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ABSTRACT 
I 

The problem of propagation of acceleration waves in an optically thick medium of electrically 
conducting fluid has been dealt with. During propagation of the waves, the effects of radiation pressure, 
radiation energy density, and heat transfer through thermal radiation and thermal conduction have 
been taken into account. The growth equation for the variation of amplitude of the wave has been 
derived and solved. It has been concluded that all the compressive waves with initial amplitudes 
greater than a critical value will grow and terminate into a shock wave due to nonlinear steepening, 
while all expansion waves will decay out. Acritical stage, when the compressive wave will either grow 
or decay, has also been discussed. The effects of radiation pressure and radiative heat transfer on 
the shock formation have been discussed and analysed. 

K e y w o e  Wave propagation, acceleration waves, shock waves, shock wave formation, radiative heat 
transfer, nonlinear wave, thermal conduction, non-equilibrium flows 

1. INTRODUCTION 

In the recent advances of space technology as 
hypersonic flights, powerplants for space exploration, 
gas-cooled nuclear reactors (where the temperature 
is very high and the density is low), the study of 
propagation and formation of shock waves in 
fluids becomes an interesting problem. One of the 
most interesting part of this study is that it is a 
subclass of nonlinear waves which admit analytical 
solutions. When a disturbance is produced in hot 
plasma, the thermal conduction effect plays an 
essential role in the determination of the behaviour 
of finite-amplitude wave heads. So in a gaseous 
flow under high temperature conditions, it is more 
realistic to take into account the thermal conduction 
effects. Beckerl, Bowen and Chen2 studied the 
various properties of the acceleration waves in 
non-equilibrium flows. Several  researcher^^-^ have 

studied the various properties of the weak nonlinear 
waves and have provided answers to the questions 
when a weak wave breaks down and a shock wave 
is formed. However, less emphasis is put on the 
thermal conduction effect, and therefore, the exact 
behaviour of the waves in radiation gas dynamics 
is not completely understood. 

The problem investigates the essential features 
of the effects of radiation energy density, radiation 
pressure, and radiative heat flux on the global 
behaviour of the acceleration waves propagating 
in electrically conducting fluids permeated by a 
magnetic field. The analysis is based upon the 
theory of singular surfaces, which, in comparison 
to the theory of characteristics, quickly leads to 
results of general significance. An optically thick 
gas medium is considered with such high temperature 
and low pressure that the radiation pressure number 
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R,, is not negligible, but the profiles structured by 
radiant heat transfer can be assumed to be imbedded 
in the discontinuties. Pai8 suggested that under 
the approximation of local thermodynamic 
equilibrium, the radiative heat flux term is similar 
to that of heat conduction. In this case, the effective 
thermal conductivity is given by 

where K, D,, a,, and T  are the coefficients of 
thermal conduction, Rosseland diffusion constant, 
Stefan-Boltzmann constant, and the absolute gas 
temperature, respectively. 

Let a discontinuity surface C ( t )  be considered 
across which the flow and field variables are continuous 
but their first and higher-order derivatives are 
discontinuous. Such a discontinuity is defined as 
a weak discontinuity or an acceleration wave. The 
boundary conditions are: 

2. PROPAGATION LAW 

The basic equations governing an axisymmetric 
magnetohydrodynamics flow under an optically thick 
gas approximation8 with thermal conduction and 
radiation effects are: 

dp dp JU apu 
- + u - + p - + - = o  
at ar ar r  

order that can be expressed in the form: 

Using the relations 

( 1  1 1 
p  R - 3  - - E , = - U , T ~ = ~ . R ,  3  =C,(y-1)pT 

where, [Z] denotes the discontinuity in the quantity 
enclosed. The geometrical and the kinematical In Eqns ( 6 )  and ( 4 ) ,  one gets: 
conditions9 for a singular surface C ( t )  are of the 

and 

2(b) 

where, [Z] refers for any of the flow variables, B 
is a scalar function defined over Z( t ) ,  G is the 

ap p a p  + { 1 + 1 2 ( y - 1 ) ) ~ -  - { y + 1 6 ( y - l ) ~ p } u p . a r  
ar 

velocity of the surface C ( t )  into a uniform medium 
at rest, and 6/6t is the operator of time derivative + (y-1)-(K,,  a -) aT = O  
as observed from the wavefront itself. ar ar 

(8) 
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The caloric equation of state yields: 

Here, p, p, u, h, Rp, y, and Cy denote the 
density, the gas pressure, the gas velocity, the 
magnetic pressure, the radiation pressure number, 
( Rp = radiation pressurelgas pressure ) the heat 
exponent of the gas, and the specific heat at 
constant volume, respectively. a is a parameter 
of geometrical symmetry and takes the values 
0, I ,  and 2, for planar, cylindrical, and spherical 
symmetry, respectively. The parameter n takes 
the values 0 and I for axial and azimuthal magnetic 
field, and r denotes the distance from the centre 
of symmetry. 

Taking jumps in Eqns (3), (7) and (5) and 
making the use of Eqn ( I )  and (2(a)), one gets: 

(u-G)q+2hh=O 

where 

From the law of conservation of energy across 
a discontinuity surfacelo C(t), one has: 

Applying the compatibility condition [Eqn 2(a) 
in Eqn (9)], one gets the relation: 

where a, is the isothermal speed of sound and the 
suffix 0 denotes the value just ahead of the 
wavefront. 

From Eqns (10)-(12), one gets: 

Using Eqn (15) in Eqn (1 I), one gets: 

The assumption that C(t) is a discontinuity 
surface of order, one implies that h = 0. Hence, 
one gets: 

( u - G ) ~  =d +bi (17) 
a 

It has been assumed that the medium ahead of 
the propagating surface X(t) is uniform and at rest. 
For this case, the speed of propagation is given by 

where bo is the Alfven speed of sound = 2hlp. 

In view of the conditions of constant and 
the rest states ahead of the wave, the relation 
[Eqn (15)] reduces to the form: 

3. GROWTH EQUATIONS 

Differentiating Eqns (3), (7) and (5) wrt r and 
applying the compatibility conditions [Eqn 2(b)] 
for the jump, one gets: 
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4. GLOBAL BEHAVIOUR OF AMPLITUDE 

Now the amplitude h(t) of an acceleration 
wave is defined by where 

If Ro = C(to) represents the initial position of 
the wave at t = 0, the position of the wave at time 
t is given by Taking the jump of the Eqn (8), one has: 

In view of the Eqn (26), one has: 

where 

where o = R ' -  R,. 

Using Eqns (26) and (27) in the Eqn (25), one gets: 

Differentiating Eqn (9) wrt r and taking jump, 
one gets: 

Since the medium ahead of the wave is uniform 
and at rest, one has: 

Using Eqns (20), (22) and (24) in the Eqn (2 1 ), 
one gets: 

where k(0) is the initial curvature of the wave. 

Using Eqn (29) in the Eqn (28), the solution 
of the growth equation [Eqn (28)] can be written 
as 

where 

where h(0) is the initial wave amplitude at time to. 
The solution [Eqn (30)] shows that the amplitude 
h(o) of an expansion wave [h(O)>O] decreases in 
time and tends to become zero as o + -. On the 
other hand, the amplitude of a compressive wave 
[h(O)<O] will, in general, grow and tend to become 
infinity after a finite time. 

The Eqn (25) is the fundamental differential 
equation for the variation of h along the normal 
trajectories of the wavefront Z(t). This differential 
equation governs the growth and decay of the 
acceleration wave. 
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In this case, an acceleration wave will breakdown 
and a shock-type discontinuity will be formed after C =  ah -p3pCV (Y - 112 (1 + 4RP )2 
a finite critical time tc, provided the initial wave G~ K$A: 
amplitude h(0) is numerically greater than the critical 

x jomre-"~(1 + k(~)x)-" dx 5 O. 
(35) 

hc given by 

If lA(0)1< Ac, then even a compressive wave 
will decay and no shock-type discontinuity will be 
formed. The critical time t, for the shock formation 
can be determined by the relation: 

Differentiating Eqns (31) and (32) partially 
wrt the radiation pressure number Rp and keeping 
other parameter constant, one gets: 

It is clear from Eqns (33) and (34) that the 
radiation pressure number effect increases the critical 
value of initial amplitude above which there occurs 
a shock formation and below which there is no 
shock formation. It also increases the critical time 
tc, and thus, has a stabilising effect, and delays the 
process of shock formation. Similarly, if one partially 
differentiates Eqns (31) and (32) wrt K@, one 
gets: 

It is clear from Eqns (35) and (36) that the 
effects of thermal and radiative heat transfer decrease 
the critical amplitude Ac and the critical time t ,  
and thus have destabilising effect in the sense that 
these accelerate the process of breakdown of weak 
waves and formation of shock-type discontinuities. 
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