
Defence Science Journal, Vol. 53, No. 4, October 2003, pp. 403-414
O 2003, DESIDOC

REVIEW PAPER

Software Process Management

Arundhati Bhattacharyya
Research Centre Zmarat, Hyderabad-500 069

ABSTRACT

The paper gives an overview of the software process using the capability maturity model
instituted by the Software Engineering Institute at the Carnegie Mellon University, Pittsburgh,
PA and also briefly focuses on a sequence of maturity levels in the software process that can
be observed in development organisations. The paper aims to express the need for process
management and understand something of the conditions that determine where one is and where
one can hope to be. An attempt is also made to provide a framework and some techniques for
evaluating and improving the process of developing software.

Keywonk Capability maturity model, process maturity levels, key process areas, process assessment,
software maturity framework, continuous. process improvement

1. INTRODUCTION

The rapid advancement and wider spread
of information technology today, is seeing the
development of software applications ranging
from trivial to the mission-critical. Reliability and
predictability have become critical criteria for software
deployment. The Defence projects today, are all
software intensive and highly complex. Handling
of such complex software in the present Defence
scenario without a defined process is extremely
difficult, if not, impossible. A well-defined software
process management is essential to produce reliable
and quality software within the stipulated project
time schedules. The US DoD incurs heavy expenditure
every year in the development, maintenance, and
improvement of military software. In India, the
Defence Departments are fast catching up with
their US counterparts in this respect.

Given the extent to which software underpins
all our everyday activities, software development

has become a critical issue for modern organisations
as well as for all of society. Software management
is critical to an organisation's survival and success.
Timely production of high quality software can
significantly enhance an organisation's capability.

2. NEED FOR PROCESS MANAGEMENT

Today, large complex projects require the
coordinated work of many teams. Methods applied
for larger projects work equally well for the smaller
groups and the individual professionals. Even the
best professionals need a structured and disciplined
environment in which to do cooperative work. Also,
building software is not just a monolithic process,
always the same. All this calls for the need of a
more structured approach to software process
management. It is also essential that at the individual
level, one.must be capable of assessing and grading
one's current software process. One must be capable
of knowing how to improve it and from where to
make a start.

Re-revised 30 June 2003

DEF SCI J, VOL. 53, NO. 4, OCTOBER 2003

In transforming the ad hoc, chaotic development
environment into a smooth-running and, process-
driven environment, a major culture change occurs,
ensuring improved quality, reduced cycle time, and
improved productivity. It also leads to an employee's
satisfaction, which, in turn, produces successful
programs. An inspired employee's performance
is a powerful tool for an organisation. Motivated
employees can work with unbound energy, enthusiasm,
and create innovative solutions. Management should
not overlook one of the most powerful tools they
have-the highly satisfied and motivated employees.
Some magic tool or method will not, by itself,
make a significant improvement. Increasing software
process maturity is an obvious and logical step in
addressing the software crisis. Organisations that
systematically implement improvements are more
likely to become successful operator~l*~.

3. SOFTWARE PROCESS MANAGEMENT

The software process is a set of actions required
to efficiently transform a user's need into an effective
software solution. In simple words, process is how
the work is done. The main reason for defining the
software process is to improve the way the work
is done. By thinking about the process in an orderly
way, it is possible to anticipate problems and devise
ways to either prevent or resolve these. Many
software organisations find difficulty in defining
and controlling this process, which is where these
have the greatest potential for improvement.

A software development project is one in which
a software product, to fulfil some needs of a customer,
should be developed and delivered within a specified
cost and time period.

3.1: Responsibilities & Objectives

Process management is a set of activities and
infrastructures used to predict, evaluate, and control
the performance of a process. The objectives of
the software process management are to produce
products according to a plan, while simultaneously
improving the organisation's capability to produce
better products.

At the individual level, the objective of the
software process management is to ensure that the

processes one operates or supervises are predictable,
meet customer's needs and (where appropriate)
are being continually improved. From the larger,
organisational perspective, the objective of the process
management is to ensure that the same holds
good for every process within the organisation.
The following four key responsibilities are central
to the software process managementVFig. I) :

IMPROVE PROCESS .
CONTROI. PROCF-qS

MEASURE - - - - - - -

I I + I

EXECUTE PROCESS -
Figure 1. Four key responsibilities of process management

(a) Define the process, i.e., create disciplined and
structured environment required for controlling
and improving the process

(b) Measure the process; measurements being
the basis for detecting deviations from the

. acceptable performance

(c) Control the process, ie, keeping the process
within its normal (inherent) performance
boundaries, ie, making it behave the way one
wants it to

(d) Improve the process.

Execution, or rather adherence to the process
is not a process management responsibility, but is
the responsibility of project management.

The key concern of the software process
management is how to identify topics that should
be the focus for improvement and prioritise these.
The basic principles of the process management
are those of statistical control, which have been
used effectively in many fields. When a process
is under statistical control, repeating the work in
roughly the same way will produce roughly the
same results. To obtain consistently better results,
it is thus necessary to improve the process and
to have the process under statistical control
for sustained progress. The basic principle behind
statistical control is the measurement4.

\

BHATTACHARYYA: SOFTWARE PROCESS MANAGEMENT

3.2 Software Development Life Cycle

The software development life cycle (Fig. 2)
process consists of an input, a throughput, and an
output5. By continuously monitoring the feedback
from the software life cycle activities and plugging
the deviation back into the process, it is possible
to achieve high quality and highly reliable
software products.

INPUT THROUGHPUT OUTPUT

INPUTPARAMETERS PROCESS PARAMETERS OUTPUT PARAMETERS

PEOPLE TRAINING PRODUCTIVITY
MACHINES ZERO DEFECT
STRUCTURE LIFE CYCLE
MANAGEMENT REWORK

Figure 2. Software development life cycle process

3.3 Process Assessment

Organisations often launch software process
improvement initiatives with a comprehensive process
appraisal. The purpose of process assessment
is to gain knowledge; it does not lead to any benefits
by itself. The software process assessment
helps software organisations to improve themselves
by identifying their critical problems and establishing
improvement priorities. An assessment is a part of
the investment an organisation makes in the software
process improvement. Some of the basic assessment
objectives are: (i) to learn how the organisation
works, (ii) to identify its major problems, and
(iii) to enrol its opinion leaders in the change process.

4. FORMAL FRAMEWORK APPROACHES
& CAPABILITY MATURITY MODEL

Formal framework approaches, such as
the capability maturity model (CMM), Trillium,
BOOTSTRAP, and SPICE promote improvement
using the systematic processes and management
practices for software engineering6. These approaches
identify the best practices for the management of
software engineering and provide methods for
assessing an engineering organisation's maturity
level, gauged by the staged adoption of specified
processes. Such frameworks have basically three

stages: (i) understand, (ii) control, and (iii) improve.
Their final goal is a continuously improving the
status of engineering organisation.

The software engineering institute's software-
capability maturity model (SW-CMM) is one of
the few branded methodologies that has had any
effect on typical software organisations. It is a
comprehensive and effectively realised model of
the process maturity. The model attempts to quantify
a software organisation's capability to consistently
and predictably produce high quality software
products. It provides a simple analytical tool
for benchmarking an organisation's status
and prioritising actions to improve that status.
The capability maturity model presents a set of
recommended practices in a number of key
process areas that have shown to enhance software
development and maintenance ~apab i l i t i e s l~~- '~ .

Though the capability maturity model has its
own drawbacks, is rigid and has some harmful side
effects along with its positive effect, it has become
significant, chiefly because it defines a standardised
software process. Increasing software process maturity'
is an obvious and logical step in addressing software
crisis. The best way to gauge the capability of an
organisation is to observe how it behaves during
a crisis, that is, when good practices are most
important and that is when software professionals
often have the least guidance.

The capability maturity model has had major
impact on software organisations throughout the
world. It is based on knowledge acquired through
the software process assessments and extensive
feedback from both the industry and the Govt. The
capability maturity model was initially applied to
the Govt and the military software development,
but its use is now spreading to many industrial
sectors as well. A comparison is unavoidable
between the IS0 9001 model-a generic certification
standard for software organisations and the
capability maturity model, as both share a common
concern for quality and deal with the process
management. Though, both are driven by similar
concerns and are intuitively correlated, but they
differ in their underlying philosophies. However,

DEF SCI J, VOL. 53, NO. 4, OCTOBER 2003

the capability maturity model is deeper and
comprehensive than IS0 9001"-'4.

5. SOFTWARE MATURITY FRAMEWORK

In launching an improvement program, it
is necessary to first consider the characteristics
of a truly effective software process. It must
be predictable in terms of cost estimates and
scheduled commitments, and the resulting
products should generally meet user's functional
and quality expectations.

The software process maturity defines a
framework for software process management
that specifies some characteristics that the
process must have to qualify as a process of some
maturity. The primary objective of the maturity
structure is to achieve a controlled and measured
process as the foundation for continuous
improvements. But this maturity structure is to be
associated with an assessment methodology and
a management system.

The management system assesses the
position of an organisation and identifies its specific
maturity status. This can help the organisation
to concentrate on those items that will help it
advance to the next level. Poor project
planning generally leads to unrealistic schedules,
inadequate resources, and frequent crises. Several
factors like an ill-defined process, inconsistent
implementation, and poor management can limit
the effective use of software technology.

6. SOFTWARE PROCESS IMPROVEMENT

The first step in addressing software problems
is to treat the entire software task as a process
that can be defined, controlled, measured, and
improved. For this purpose, a process is defined
as a set of tasks that, when properly performed,
produces the desired results. To improve their
software capabilities, organisations must take the
following steps:

(a) Understand the current status of their development
process or processes

(b) Develop a vision of the desired process

(c) Establish a list of required process improvement
actions in the order of priority

(d) Produce a plan to accomplish the required
actions

(e) Assign/allocate the resources to execute the
plan, and

(f) Start over at step (a).

For an organisation, however, the processes
are more than a sequence of steps; these encapsulate
the collective experience of that organisation
capturing the past experiences in executing projects
and enabling the organisation to leverage this
experience in future projects, leading to process
improvement. The CMM framework suggests a
way for an organisation to gauge its progress. It
roughly parallels the quality maturity structure and
characterises the software process into one of the
five maturity structure levels.

7. CAPABILITY MATURITY MODEL

The capability maturity model is a five-level
model15 designed so that capabilities at lower stages
provide progressively stronger foundations for higher
stages. The capability maturity model is based on
principles of product quality given by Shewart1,
Deming, Juran and Crosby. The model describes
an evolutionary path from ad hoc, chaotic process
to mature, disciplined software processes.

The five maturity levels describe successive
foundation for continuous process improvement.
The levels define an ordinal scale for measuring
process maturity and evaluating process capabilities.
The levels also help an organisation to improve its
efforts for developing the software in a better
way. Understanding something of the conditions
that determine where one is and where one can
hope to be, is often the key to growth, for turning
the comer from chaotic software to a more controlled
and manageable process.

7.1 Process Maturity Levels

The capability maturity model's five levels of
process maturity1.l6 are: (i) initial, (ii) repeatable,
(iii) defined, (iv) managed, and (v) optimising.

BHATTACHARYYA: SOFTWARE PROCESS MANAGEMENT

At the initial level, software projects depend
on the technical skills and often heroic efforts of
specific individuals. These proceed in an ad hoc
fashion from one issue to another. At the repeatable
level, the focus is on establishing effective project
management controls meant to enhance product
quality and to improve the project's ability to
set and meet reasonable time and budget
commitments.

4 At the defined level, the improvement efforts
concentrate on developing tailored software processes
to be used throughout the organisation. At the
managed level, the emphasis is on monitoring the
software processes quantitativeIy and improving
these to better meet product quality goals. Finally,
at the optimising level, quantitative data are used

consistently to improve the organisation's processes
on an ongoing basis.

7.2 Key Process Areas

An organisation's current development
process is evaluated against the key process
areas of the capability maturity model, and the
assessment provides the organisation with a list
of actions that need to be taken to improve its
development p r o c e ~ s ' . ~ ~ . ~ ~ ~ ~ ~ . The software engineering
institute's level for a project or an organisation is
defined as the level at which all associated key
process areas are considered strength, i.e., all key
process areas average scores must be equal, say,
7 on a 10-point scale or more. The key issues of
each level that needs to be addressed to move to
the next higher level, are given in Table 1.

Table 1. Key process areas of software capability maturity model

Level Focus Key process areas

5 Continuous process improvement Defect prevention
Optimising Automation of software process

Technology change management
Process change management

3
Defined

4
Managed

2
Repeatable

1
Initial

Product and process quality

Engineering processes and
organisational support

Quantitative process management

Software quality management (SQM)

Organisation process focus

Organisation process definition, establish
software engineering process group (SEPG)
Training programme
Integrated software management, software
configuration management
Software product engineering
Intergroup coordination
Peer reviews

Project management processes Requirements management
Commitment
Software project planning
Software project tracking and oversight

e Software subcontract management
Software quality assurance (SQA)
Software configuration management (SCM)

- Competent people and heroics

DEF SCI J, VOL. 53, NO. 4, OCTOBER 2003

Apart from the key process areas listed, training
and change principles are the other important key
areas that need to be addressed.

7.3 Training

Generally, large software teams contain a mix
of talents. Work needs to be allocated based on the
individual's capability. Though it is always desirable
to have the best people, but it is always best to do
with what is available. Besides, it is necessary to
keep in mind the emotions, feelings, and the type
of motivation required for the people involved. The
three major components of creativity that need to
be addressed are expertise, creative thinking, and
motivation. It is, therefore, essential to continuously
train people at various levels to bring out their full
potentials.

7.4 Change Principles

A single factor, which stands out above all
other key process areas, is the process change.
The six basic principles of software process change
are:

(a) Major changes must start at the top

(b) Ultimately, everyone must be involved

(c) Effective change requires a goal and knowledge
of the current process

(d) Change is continuous

(e) Software process changes will not be
retained without conscious effort and periodic
reinforcement

(f) Software process improvement requires
investment.

8. CASE STUDY

As a case study, the software development
process of the light combat aircraft-digital flight
control computer (LCA-DFCC) has been taken
up. The LCA-DFCC software is quad redundant
mission-critical software based on DOD MIL STD
2 167A.

The development process started by
generating the software requirements specification

(SRS) based on the project requirements. The softwarae
requirements specification was reviewed and analysed
before the commencement of the design phase.
Next, software development plan (SDP), software
test plan (STP), and software quality program plan
(SQPP) documents were generated. At this stage
of software development, three core teams-teams
for the design, testing, and quality were formed.
Design reviews were conducted, followed by coding,
testing, and integration. Quality was ensured at all
stages of system design and integration. At each
step of the development phase, RDD 100 computer-
aided software engineering(CASE) tools were used
and quality checks were conducted. Appropriate
metrics were used throughout the process. Standardised
process was set for estimating, coding, and quality
assurance. The entire phase of development followed
the incremental model. All test results were documented
and development folders were maintained for each
software module by every designer of the module.
These folders were then audited by the quality
assurance team. Verification and validation
were also done for every software module.
Configured files like design files and test files were
maintained for use by the software configuraion
management (SCM) team. The fully developed
software finally passed through an endurance test
and is now functional.

9. A SUGGESTED APPROACH

On thes basis of the case study, an approach
has been suggested for improving the process of
developing software. Before any form of process
management can begin, the status quo must be
understood. Whatever be the existing process, no
matter how ill-defined, it must be documented so
that it can be used as a point of reference
for process improvements. The main objective of
process management should always be kept in mind
at all times; to develop a software product to meet
the customer's needs, maintaining the quality of
the product, and meeting development time
schedules. The starting point for selection of a new
process improvement is to recognise the
need with the overall goal of at least maintaining
productivity, if not increasing it. Real-time adjustments
to the process improvement may be needed to

BHATTACHARYYA: SOFTWARE PROCESS MANAGEMENT

keep the project working efficiently. To improve an essential step towards continuous process
the process the five points to be followed are: improvement. Appropriate computer-aided software

engineering tools like those based on unified
Keep it simple modelling language need to be chosen to document

the methodology. The use of computer-aided software
Emphasise productivity engineering tools is essential for the entire development

Emphasise quality process.

Emphasise cycle time

Avoid process for its own sake.

9.1 Model the Existing Process

The first step towards process improvement
is to define the p r o c e ~ s ' ~ . ~ ~ . A process-definition
document must .include information to be used
by the management, SQA and SCM auditors
(representing the customer) and the developers.
The process definition must be reviewed and agreed
upon by all the groups responsible for each phase.
Generate elegant specification and automated
analysis, understandable and usable definitions.

It is necessary to document the methodology
that has been in vogue, define the software
requirements specification of the project/organisation,
standards used, the sequence of activities involved,
the documentslreports available at various steps,
and other such details. The software requirements
specification serves as a central project document-
a defining factor in relation to other elements
of the project plan. It is also necessary to decide

Then, model the existing process. There are
various forms of modelling, but if one is to
make a start from the initial level, it is probably
sufficient to record the life-cycle model in use
and then make a PERT chart of typical activities.
However, this would be very vague, since many
interactions and common paths would simply not
be remembered.

The software process model helps to capture
three views: (i) functional-to define the tasks that
make up the process, (ii) organisational-to identify
the performers of those tasks, and (iii) behavioural-
identify the development techniques needed to
perform those tasks, check when the tasks are
to be performed, and check out the relationships
existing between all the tasks in the process. Besides
the generation of the software requirements
specification, it is also necessary to generate three
more documents, ie, (i) software development plan,
(ii) Software test plan, and (iii) software quality
programme plan.

9.2 Assess the Existing Process
on some standards to be followed. The IEEEIEIA
12207 is one of the key integrating software Once the status to the process has been accorded,

engineering standards that provides a framework it must be assessed. It is preferable to seek assistance

for developing and managing software2'. Its main from external independent consultants specialising

purpose is to establish a common framework for in software assessments who can usually focus on

the life cycle of a software. It contains concepts weak portions of a software process based on the

and guidelines to foster better understanding and past experience. However, this activity turns out

application of the standard and provides a simple to be expensive both in terms of time and money.

model for integrating and coordinating the SEI It is "OW that the pian and

CMMs for a comprehensive process improvement other plans are reviewed. The software development

effort. Subsequently, at all stages of the development plan defines the software design. Ensure conceptual

processlprocesses, use standards compliant to integrity, as this is the most important consideration

IEEEIEIA 12207. in system design. The main objective is to identify
the strong and weak points of the existing software

The adoption of standardised processes for process as a basis for the next step. The analysis
estimating, coding, and quality assurance is process is necessary to ensure that the requirements

BHATTACHARYYA: SOFTWARE PROCESS MANAGEMENT

the system design to the final phase of software
integration of all the modules.

The design-testing phase is an iterative loop.
Test results are to be documented. All modules are
finally integrated and tested. This is followed by
the integrated verification and validation of the
developed system software. Development folders
must be maintained for each software package
by every individual, which must be audited by the
quality assurance team. Configured files like the
design files and the test files are maintained for
use by the SCM team. Schedule the software

as in Fig 5.

No part of the schedule is so much affected
by sequential constraints as component debugging
and system test. Furthermore, the time required
depends on the number and subtlety of the errors

33.33 % : PLANNING FOR DETAILED SPECIFICATIONS

16.66 % : CODING

25.00 % : COMPONENT TESTS AND EARLY SYSTEM TESTS

25.00 % : SYSTEM TEST, ALL COMPONENTS IN HAND

Figure 5. Software tasks schedule

encountered. It is necessary to allocate more time
for testing as delay always comes at the end of
the schedule.

9.5 Define Success Criteria

Success criteria are the refinement of the overall
goal of software process management. The top
management plays a key role in process improvement.
Without specific success criteria, an organisation
can never know when a process improvement
initiative has been successful. Success criteria
depend on the strategy chosen, eg, choosing
the requirements generation as process weakness.
Success is defined say, by some quality metrics,
that 99 per cent of the designers have used the
design process methodology/technology identified
in the next steps.

The Lynch and Cross's performance pyramid
modeP5 for business operating systems (Fig. 6)
can be adopted by an organisation. An organisation
works at various management levels. The highest
management level of the organisation namely the
corporate level, has to provide the vision, determine
the overall framework, and also ensure that the
spirit of the implementation is understood besides
providing resources. Various entities are important
at each of these levels, both from the external and
the internal point of view. The pyramid identifies
the prime concerns and objectives and metrics at
each level.

STRATEGIC BUSINESS UNITS

OPERATIONAL UNITS AND CORE PROCESSES

E
DEPARTMENTS, WORK CENTRES,
PRODUCT TEAMS

E
INDIVIDUALS

(e EXTERNAL EFFECTIVENESS --+(t INTERNAL EFFECTIVENESS -*(
Figure 6. Performance pyramid

DEF SCI J, VOL. 53, NO. 4, OCTOBER 2003

At the operational level, the core processes
are finalised that set the directions for work centres.
These decide what initiatives to be taken in
the direction of achieving customer satisfaction,
productivity, and bringing out flexibility in the
organisation. At the individual level, it is
how the individual's performance is managed in a
systematic way so as to result in better quality of
the product, on time delivery, waste minimisation,
and cycle time improvement.

9.6 Investigate Technologies

The next step would be to identify appropriate
tools and techniques. Examine the effect of
application of the weak points across various sections
of applications like system software, real-time
software, embedded software, etc. Explore new
technologies, which could eventually aid in process
improvement.

It is also essential to attend technology-centric
conferences and expositions, working with user
groups and professional groups, and participating
in software engineering courses at reputed institutes.
This will provide an opportunity to meet and exchange
views with the people from other organisations
who are faced with similar problems.

9.7 Acquire & Introduce Technology

Technology acquisition has two parts:
(i) methodology and (ii) tools. It is necessary to
use tools at all levels of process development.
Select appropriate software technologies to
suit the need and appropriate tools to support
these techniques. This decision however springs
from the operating systems and the development
languages to be used. Procure the right kind of
computer-aided software engineering tools to suit
the need. Performance simulators should also be
used. The next step is to find a good source of
technology training and use it.

9.8 Change Corporate Culture

The key is to focus on people realising the
consequences of choices they make. Organisations
should structure their policies by the kinds of

consequences, such as positive or negative,
immediate or future, certain or uncertain.
This approach to corporate behaviour is extremely
effective once new tools and technologies have
been successfully introduced by defining the process.
Besides, maintaining the integrity of all software
work products is essential for any software
development organisation.

9.9 Monitor Process Improvement

Once a process is started, it is necessary to
ensure continuous process improvement. Establish
Software Engineering Process Group (SEPG) for
this purpose. The SEPG will monitor the process
using suitable metrics and recommend changes for
further progress.

9.10 Crux

(a) It is necessary to have flexible process techniques
that have a balance of structure and creativity.

(b) Handle projects (2002-03) using task automation
and repeatable techniques to achieve high
productivity and tighter schedules.

(c) Emphasise on incremental and iterative
development processes with the state-of-the
art CASE tools.

(d) Process change will come about only if one
uses the object-oriented approach, from the
requirements generation to the coding level.

(e) evel lop a historical projects database26 (HPD)
of all the released and closed projects, for
data storage, metrics analysis and reporting,
which are accessible to the entire organisation
through the intranet. The project data is collected
throughout the entire life cycle of a project.
The historical projects database will contain
project-related information, lessons learnt, work
breakdown structure, metrics data, and project
teams details.

(f) Maintain reusable software components library

(g) By continuously monitoring the feedback
from the software life cycle activtties and
plugging the deviations back into the process,

BHATTACHARYYA: SOFTWARE PROCESS MANAGEMENT

it can be ensured that the quality of the software
delivered to the customer is highly dependable
and reliable.

However, given the costs these incur, process
improvements must be undertaken with a view to
return on investment. One could easily setup a
high SEI-maturity organisation that would suffer
from slowed delivery times and reduced productivity
if the process was followed for process's
sake. Thus, in addition to the traditional SEI CMM
emphasis, one must tailor the processes and focus
on cycle time.

Process improvements, as well as the rationale
and expected benefits of the changes, should be
communicated to all concerned projects and groups.
The organisation should develop a deployment plan
for the updated processes and monitor conformance
to that deployment.

General survey shows that each level of capability
maturity model improves quality by a factor of
about 2. A project can hope to gain enough from
a single well-chosen method improvement to repay
the time and money invested in the change. Projects
cannot realistically hope to accommodate more
than one method improvement over their duration.

10. CONCLUSION
Capability maturity model is required to come

up with updates taking into account the experiences
from the last 10 years. Nevertheless, capability
maturity model is definitely the standard that sets
the pace. At present, it is the framework that
allows benchmarking, and that contributes most to
solving software engineering crises-just by defining
standard terminology and condensing industry best
practices. Nevertheless, SEI is working with the
International Standards Organisation in its efforts
to build international standards for software process
assessment, improvement, and capability evaluations.
This effort will incorporate concepts from many
process improvement methods.

To make major process improvements, software
organisations need an overall plan, some dedicated
people, clear goals and management's commitment
to these goals. As the software process evolves,

new methods and better approaches will undoubtedly
be found. To make progress, assign the job to
some capable people and get started.

ACKNOWLEDGEMENTS

The author is grateful to the Director
RCI, Hyderabad, for his immense support and
help, the Director, Aeronautical Development
Establishment (ADE), Bangalore and Shri K.A.
Ramakrishna, Scientist G, Head, Software
Engineering Division, ADE, Bangalore, for their
support, suggestions, and guidance. The author
also sincerely acknowledges Dr R.N. Biswas, Ex-
Director, Computer and Information Centre,
and advisor DRDL, Hyderabad, Dr A.L. Moorthy,
Scientist-F, DRDL, Hyderabad, and the reviewers
for their valuable suggestions, guidance, and support.

REFERENCES

1. Humphrey, Watts S. Managing the software
process. Software Engineering Institute, Addison-
Wesley Publishing Company, 1990.

2. Yamamura, George. Process improvement
satisfies employees, IEEE Software, 1999,16(5),
83-85.

3. Florac, William A.; Park, Robert E. & Carleton,
Anita D. Practical software measurement:
Measuring for process management and
improvement. Report No. CMUISEI-97-HB-
003, 1997.

4. Carleton, Anita D, et al. Software measurement
for DoD systems: Recommendations for initial
core measures. Report No. CMUISEI-92- 19,
1992.

5. Saraswathi, K. & Varanasi, Ashima. An approach
to process improvements-NIIT experience.

6. Dutta, Soumitra; Lee, Michael & Wassenhove,
Luk Van. Software engineering in Europe: A
study of best practices. IEEE Software, 1999,
16(3), 82-89.

7. Dion, Raymond. Elements of a process
improvement program. IEEE Software, 1 992,
9(4), 83-85.

DEF SCI J, VOL. 53, NO. 4, OCTOBER 2003

8. Jalote, Pankaj. Excerpts from CMM in practice.
Better processes for better quality. Dataquest,
2000, 18(3), 167-75.

9. Putnam, Lawrence H. Process improvement
in organizations. Dataquest, 1999, 17(20),
183-86.

10. Diaz, Michael & Sligo, Joseph. How software
process improvement helped motorola. IEEE
Software, 1997, 14(5), 75-8 1.

11. Paulk, Mark C. How IS0 9001 compares with
the CMM. IEEE Software, 1995, 12(1), 74-83.

12. Excerpts from IS0 9000, Vol. 2: The switchover.
Dataquest, 1999, 17(5), 194-98.

13. Paulk, Mark C. A comparison of IS0 9001
and the capability maturity model for software.
Report No. CMUISEI-94-TR- 12, July 1994.

14. Parker, David. Quality assured in software.
Dataquest, 1999, 17(22), 173-75.

15. Abrachan, P.A. Quality-need of the hour.
Dataquest, 1999, 17(2 1), 174-79.

16. Pressman, Roger S. Software engineering-a
practitioner's approach. McGraw Hill Edition,
200 1.

17. Goldenson, Dennis R. & Herbsleb, James D.
After the appraisal: A systematic survey of
process improvement, its benefits and factors

that influence Success. Report No. CMUISEI-
95-TR-009, 1995; ESC-TR-95-009, 1995.

18. Wiegners, Karl E. & Sturzenberger, Doris C.
A modular software process mini assessment
method. IEEE Software, 2000, 17(1), 62-69.

19. Henry, Joel & Blasewitz, Bob. Process definition:
Theory and reality. IEEE Software, 1992, 9(6),
103-05.

20. Godbole, Nina. Software process improvement.
Information Technology, 1999, 8(3), 64-68.

21. Ferguson, Joan & Sheard, Sarah. Leveraging
your CMM efforts for IEEEIEIA 12207. IEEE
Software, 1998, 15(5), 23-28.

22. Rozum, James A. Defining and under-
standing software measurement data. In Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA

23. DeMarco, Tom. The deadline-A novel about
project management. Dorset Publishing House,
1997.

24. Brooks, F.P.(Jr). The mythical man-month. New
. York, Addison Wesley, 1995.

25. Sinha, Sushil. Improving organisation effective-
ness through metrics-based processes. Texas
Instruments (India) Limited, Bangalore.

26. Rao, Kiron K. & Shah, Bharat P. Continuous
process improvement in software development.
International Software Division, Blue Star Limited.

Contributor

Ms Arundhati Bhattacharyya obtained her postgraduation in Physics (Electronics)
from the University of Hyderabad (Central University). She had also acquired
a postgraduation engineering in Software Systems from the Birla Institute of
Technology and Science (BITS), Pilani. She joined DRDO as Scientist B after
completing one year Electronics Fellowship Course at the Institute of Armament
Technology (IAT), Pune. She is currently working as Scientist E at the Research
Centre Imarat (RCI), Hyderabad, in the field of avionics software. Her areas of
interest include: Information technology and design of software systems.

	Monday, July 24, 2006 (11).bmp
	Monday, July 24, 2006 (12).bmp
	Monday, July 24, 2006 (13).bmp
	Monday, July 24, 2006 (14).bmp
	Monday, July 24, 2006 (15).bmp
	Monday, July 24, 2006 (16).bmp
	Monday, July 24, 2006 (17).bmp

