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ABSTRACT 

It is imperative that the time required for the analysis and of an extremely volatile 
event like avalanche needs to be reduced to the minimum. This is particularly critical because of the 
extremely fast and highly uncertain nature of the event itself. Another peculiar nature of such predictions 
is that these have to be based almost entirely on the long and intermediate-term data/infomation 
available, since there would hardly be any short-term warnings (unlike as in the case of a storm) that 
could point towards an imminent prediction. Both the above-mentioned factors favour adoption of 
such techniques of automated analysis, which are fast, accurate, and employable even under uncertain 
voids of information. Apart from empirical and statistical methods, one of the highly promising 
techniques for developing a practical model for prediction of avalanche is that based on rule-based 
expert systems. However, development of a realistic rule-based expert system based on conventional 
logic would imply that one has to firstly define the natural phenomenon being modelled at an extremely 
high resolution and accuracy. The process of defining a highly uncertain phenomenon like the avalanche 
at such high resolution, and thereafter, framing extensive rules for all the possibilities is likely to make 
the system extremely complex, and therefore, unmanageable in many ways. This study attempts to 
simplify this problem by proposing a simpler and better technique using an algorithm based on fuzzy 
logic. This algorithm has the potential to handle even highly complex phenomenon, like that of an 
avalanche in a fundamentally simple manner. Such potential makes it capable of handling the higher 
levels of details and still contains the complexity within the manageable limits. Additional details 
would also make the system more accurate and realistic. 
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1. INTRODUCTION 
I Prediction of any natural event entails arriving 

at a conclusion regarding its time of occurrence as 
& 

well as nature, based on logical analysis of all the 
information availabIe on the circumstances leading 

a to that event. Any organisation involved in the task 
of predicting the uncertain vagaries of nature would 
be faced with the task of making such conclusions 
out of an environment of high uncertainty. Apart 
from the same, of late, it has become feasible to 
acquire a vast databank of information from a variety 

Revised 22 May 2002 

of sensors as well as visual observations on a near 
real-time basis. It may be almost impossible to 
carry out manual assimilation of such a vast amount 
of data being continuously acquired by the automatic 
sensors. Manual analysis may also generate further 
inconsistencies due to factors, such as fatigue, 
contradiction of personal perceptions, etc. At the 
same time, prediction of a natural event would be 
most effective and accurate only if it is timely and 
based on the complete information available for 
analysis at any paint of time. 
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2. AUTOMATED PREDICTIONS OF 
NATURAL SYSTEMS 

2.1 Prediction of Natural Systems 

All the predictions that one makes on a day- 
to-day basis are more or less derived from the 
various input factors regarding the environment 
that are known at that particular point of time. To 
analyse the predictability of an event based on a 
set of factors, one needs to figure out the relationship 
between such factors and the event itself. However, 
the vagaries of nature and the unpredictability of 
its events could, at times, seem highly intriguing. 
As is well known, the nature of all environmental 
systems is highly complex, which is one of the 
reasons why their prediction has, so far, remained 
more of an art and not entirely definable within 
a programmable set of logical rules. To organise 
an understandable sense out of the concept of natural 
systems, one may attempt to classify these into the 
following systems: 

(a) Simple systems 

(b) Feedback systems 

(c) Random systems 

2.1.1 Simple Systems 

In simple systems, the outcome of an event is 
directly related to the known factors influencing 
that event. It is, therefore, possible to mathematically 
or empirically (based on data from the past events) 
relate the outcome with the input factors. In such 
cases, the outcomes are fairly predictable so long 
as the mathematical or empirical algorithm or formulae 
being used are realistic and correct. 

2.1.2 Feedback Systems 

In such systems the outcome of an event, though 
connected to a set of input factors, their relationship 
itself is far less predictable and unstable compared 
to simple systems. Feedback systems can be further 
divided into the following subsystems: 

2.1.2.1 Negative Feedback Systems 

In the negative feedback systems, the feedback 
of an input factor acts in such a way as to stabilise 
the system, i.e., in other words, it attempts to attain 

status quo. Therefore, even if an input event is 
highly significant in its apparent effect on the system, 
the transience introduced to the system due to the 
event tends to eventually taper off. This is similar 
to the way gravity acts upon a ripple created on the 
surface of water to ultimately cancel out the same. 

2.1.2.2 Positive Feedback Systems 

In the positive feedback, an apparently 
insignificant event may have a cascading effect on 
a set of events with a correspondingly unpredictable 
outcome, far more out of proportion, to the input 
event. Such systems are characteristically highly 
unstable and unpredictable. The transience setup 
by an event tends to feed on itself to blow totally 
out of proportion. This is similar to the way a 
slight shifting of a few ice crystals may lead to an 
avalanche. Pwitive feedback systems are extremely 
difficult to model due to their unpredictability. 
One of the intriguing positive feedback systems 
explainable through chaos theory is the butterfly 
effect. In this concept, it is believed that it may 
be possible through positive feedback of a series 
of events that an apparently insignificant transience 
in the atmosphere created by the flutter of a butterfly 
could snowball itself into a huge storm at a distant 
location. 

2.1.3 Random Systems 

In random systems, an event and its corresponding 
outcome are absolutely unrelated. The outcome 
may or may not be connected to the happening of 
the event, and if so, only in a random or unpredictable 
manner. Such systems are impossible to model by 
any means available and also ascribable to words 
like luck, grace of God, etc. 

To automate a prediction system through 
mathematical modelling, it may be necessary that 
one takes all of the above-mentioned systems into 
consideration. Most of the present systems of modelling 
used in prediction of natural events are based on 
simple systems using empirical relationship1 
algorithms. By introducing highly flexible concepts 
like fuzzy logic and neural network, one may attempt 
to model very few aspects of feedback systems 
also. Modelling random systems would still remain 
an impossible task to do. The attempt, therefore, 
would mean going a step further towards more 
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realistic translation of the highly complex system 
of natural phenomenon. Some of the advantages 
of such automated prediction models are: 

It would help handle huge volume of sensor 
information on an almost real-time basis 

Speedy and timely predictions of avalanche 
dangers 

It would eliminate human errors in assessment 
of the situation 

3. PROPOSED ALGORITHM FOR 
AVALANCHE PREDICTION MODEL 

The basic structure of the algorithm based on 
fuzzy logic, attempts to explain the basic feasibility 
and logical flow of the proposed algorithm. Even 
though there is no limit to the number of input 
variables that could be considered by a computerised 
model, here, for the ease of explanation, the algorithm 
addresses only three most important input variables 

A large number of factors, that would have used for avalanche prediction. To use the algorithm 
been neglected otherwise, could be in a realistic case, suitable weightage values have 

considered to be assigned to various membership functions of 
the input factors as well as rules thereafter, as per Collective experience, knowledge of expert 

committee, and historical analysis is used to their importance. However, the weightages have 

carry out the gradation of factors and also been disregarded for ease of explanation in 

formulation of the rules.  hi^ would reduce the following example and all three factors and 

the adverse effects of inexperience or poor rules have been a s ~ ~ ~ e d  to have equal weightage 
knowledge of the avalanche expert committee towards the outcome. The general block diagram 
to a great extent. of the algorithm is given in Fig. 1. 
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Figure 1. General block diagram of the algorithm for the prediction of an avalanche 
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4. FUZZIFICATION GRAPHS 

The fuzzification graphs have to be made in 
consultation with the expert committee, since this 
actually translates the relationship between the 
variables and the membership values which would 
be used further in the rules. In the subject example, 
the complete fuzzification graph has been drawn 
keeping in mind the range of operation of the input 
variables as well as other values extrapolated from 
the two general points, i.e., the point of low avalanche 
danger and the point of all-round avalanche danger. 

4.1 Fuzzification Graph of Standing Snow 

The points at which a given input variable (in 
this case standing snow) initiates low avalanche 
danger condition and all-round avalanche danger 
condition has to be arrived at, considering the influence 
of other two variables (in this case fresh snow and 
surface temperature) as negligible towards these 
conditions (Fig. 2). 

4.2 Fuzzification Graph of Fresh Snow 

The points at which a given input variable (in 
this case fresh snow) initiates low avalanche danger 
condition and all-round avalanche danger condition 
has to be arrived at, considering the influence of 

other two variables (in this case standing snow 
and surface temperature) as negligible towards these 
conditions (Fig. 3). 

4.3 Fuzzification Graph of Snow Surface 
Temperature ' 

The points at which a given input variable (in 
this case surface temperature) initiates low avalanche 
danger condition and all-round avalanche danger 
condition has to be arrived at, considering the influence 
of other two variables (in this case standing snow 
and fresh snow) as negligible towards these conditions 
(Fig. 4). 

5. EXPERT RULES FOR PREDICTION 

The rules have been developed using the fuzzy 
operator AND between various membership values 
obtained as a iesult of fuzzification. For example, 
standing snow (very high) is a membership value 
(between 0 and 1) of an input variable value of 
standing snow in the fuzzy range of very high in 
the graph. In this case, the fuzzy operator AND 
would return values, which are the minima within 
the set of membership values being considered in 
each rule as its output. These output are given as 
a numerical value (eg a,). The rule sets have been 
formulated as conditions under which a given event 
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DEPTH OF STANDING SNOW (cm) 
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ROUND DANGER 
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Figure 2. Fuzzification graph of the standing snow 
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Figure 3; Fuzzification graph of fresh snow 

may occur. Since, one wants the prediction in the $ 

5.1 Classification of Rules form of five likely events, the complete set of 
rules has been classified into the following five 5.1.1 Rules for All-round Avalanche Danger 
groups, with each event being designated as a group: Standing snow (very high) = a ,  
(a) All-round avalanche danger Fresh snow (very high) = a, 
(b) High avalanche danger 
(c) Medium avalanche danger Surface temperature (very high) = a, 

(d) Low avalanche danger Standing snow (high) AND fresh snow 
(e) No avalanche danger (high) = a, 
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Figure 4. Fuzzification graph of snow surface temperature 
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Standing snow (high) AND surface temperature 5.1.2.1 Rule Set for High Avalanche Danger 
(high) = a, Rule set for high avalanche danger {R,,, R,,,, 
Fresh snow (high) AND surface temperature ......¶ R,,,), where R,>, = b,  if bi # 0 or Rhi = 1, if 

(high) = a, bi = 0 with i = 1 to 10. 

Standing snow (high) AND fresh snow 
(medium) AND surface temperature 
(medium) = a, 

Standing snow (medium) AND fresh snow 
' (high) AND surface temperature 

(medium) = a, 

Standing snow (medium) AND fresh snow 
(medium) AND surface temperature 
(high) = a, 

Standing snow (medium) AND fresh snow 
(medium) AND surface temperature 
(medium) = a,, 

5.1.1.1 Rule Set for All-round Avalanche Danger 

Rule set for all-round avalanche danger = {R,,, 
R,,, .,....., R,,,}, where R, = a, if ai # 0 or 
k, = 1 ,  if a,= 0 with i = 1 to  10. 

5.1.2 Rules for High Avalanche Danger 

Standing snow (high) = b ,  

Fresh snow (high) = b, 

Surface temperature (high) = b, 

Standing snow (medium) AND fresh snow 
(medium) = b, 

Standing snow (medium) AND surface 
temperature (medium) = b, 

Fresh snow (medium) AND surface temperature 
(medium) = b, 

Standing snow (medium ) AND fresh snow 
(low) AND surface temperature (low) = b, 

Standing snow (low) AND fresh snow (medium) 
AND surface temperature (low) = b, 

Standing snow (low) AND fresh snow (low) 
AND surface temperature (medium) = b, 

Standing snow (low) AND fresh snow (low) 
AND surface temperature (low) = b,, 

5.1.3 Rules for Medium Avalanche Danger 

Standing snow (medium) = c ,  

Fresh snow (medium) = c, 

Surface temperature (medium) = c, 

Standing snow (low) AND fresh snow 
(low) = c, 

Standing snow (low) AND surface temperature 
(low) = c, 

Fresh snow (low) AND surface temperature 
(low) = c, 

5.1.3.1 Rule Set for Medium Avalanche Danger 

Rule set  for medium avalanche danger 
= {Rc,,  R,, ......, R,), where R, = ci if ci # 0 or 
Rci = 1, if ci = 0 with i = 1 to 6.  

5.1.4 Rules for Low Avalanche Danger 

Standing snow (low) = d, 

Fresh snow (low) = d, 

Surface temperature (low) = d, 

5.1.4.1 Rule Set for Low Avalanche Danger 

Rule set for low avalanche danger = {R , , ,  R,,, 
......, R,,), where R,, = d , ,  if d, # 0 or R,, = 1, if 
d, = 0 with i = I to 3. 

5.1.5 Rule for No Avalanche Danger 

Standing snow (very low) AND fresh snow (very 
low) AND surface temperature (very low) = el 

5.1.5.1 Rule for No Avalanche Danger 

Rule for no avalanche danger = Re,, where 
Re, = el . 

6. OPTIMISATION MATRIX 

The optimisation matrix will be utilised for 
arriving at the optimum rule value (ORV) from 
within the five sets of rules. 
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(a) Rul AND Ru2 AND ...... AND Rule = Rol (c) If ORV = O,, then prediction = Medium 

(b) R,, AND R,, AND ...... AND R,,, = R,, 

(c) Rc, AND Rc2 AND ...... AND R, = R,, 

(d) R,, AND Rd2 AND Rd3 = RO4 

(el Re, = Ro5 

Optimum rule set = {O,, O,, ......, 0,)  

where 
0, = R,, if R,, # 1 or 0, = 0 if R,, = 1 

0, = R,, if R,, # 1 or 0, = 0 if R,, = 1 

0, = R,, if R,, # 1 or 0, = 0 if R,, = 1 

0, = R,, if R,, # 1 or 0, = 0 if R,, = 1 

0 5  = R05 

6.1 Optimum Rule Value 

The ORV is obtained using the fuzzy operator 
OR between the various members of the optimum 
rule set. Therefore, ORV = Max { 0 , ,  O,, O,, O,, 
0,). In case of two or more factors having same 
max value, the rule corresponding to the higher 
degree of rule set will be selected (eg, if Max { 0 , ,  
O,, O,, O,, 0,) = Both 0, and O,, then ORV = 0, ) .  
In case for a particular set of input, all the values, 
viz., 0 , ,  O,, O,, O,, 0, are equal to zero, ORV is 
also to be considered equal to zero. Such a situation 
may only happen when the rules framed in the 
algorithm are insufficient to cater for the particular 
input set and the result in none of the rules being 
fired. 

7. DEFUZZIFICATION 

Optimum prediction would be the one designating 
a particular set of rules which generates the optimum 
rule value. In other words, that classification group 
from which a rule value survives to become the 
ORV after having passed through the optimisation 
matrix, is the one selected as the prediction output. 

avalanche danger 

(d) If ORV = 0,, then prediction = Low 
avalanche danger 

(f) If ORV = 0,, then prediction = No avalanche 
danger 

(g) If ORV = 0, then output = Prediction 
indeterminate. 

8. LEARNING MECHANISM 

At this stage, it may also be suitable to introduce 
a learning mechanism onto the algorithm. The learning 
of the algorithm would be conducted using a set 
of test data. '1n this case, the optimum rule set 
would be defined as 

Optimum rule set = { 0 , ,  O,, ......., 0,) 

where 

0, = (R,, )I+" if R,, # 1 or 0, = 0 if R,, = 1 

'0, = (R,,)'+" if R,, # 1 or 0, = 0 if R,, = 1 

0, = (R,,)'+" if R,, # 1 or 0, = 0 if R,, = 1 

0, = (R,,)'+" if Ro4 # 1 or 0, = 0 if R,, = 1 

0, = (Ro5)l+" 

The value of w in the above equations is defined 
as the weightage, whch is to be assigned every 
time the output of the algorithm tends to vary from 
that of the test data. The weightage could either 
be in the form of punishment value, in which case 
it would be positive, or it could be a reward, in 
which case it would be a negative value. The value 
of the weightage to be assigned for each iteration 
of the learning cycle could be set as 0.01. A 
simultaneous award and punishment is awarded 
each time the output of the algorithm differs from 
the test data. A reward would be allotted to that 
group of classification which ought to have been 

(a) ~f ORV = o,, then prediction = ~ l l - ~ ~ ~ ~ d  the output as per the test data and a simultaneous 

avalanche danger punishment is awarded to that classification which 
has been wrongly given by the algorithm. The 

(b) If ORV = O,, then prediction = High classifications, which are neither the output of the 
avalanche danger algorithm nor that of the test data, would be assigned 
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with zero weightage. For example, let one assumes 
a case when the output of the algorithm predicts 
all-round avalanche danger but as per the test data, 
the prediction ought to have been high avalanche 
danger. In such a case, the optimum rule values 
would be defined as under 

where 

0, = (Ro,)l+O.O1 if Rol # 1 or 0, = 0 if R,, = 1 

0, = (R 0 2  )l4.O1 if R,, # 1 or 0, = 0 if R,, = 1 

0, = (RO3)l+O if R,, # 1 or 0, = 0 if Ro3 = 1 

The algorithm would be put through as many 
number of iterationsllearning cycles till the output 
of the algorithm stabilises in consonance with the 
output of the test data. Thereafter, the weightage 
values are fixed for further prediction routines. 

Fuzzy logic systems have proven to be of great 
advantage, especially in day-to-day life, were the 
definition of the phenomenon being modelled is 
based on a multitude of interdependent variables 
as manifested in case of natural environmental 
phenomenon. Crisp logic systems demand breakdown 
of such gradual transition into definite data with 
stark boundaries, which can be processed by a 
computer. This can make the phenomenon loose its 
original profile. To avoid this, the system has to 
be made complex, and therefore, unmanageable in 
many ways. Fuzzy logic system gives a fundamentally 
simple way to handle such complex situations without 
making the system itself exceedingly complex. The 
fuzzy set theory has already been extensively used 
throughout the world in linear regression and its 
application to forecasting in uncertain (almost a 
universal see) environment. The fuzzy logic medel 
system may also prove to be the most suitable in 
developing an automated real-time avalanche 
prediction system. 
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