transmitting antenna elements 
are identical. Radars in this class usually transmit spatially 
orthogonal signals to achieve the spatial diversity gain, leading 
to significantly improved detection performance including 
virtual aperture extension, spatial coverage extension, beam 
pattern improvement and increase of the limit on the number 
of targets, compared with its phased array counterparts. 

MIMO radar is suited for applications related to static 
and moving-target detection. MIMO radar outperforms the 
single-input multiple-output (SIMO) phased array radar in the 
Neyman-Pearson sense17 for probabilities of detection greater 
than 0.8. The number of targets that can be uniquely identified 
by the radar is one of the basic aspects of MIMO radar called 
as parameter identifiability. The waveform diversity offered by 
MIMO radar enables a much improved parameter identifiability 
and it is observed that the maximum number of targets that 
could be identified by the MIMO radar set-up is M times that of 
its phased-array counterpart, where M is the number of transmit 
antennas18. Non parametric adaptive techniques like Capon, 
amplitude and phase estimation (APES), Capon and APES 
(CAPES) and capon and approximate maximum likelihood 
(CAML) and parametric techniques like maximum-likelihood 
(ML), Bayesian information criterion (BIC), approximate 
cyclic optimization (ACO) and exact cyclic optimization 
(ECO) for parameter estimation are applied to MIMO radar12. 
Tabrikian19,20 has derived the Cramer-Rao bound (CRB) and 
the Barankin bound for target localization. It is shown that 
the orthogonal signals have better performance compared to 
coherent signals. For static MIMO radar angular estimation 
Cramer-Rao bound has been described21-23.

For skywave HF over-the-horizon radar (OTHR), MIMO 
space time adaptive processing (STAP) is presented with 
the goal of mitigating radar clutter24. Novel forms of MIMO 
radar system like spatial MIMO system, coherent netter radar 
(NR) system, rephased coherent netted radar (RPNR) and 
decentralized radar network (DRN) have been examined25. 
The processing approaches exhibit considerable variability in 
performance with respect to False alarm rate (FAR), detection, 
jamming tolerance and coverage. Space-time coding (STC) is 
recognized as the key ingredient to achieve full diversity, and 
design criteria for both the transmitter and the receiver26,27 of 
the MIMO radar. 

The MIMO radar system can choose freely the probing 
signals transmitted via its antennas. But standard phased-array 
radar transmits scaled versions of a single waveform. Hence 
waveform design is a critical component that determines 
the MIMO radar performance. Radar can employ different 

waveforms so that the performance does not degrade in the 
presence of different environments of targets28. In the last few 
years, research in the area of MIMO radar waveform design 
experienced an expansion. 

This paper provides an overview of research, development, 
and the application of various computational methods for 
MIMO radar waveform design, based on an extensive number 
of published papers. 

2.	Si gnal Model
The signal model for different MIMO configurations is 

discussed in this section. Consider a MIMO radar system with 
M transmits antennas and N receive antennas. Let the discrete-
time base-band signal transmitted by the mth antenna be xm(k). 
Let θ denote the location parameter of a generic target, for 
example, its azimuth angle and its range. The transmitted 
signal vector from all M transmit antennas and the transmitter 
steering vector are given by29, 

( ) ( ) ( ) ( )1 2, ,...,
T

Mk x k x k x k=   x  and

( ) ( ) ( ) ( )0 1 0 2 02 2 2, ,..., M
Tj f j f j fa e e e− π τ θ − π τ θ − π τ θ θ =  

Under the assumption that the transmitted probing signals 
are narrow-band and that the propagation is nondispersive, the 
base-band signal at the target location can be described by the 
expression 

( ) ( ) ( ) ( )02 *

1

,
M

j f m
m

m

e x k k− π τ θ

=

= θ∑ a x   1, 2,...,k K=              
(1)

where, 0f  is the carrier frequency of the radar, mτ  is the time 
taken by the signal emitted via the mth transmit antenna to arrive 
at the target, ( )*

•  denotes the conjugate transpose, K denotes 
the number of samples of each transmitted signal pulse. 

2.1	C olocated MIMO Radar
Data collected by MIMO radar with identically located 

transmit and receive antennas under the simplifying assumption 
of point targets can be described by the equation29

( ) ( ) ( ) ( ) ( )*cy k k k= b θ θ +a a x n 	                        
(2)

where b  is the complex amplitudes proportional to the radar-
cross section, n(k) denotes the interference-plus-noise term, 
(•)c  and denotes the complex conjugate.

The received signal for separately located transmit and 
receive antennas30

( ) ( ) ( ) ( ) ( )*
T Rt t t= b θ θ +y a x a n 		          (3)

where ( )T θa  and ( )R θa  are the actual transmit and actual 
receive steering vectors associated with θ , x(t) refers to the 
waveform vector ( ) ( ) ( )1 ,...

T

Mt x t x t=   x and t is the time 
index. The returns due to the mth transmitted waveform can be 
recovered by match filtering the received data to x(t) as,

( ) ( )
0

*
m m

T

y y t x t dt= ∫
After matched filtering the received data with each 

transmitted waveform, the M N*1 virtual data vector can be 
written as, 

( ) ( )T R= b θ ⊗ θ +y a a n 	      	                        (4)
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where ⊗  is the kronecker product and n accounts for the noise 
component.

2.2	S tatistical MIMO Radar
The received signal for a widely separated transmit and 

receive antennas with extended target assumption31,

( ) ( ) ( )
1

,
M

n in i n
i

y k h s k k
=

= + x∑
 

1, 2,...,k K=
                    

(5)

where yn(k) is the received waveform at the nth receive at the 
kth time instant. The target is assumed to be point-like between 
each pair of transmit and receive antennas and hin is the target 
impulse response from the ith transmit antenna to the nth receive 
antenna. Collecting the received waveforms from all the N 
receive elements, the received signal in matrix form can be 
written as, 

Y = SH+x		                                                      (6)
where 1 2, ,...,T T T

N=   Y y y y is Gaussian distributed with zero 
mean and covariance ( )2H

kx+ σsrs I  and yn is the received 
signal at the nth receive element obtained by stacking the 
K samples for an observation time of  T seconds in a row is  
given by T T

n n n= + xy h s . The transmitted signal 
S = [s(1),s(2),...,s(K)]T where ( ) ( ) ( ) ( )1 2, ,...,

T

Mk s k s k s k=   s

The columns of [ ]1 2, ,... N=h h h h  are independent and 
identically distributed (i.i.d.) with distribution CN(0, RH) where 

[ ]1 2, ,..., T

n n n Mnh h h=h . The columns of 1 2, ,...,T T T
Nx = x x x    are 

i.i.d. with zero mean and covariance matrix 2
kxσ I . 

3.	Ta rget Model
Radar transmits a well-defined, controlled signal. But 

the signal measured at the receiver output is superposition of 
different components like target, clutter, noise and jamming. 
When the electromagnetic wave is incident upon the point 
target some of the incident power is reradiated toward the radar. 
The reradiated power is a function of RCS which refers to an 
effective area that intercepts the transmitted radar power and 
then scatters that power isotropically back to the radar receiver. 
Several authors have considered various models for target 
reflection in MIMO radar systems. Targets are often modeled as 
point scatterers28. This is applicable for closely spaced sensors 
and for the case having large range between target and the 
array. However, as the resolution of radar systems increases, a 
better model is that of an extended target5 or distributed source 
model which is spread in range, azimuth, and Doppler. In 
statistical MIMO radar, the spacing between the array elements 
is large. Due to the target’s complex shape and the distance 
between the array elements, every element observes a different 
aspect of the target. Therefore, the point source model is not 
adequate for describing the received signal in statistical MIMO 
radar, and a more detailed model must be developed. The target 
model can be deterministic or statistical32: the former assumes 
that the target characteristics are fixed and known (possibly up 
to some unknown parameters which can be estimated), while 
the latter treats the target as a random variable and attempts 
to characterize its statistics. Similarly, different models can be 
used for the interference environment like clutter, jamming and 
noise33,34. 

4.	 MIMO Radar Waveform Design 
Approaches
In general there are two views of waveform design12. In the 

first view, the design of the signal waveform matrix is considered. 
In the second view, the details of the waveform matrix are not 
considered directly. Rather, only the intertransmitter signal 
correlation matrix is optimized. Given the correlation matrix, 
the problem becomes that of determining a signal waveform 
matrix. 

MIMO radar waveform design takes into account 
numerous performance parameters and technical constraints. 
The performance measures include the mean square error 
(MSE) in estimating the target impulse response, normalized 
MSE (NMSE), the mutual information (MI) between the 
received signal and the target impulse response and signal to 
interference noise ratio (SINR). Sum power constraint, uniform 
elemental power constraint, average power ratio constraint, 
constant energy constraint, structure constraint, semi-definite 
rank constraint and norm constraint are the technical constraints 
used for waveform design. The research in the relevant literature 
deals with each one of these parameters separately, or concerns 
the overall waveform optimization. Radar waveforms are 
designed either to optimize target detection or to extract target 
information when the radar targets are modeled as extended 
target35. 

4.1 Information Theory Based Approaches
Among the criterions for waveform optimization, 

information theoretic criterion plays an important part and has 
been proposed for radar waveform design for many years. The 
application of information theory to radar can be traced to the 
early 1950s by Woodward and Davies when they examined the 
use of information-theoretic principles to obtain a posteriori 
radar receiver36. But the connection between information theory 
and radar waveform design26 was given by Bell in 1993. 

Yang and Blum37 considered waveform design for MIMO 
radar problem in terms of both information theoretic and 
estimation theoretic criteria under the total transmit power 
constraint. In information theoretic point of view the waveform 
is designed to maximize the mutual information (MI) between 
the random target impulse response and the reflected waveforms 
given the knowledge of transmitted waveforms. 

Waveform design with white noise37 is extended to include 
colored noise31. Maximizing the relative entropy is used as a 
measure for waveform design and it is observed that larger 
relative entropy results in better detection performance. It has 
been shown in this paper that to maximize the MI and relative 
entropy, the optimal waveform should ‘match’ with the target 
and colored noise. It is also shown that the power allocation 
methods for the singular values of the optimal transmitted 
waveform for maximizing the MI and relative entropy are 
different from each other. 

4.2	E stimation Theory Based Approaches
Minimizing MSE or NMSE in estimating the target 

impulse response is the criteria in estimation theoretic view 
point. MI, MMSE and NMSE criteria are used for waveform 
design with colored noise in a mixed MIMO set up16. The co-
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located antennas in the receiver allow combining the received 
signals coherently to obtain a processing gain of N, where N 
is the number of receive antennas. The results show that the 
equivalence between the MI and MMSE criteria does not hold 
when the noise is colored. For the case of statistical MIMO 
radar with widely separated transmit and receive antennas 
it is observed that to obtain minimum MMSE/NMSE the 
eigenvectors of target and noise should be carefully paired38. 

4.3	O ther Waveform Design Concepts
A procedure to design the optimal waveform which 

maximizes the signal-to-interference plus-noise ratio (SINR) 
at the output of the detector using gradient descent algorithm, 
given the knowledge of target and clutter statistics is developed 
for co-located MIMO radar39. These waveforms take on 
arbitrary shapes and so while optimizing the specified criterion, 
they are not guaranteed to have good temporal characteristics 
nor good spatial characteristics. But if space-time constraints 
are imposed on the transmitted waveforms it would provide 
better control of the spatial and temporal characteristics of the 
radar illumination40. 

Signal design for MIMO radar could be illustrated 
under five other groups, viz., adaptive waveform design41-

45, beamforming29,30,46-52, waveform synthesis53-56, waveform 
optimization21, 23, 57-60, and code design61-63. 

5.	 Waveform Design and Power 
Allocation
It is observed that to extract information about the target, 

it might be advantageous to distribute the available energy 
among the various modes of the extended target35. Viewing the 
characteristics of these waveforms in terms of the distribution of 
energy among target scattering modes gives both physical and 
information-theoretic insights into the design and performance 
of these waveforms. Most of the waveform design problems 
take into account only the total transmitted power.

If the waveform design takes into account only the total 
transmitted power the resulting waveforms, while optimizing 
the specified criterion, are not guaranteed to have good 
temporal or spatial characteristics. So space time constraints 
are introduced in the waveform design40. 

5.1	S um Power Constraint Based Approaches
In most of the approaches the power is allocated to transmit 

antennas based on the sum power constraint at the transmitter. 

Mutual Information
Consider a MIMO radar equipped with M transmitting 

elements and N receiving elements. The MI between Yand H, 
given the knowledge of S is given by37,

( ) ( )2; / log det H
K H

−
x

 = + σ I Y h s I sr s
                      

(7)

where { }det •  refers to determinant of a matrix. Using the 
determinant property,

( ) ( )det detp q+ = +I Ab I bA

MI in Eqn (7) can be written as, 
( ) ( ); / log det H

M H = + I Y h s I r s s

where the variance of noise ( )2
xσ  is assumed to be unity. The 

problem of waveform design based on MI is expressed as,
( )max log det H

M H + s
I r s s 		                	        (8)

( )Htr  ≤ b s s

where b  is the sum of the average transmit powers. 

Minimum Mean Square Error
In estimating the target impulse response MMSE is given 

by,

( ){ }12 1H
HMMSE tr

−− −
x= σ +s s r                                  (9)     

The problem of waveform design based on MMSE is 
expressed as

( ){ }12 1min H
HS

tr
−− −

xσ +s s r

		                       

(10)

( )Htr  ≤ b s s

The constrained optimization problem in Eqns (8) and 
(10) are solved using the method of Lagrange multipliers and 
the optimum waveform is given by37,

1 2
2 2

1

,..., H

M

diag
+ +

x x
  σ σ     = y µ − µ −    λ λ      

s u            (11)

where the columns of y  are orthonormal, U is obtained from the 
singular value decomposition (SVD) on Hr , as H

H U= Λr u  
and ( )1 2, ,..., MdiagΛ = λ λ λ where iλ  is the eigen value of the 
covariance matrix of the target impulse response. The scalar 
constant µ  satisfies 

2

1

M

i i

+

x

=

σ 
µ − = b 

λ 
∑

	

	                                     
(12)

Under total power constraint the two criteria lead to the 
same solution. The solution employs water-filling in spatial 
mode. Waterfilling over the eigen modes of the spatio-temporal 
channel matrix results in emphasis of strong targets. Waterfilling 
with respect to spatial modes is not desirable especially in 
tracking scenarios64. It is assumed that the exact characterization 
of the target power spectral density (PSD) is available, but in 
practice it is very difficult to obtain perfect knowledge of target 
PSD. So the authors in a later work65 assumed that the actual 
PSD is only known to lie in some class of possible PSDs. Based 
on this formulation a minimax robust scheme is developed 
under both the MI and the MMSE criteria. The results indicate 
that the MI and MMSE criteria lead to different minimax 
robust waveforms, which is in stark contrast to their earlier 
findings37, where the MI and MMSE lead to the same result. 
It was observed that solution offered in the previous works37,65 

was not in the ultimate form of the transmit waveforms. So 
the desired form of the waveform is achieved by using the 
method of Kronecker structured matrix estimation, e.g., ML 
estimation and separable least squares framework estimation66. 
Yang and Blum proposed an iterative optimization algorithm 
based on the alternating projection method to determine 
waveform solutions that can simultaneously satisfy a structure 
constraint and optimize the design criteria where operations 



Merline & Thiruvengadam : MIMO Radar Waveform Design Methodologies

397

like the Procrustean transformation and the Kronecker product 
approximation are used to provide closed-form solutions67. The 
waveform solutions obtained through the proposed algorithm 
attains virtually indistinguishable performance when compared 
to that predicted in earlier works37,65. 

5.2	P er Antenna Power Constraint Based Approach
Conventionally, the power is allocated to transmit antennas 

based on the sum power constraint at the transmitter. But the 
wide power variations across the transmit antennas poses a 
severe constraint on the dynamic range and peak power of the 
power amplifier at each antenna. The recently proposed p-norm 
constraint jointly meets both the average per-antenna power 
constraint and the average sum power constraint to bound the 
dynamic range of the power amplifier at each transmit antenna68. 
The optimal power allocation using the concept of waterfilling, 
based on the sum power constraint is the special case of p =1. 
Instead of considering each constraint in a separate way, a 
unified framework is developed to obtain the optimal solution 
using Karush Kuhn Tucker (KKT) approach.

Mutual Information
For the signal model shown in Eqn (5) for widely 

separated antenna case, the problem statement for MI criterion 
with p-norm constraint69, 

max log[det (IM+ RHSHS)]
		        

(13)

s.t.
 

( )
1 ppHtr J  ≤ s s

where J is a constant. Let α be the constraint on the power of 
individual antenna elements and β is the constraint on the sum 
of the average transmit powers. If, p = 1, then the constant 
J will be equal to the sum power constraint β. For values of 
p within the interval,1 p< < ∞ , with J = α satisfies both the 
maximum power constraint and sum power constraint.The 
transmitted signal matrix is given by,

( )( )1 2

1 2, ,..., H
Mdiag d d d= ys u

                                 
(14)

where di is the power allocation value on the transmit antenna, 
is the diagonal element of H=d X X  and =X su . To find the 
values of di the problem statement in Eqn (14) is written as,

( )
1

max log 1
M

i i
i

d
=

+ λ∑  
                                                

 

 (15)

s.t. p
M

i

p
i Jd ≤∑

=1

 and
 

0≥id

The Lagrangian for Eqn (15) can be written as,

( ) ( )
1 1 1

, , log 1
M M M

p p
i i i i i

i i i

L h d d h J d
= = =

 η = + λ + η + − 
 

∑ ∑ ∑d

      

(16)

where ( )1 2, ,... Md d d=d , ( )1 2, ,..., Mη = η η η , η  and h are 
Lagrangian multipliers. Using KKT optimality conditions 
the following solutions are obtained. It is shown that for the 
limiting case p = 1 it holds that,

1
i

i

d
+

 
= µ − λ                                                                

(17)

µ such that 
1

M

i
i

d J
=

=∑

For p = ∞ , ( )1 2max , ,..., Mp
d d d=d  and for the 

general case 1 p< < ∞ , di can be determined by numerically 

solving the equation 11p p
i i

i

d d −+ = µ
λ

using a quadratically 
convergent algorithm such as nested Newton algorithm. The 
update equation for di and µ  are given by,

( ) ( )
( )( ) ( )( ) ( )

( )( ) ( ) ( )( )

1

, ,

, 1 , 1 2
, ,1

p pn n n
i k i k in n

i k i k pn n p
i k i k i

d d
d d

p d p d

−

+ −
−

+ λ − µ
= −

+ − λ  ,  1 i M≤ ≤  
						            (18)

( ) ( )
( )( )
( )( )

1

'

n

n n

n

L

L
+

µ
µ = µ −

′ µ

respectively, where ( ) ( )1 p p
i

i

L q J−µ = µ −  ∑ , 0µ ≥ ,  
1 i M≤ ≤ and

( ) [ ] ( )
( )

11 1

11

1
11

p

i i
i i

i
i

L p q q
p q
p

− ′− −

−−

′  µ = µ µ =  −
+ µ  λ

∑ ∑
   

(19)

Minimum Mean Square Error
The problem statement for MMSE criterion is given by 70

1

min
1

M
i

i i id=

 λ
 λ + 

∑

1

. .
M

p p
i

i

s t d J
=

≤∑  
and 0id ≥                          

                 
(20)

Forming the Lagrangian for Eqn (20) as in the case 
of MI and solving using KKT optimality conditions, the 
solution is same as that of MI criterion for the case of p=1 
and p = ∞ . For the case 1 p< < ∞ , using the nested Newton 
algorithm, the update equation for di for the system of equation 

1 1

2

2 1p p p
i i i

i i

d d d+ −+ + = µ
λ λ

is

( ) ( )

( )( ) ( )( ) ( )( ) ( )

( )
( )( ) ( )( ) ( ) ( )( )

1

1, ,

,2

, 1 , 12
, ,

,2

2

2
1 1

pn n p
pi k i k n n

i k
n n i i

i k i k pn np
i k i k n p

i k
i i

d d
d

d d
d p d

p p d

−

+

+ −
−

+ + − µ
λ λ

= −

− + + +
λ λ

, 1 i M≤ ≤ 	

                                                                                             (21)

A MIMO radar system with  M = 5 transmit and N 
= 5  receive antenna system is considered to illustrate the 
performance of MIMO radar waveform with per antenna 
power constraint. Figs. 2(a) and 3(a) show the MI performance 
and MMSE performance, respectively, when there is no power 
constraint on the power amplifiers used in the transmit antennas. 
The graphs are plotted for the cases of sum power constraint 
(SPC), per antenna power constraint (PAPC) and equal power 
allocation (EPA). As observed in the figures the sum power 
constraint that results in waterfilling power allocation has the 
superior performance. But the amplifier in each antenna would 
have a maximum limit on the power that could be amplified. 
This practical consideration would result in clipping effect. 
The MI and MMSE performance in such a situation would 
be as shown in Figs. 2(b) and 3(b). The rate of improvement 
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energy among target scattering modes is also dealt with. Apart 
from waveform design for MIMO radar the other signal design 
concepts for MIMO radar such as adaptive waveform design, 
beamforming, waveform synthesis, waveform optimization 
and code design are analyzed. MIMO communication is 
theoretically superior to conventional communication and also 
it appears to be practical and cost effective in the real world for 
some applications. The same is expected in the case of radar, 
but that is not fully explored. As the potential benefits offered 
by MIMO radar depend mostly on the signal design this paper 
is expected to create interest in the area of waveform design. 
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