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1. INTRODUCTION
In aerospace applications, frequency selective surfaces 

(FSS) are widely used in the design of airborne radomes and 
radar absorbing structures (RAS). Generally thick aperture-type 
FSS are used to enhance the strength and hardness of the radome 
structures1, to improve the band-pass filter characteristics, or to 
avoid radiation from microwave sources2. Accurate evaluation 
of EM performance of such FSS structure is essential for 
these applications. In view of this, number of numerical 
methods for analyzing FSS structures have been reported in 
the open literature namely; equivalent circuit analysis (ECA)3, 
method of moment (MoM)4, finite element method (FEM)5, 
and transmission line method6 etc. The ECA is best suited for 
thin FSS structures, but not for multilayered structures. MoM 
fails to analyse an infinite array structure where the number of 
basis functions is equal to the number of expansion modes4. 
In case of FEM, the complexity in computation increases 
for standard problems with the implementation of absorbing 
boundary conditions. Further the accuracy of FEM method 
reduces at high incidence angles. Transmission line method is 
also less accurate at oblique incidence angles. Compared to 
these methods, mode-matching-generalized scattering matrix 
(MM-GSM) method is more efficient and accurate for both 
single and multi-layered FSS structures at normal as well as 
oblique incidence as this method includes both evanescent and 
propagating modes in the analysis. Further, matching of the 
total mode fields at each junction between uniform sections of 
the structure enhances the accuracy of computation. 

Since the thick FSS has better band-pass stability, high 
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NOMENClATURE
α   Skew angle
  Propagation constant of waveguide mode
  Propagation constant of floquet mode
  Dielectric constant
  Free-space impedance
  Position vector of unit cell
  Transverse wave number of floquet mode

ma±   Amplitude of floquet mode
A±   Floquet mode coefficient in region-1 

pb±   Amplitude of waveguide mode
B±   Waveguide mode coefficient in region-2
C  Coupling power integral
C±   Floquet mode coefficient in region-3
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  Waveguide mode 
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w
TH     Transverse component of magnetic field for  

  waveguide mode    
pqk   Transverse wave number of waveguide  

  mode
m, n  Number of Floquet mode
p, q  Number of waveguide mode  
Q  Power integral for waveguide (aperture)  
  region 
R  Power integral for free-space region
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transmission efficiency inside the band, extremely good out-
of-band attenuation, and high structural rigidity, as compared 
to thin FSS, it is generally preferred for the airborne radome 
applications. Hence in this paper, the EM performance analysis 
of thick rectangular aperture-type FSS has been carried out 
using MM-GSM technique for its effective usage in the design 
of airborne radome.

2. THEORETICAl ASPECTS 
Consider a thick perfectly conducting screen, perforated 

by an array of rectangular apertures lie in Xy-plane, as shown in 
Fig. 1. The screen is illuminated by EM plane wave at arbitrary 
incidence angle θ, lying on the YZ-plane. The FSS structure 
has a periodicity in the X- and y-directions. Here α is the skew 
angle, i.e., the angle between the directions of periodicities. 
The fields on both side of the screen are expanded in terms of 
floquet modes with a propagation constant gmn along the z-axis 
as7

( ) ( ) ( )
m

f f
m mT T

m
E z a a E+ −ρ = + ρ∑,

     
(1a) 

   
( ) ( ) ( )

m

f f
m mT T

m
H z a a H+ −ρ = − ρ∑,

     
(1b)

represents the number of waveguide modes inside the 
aperture.

By matching the transverse components of electric 
and magnetic fields at the aperture z = 0, a system of linear 
equations for waveguide coefficients are obtained7 as

( ) ( )m m mn p p pn
m p

A A R B B C± − + −+ = +∑ ∑    
                   

(3)

and   
( ) ( )*

m m np p p pq
m p

A A C B B Q± − + −− = −∑ ∑   
                          

(4) 

where mA±  and pB±  represent the mode coefficients for floquet 
and waveguide modes respectively. Here R and Q are the power 
integrals for the free-space and aperture region respectively. C 
represents the coupling power integrals between the free-space 
and aperture modes.

2.1 Scattering Matrix Formulation
To render the scattering matrix of the proposed FSS 

structure, the scattering matrix at the interfaces z = 0, and  
z = h has been evaluated using MM-GSM technique and then 
cascaded to obtain the scattering matrix of the whole FSS 
structure. The side-view of the FSS is shown in Fig. 2, where 
A, B, and C are the mode coefficients in the region-1, 2, and 

Figure 1.  Schematic of a thick FSS perforated by rectangular aperture. 

Figure 2.  Side view of thick FSS perforated by rectangular 
apertures. 

where ( ) zmn
m ma z A e

±g± ±= represent the amplitudes of Floquet 
modes, and  xx y yρ = +  is the position vector of unit cell. 
Here 

m m

f f
T TE and H are the transverse components of electric 

and magnetic fields for floquet modes respectively. Subscript m 
represents the number of floquet modes outside the structure.

The fields inside the aperture region are expressed in terms 
of the classical waveguide modes with propagation constant 
bpq  

as 
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represent the amplitudes of waveguide modes. Subscript p 
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3, respectively. The scattering matrix at the interface z = 0 is 
given as

0 011 12

0 021 22

a a

a a

A AS S

B BS S

− +

+ −

    
   =  

    
    

             
                      

(5)

where the scattering parameters aS are given by9.
The scattering matrix at the interface z = h is given as

11 12

21 22

b b
h h

b b
h h

B BS S

C CS S

− +

+ −

    
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    
    

            
                      

(6)

Since the screen is perfectly conducting and aperture 
region is filled with air, the EM propagation through the screen 
will be lossless. The junction at z = h is the mirror image of the 
junction at z = 0. The scattering matrix at the interface z = h 
will be transpose to the matrix that of at z = 0 interface, which 
is given by
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22 11
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b a
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S S
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
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= 


=                                                        

(7)

Now, the scattering matrices aS  and bS  are cascaded 
using propagation matrix P for the aperture region, to obtain 
the final scattering matrix cS of the complete FSS structure. 
The scattering parameters are given by
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
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(8)

        
where mnj hP e− g=  is given by9. The above expressions 
represent the components of generalized scattering matrix 
of the proposed FSS structure and are used to determine its 
transmission and reflection characteristics.
  
3. DISCUSSION OF RESUlTS 

In this work, a copper sheet of thickness 0.11cm perforated 
by an array of rectangular apertures has been considered for the 
EM analysis. The dimensions of rectangular apertures are: a 
= 1.80 cm wide (along X-axis); and b = 0.55 cm high (along 
y-axis). The periodicity of the array along X- and y- directions 
is: Tx= 2.325 cm and Ty = 1.555 cm respectively as shown in 
Fig. 1. Here rectangular lattices are considered, i.e.,  α = 90° 
inside the FSS structure. Here, the Floquet modes with index 
10 i.e., 10 , 10m n< > − and waveguide mode with index 9 i.e., 

, 9p q ≤ have been used in the computation. The variation of 
transmission characteristics with frequency at θ = 0° and 30° 
for TM incidence wave is shown in Figs. 3 and 4, respectively, 
where the computed results are compared with those reported 
(theoretical and experimental) results in the open literature8. 
It is observed that the computed results are in excellent 
agreement with the reported results, which are based on the 

Figure 4. Transmission characteristics of a thick FSS for TM 
incidence wave at θ = 30°.

mode matching (MM)-finite element method (FEM) method. 
The computation time taken by 32-bit operating system 

on Intel Core (TM) 2 Duo CPU and 4 GB RAM is around 
4.38 second. Further, the transmission characteristics of 
thick FSS perforated by rectangular apertures are studied at 
θ = 45°, 60°, and 80° for TM incidence wave as shown in 
Fig. 5. The transmission characteristics of the proposed FSS 
structure at normal incidence for different dielectric materials 
inside the aperture (waveguide) region are shown in Fig. 6, 
where the dielectric loss of the material is not considered in 
the computation. It is observed that the resonance frequency 
of the transmission characteristics decreases and curves 
become steeper as dielectric constant of the material increases. 
The dependence of transmission characteristics of a thick 
FSS structure for different loss tangents (keeping εr = 4.0) of 
materials inside the aperture at normal incidence is shown in 
Fig. 7. It is found that transmission reduces with the increase in 
the loss tangents of the dielectric material. 

Figure 3. Transmission characteristics of a thick FSS for TM 
incidence wave at θ = 0°. 
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4. CONClUSIONS 
The analysis of thick FSS perforated by rectangular 

apertures has been carried out in this paper using MM-GSM 
technique for TM plane wave incidence. The computed results 
are compared with the reported results at incidence angle  
θ = 0° and 30° and found to be in excellent agreement with the 
reported results. For streamlined applications, the transmission 
characteristics are also studied at higher angles of incidence 
(θ = 45°, 60°, and 80°). Finally, the dependence of transmission 
on the dielectric parameters of the material inside the aperture 
region is studied at normal incidence. The proposed thick 
FSS structure is found to be a better choice for the design of 
airborne radomes.

Figure 6. Transmission characteristics for different lossless 
dielectric materials inside the aperture region at 
normal incidence.

Figure 7. Transmission characteristics for different loss tangents 
of material (keeping εr = 4.0) inside the aperture at 
normal incidence.  
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Figure 5. Transmission characteristics of a thick FSS for TM 
incidence wave at angle of incidence: (a) θ = 45°, (b) 
θ = 60°, (c) θ = 80°.
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