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ABSTRACT

In the literature on dynamics of tension leg platforms (TLPs), the effect offrequently occurring
environmental forces, such as those arising due to wave, wind, current, tide, etc. has given the due
consideration. However, less probable forces, such as that arising due to collision ofship with iceberg
or any huge sea creature, etc., have not been considered in the study. Such small duration impact
forces, usually termed as impulsive forces, may take four possible shapes: (i) rectangular, (ii) sinusoidal,
(iii) triangular, and (iv) half-triangular. In the present study, response ofTLP has been obtained for
all these four shaped impulsive forces. The result ofthe analyses shows that there is a dramatic change
in surge, heave, and yaw responses of TLP due to such forces. In addition, a comparative study to
find the most influencing impulsive force out of these four has also been conducted.
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Force vector due to environmental and
impulsive forces

Sea wave height

Nonlinear coupled stiffness matrix

Mass matrix

Sea wave period

Water particle velocity

Water particle acceleration

Current velocity

Velocity of structure

{Z} Instantaneous TLP response

1. INTRODUCTION

A tension leg platform (TLP) is a moored floating
compliant structure whose buoyancy is more than
its weight. The supporting structure ofTLP consists
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SEA
SURFACE

of a hull, tethers, and templates. The hull is a
buoyant structure with deck at its top. The pontoons
and columns provide sufficient buoyancy to maintain
the deck above the sea waves during all sea states.
The hull is anchored to the sea bed through tethers
and fixed in place with templates (Fig. 1).

HULL

environmental forces, such as those arising due to
wave, wind, water current, tide, etc., has been
given due consideration. However, less probable
forces, such as those arising due to collision of ship
with iceberg or any huge sea creature, etc., have
not been considered in the study. Such small duration
impact forces, usually termed as impulsive forces,
may take four possible shapes: (i) rectangular, (ii)
sinusoidal, (iii) triangular, and (iv) half-triangular.
In the present study, response of TLP has been
obtained for all these shaped impulsive forces.
Result of the analyses shows that there is a dramatic
change in surge, heave, and yaw responses of TLP
due to such forces. In addition, a comparative
study to find the most influencing impulsive force
out of these four impulsive forces has also been
conducted. Some parametric studies have also been
included.

2. MATHEMATICAL FORMULATION
TETHERS

2.2 Estimation of Wave & Current-induced
Forces

where {Z} is instantaneousTLP response corresponding
to surge, sway, heave, roll, pitch, and yaw motions.

The wave and current-induced normal force,
F

n
on TLP columns and pontoons have been estimated

using the following modified Morison's' equation.

7tD2 r .. ] 7tD2
..

Fn =PwCM--Lan -Un +Pw--Un +
4 4

~PwCDDIVn -u, + Vcl(vn -u, + VJ (2)

(1)[M]{Z} +[C]{Z} + [K]{Z} ={F}

2.1 Equation of Motion

For the dynamic analysis of TLP under
environmental and impulsive forces, it is assumed
that the TLP is a rigid body and it has six DOFs
viz., surge, sway, heave, pitch, roll, and yaw. With
this major assumption, the following equations of
motion have been derived which represent the dynamic
equilibrium in inertia, damping, restoring, and exciting
forces:

SEA BED

F-igure 1. Tension leg platform

Literature review reveals that the response
behaviour of TLP under frequently occurring

Though in the last decade, a good number of
research papers have appeared in literature, these
papers cover different aspects of dynamic analysis
of TLP. Kareem and Li I presented a frequency
domain analysis procedure to evaluate wind-excited
surge response of a TLP in the presence of waves
and water currents. Vickery' examined the combined
effect of wind and wave loads on the response of
the TLP. He compared theoretical results with
experimental findings and observed a good agreement
between these. Ahmad' carried out stochastic dynamic
analysis ofTLP in time domain under long-crested
random sea, considering six degrees-of-freedom
(DOFs). Lee and Pei-Werr' investigated the dynamic
behaviour of TLP having a net cage system when
subjected to incident waves and flow drags.
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In the present study, water particle velocity
and acceleration have been obtained using Airy's
theory which gives accurate results in deep-water
conditions",

IMPULSIVE
FORCE

COLUMN COLUMN

2.3 Impulsive Forces

In the sea environment, there is a possibility
of impact or impulsive forces on TLP hull due to
collision of ship with iceberg or any huge sea
creature, etc. In literature, four shapes of impulsive
forces are usually reported. These are rectangular,
sinusoidal, triangular, and half-triangular (Table 1).

WAVE

COLUMN

L

COLUMN

Figure 2. Impulsive force acting on column I
Table I. TLP response under Impulsive forces

3. NUMERICAL STUDY

For the numerical study, one requires physical
characteristics of'the TLP together with hydrodynamic
and aerodynamic properties of the surrounding

The response analysis ofTLP under the impact
of these impulsive forces has been carried out
under the following assumptions:

Type of Peak response
impulse Surge Heave Tether Yaw

(with wave) (m) (m) tension (N) (rad)

No impulse 18.00 0.364 1.21xl08 4.86xlO-7

Rectangular 25.40 1.410 3.8IxI0' 6.78xI0- 1

Sinusoidal 21.93 0.883 2.05x108 4.93x 10"

Triangular 20.87 0.764 1.70x108 4.16><10- 1

Half-triangular 19.65 0.636 1.21 x108 3.42xlO-1

0.8

1.8

11.2

3.34x1O'

500.0

26.6

2.095xIOIl

44.1

9.25

2.095x107

1.245x10'

58.3

1.40,0.15

72.5

14.2

0.40

5806

5257

29.15,29.15, and 32.15

CharacteristicsParameters

Tether diameter (m)

Axial stiffness (tim)

Weight of tether (tons)

Radii of gyration
(Rx,R),Rz) (m)

Breadth ofTLP hull (m)

Diameter of comer
columns(m)

Diameter of the
pontoon (m)

Length ofhull (m)

CG above SWL (m)

Mass of platform (kg)

Total tether pretension (N)

Centre-to-centre spacing (m)

Current velocity near sea
surface and at sea bed (mls)

Buoyancy (N)

Water depth (m)

Draft (m)

Modulus ofelasticity of
steel (N/m2

)

Sea drag coefficient, CD

Sea inertia coefficient, CM

Table 2. Geometrical and mechanical characteristics' of
TLP under study

environment. These physical characteristics and
properties are shown in Table 2.

Peak magnitude of the impulsive forces is
5 x 108 N

The impulsive force acts on column number 1
as shown in Fig. 2

Duration of all the impulsive forces are 0.6 s
and these act on the' structure at the time
of 200 s

Both the body and the object that imparts
impulsive forces to TLP columns are rigid

Impulsive forces are acting at the point where
resultant of wave forces act

•

•

•

•

•
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Table 3. Simulated sea states'

Sea state Wave height Wave period Probability of
(m) (s) occurrence

81 17.15 13.26 0.00000037

82 15.65 12.66 0.00000238

83 14.15 12.04 0.00001437

84 12.65 11.39 0.00007980

85 11.15 10.69 0.00040572

86 9.65 9.94 0.00187129

87 8.15 9.14 0.00773824

88 6.65 8.26 0.02822122

S9 5.15 7.26 0.08851105

S10 3.65 6.12 0.22831162

S11 2.15 4.69 0.43542358

S12 0.65 2.58 0.20942036

A TLP in its design life is subjected to infinite
number of sea states represented by various wave
heights and wave periods. However, for convenience,
twelve representative sea states, described in terms
of waveheightsandwaveperiodshave been considered.
In the present study, these representative 12 sea
states are taken from Siddiqui and Ahmad? and
presented in Table 3. For these twelve sea states,

a nonlinear dynamic analysis has been carried out
in time domain and responses obtained are
analysed.

4. RESULTS & DISCUSSION

Table 4 presents RMS responses of surge,
sway, heave, pitch, roll, yaw, and tether tension for
12 sea states (Sl to S12). The table shows that
as one moves towards less severe sea state (i.e.,
from S1 to S12), all the responses are decreasing.
This trend is expected. A comparison of tether
tension between the sea states S1 and S12 shows
that the difference is about 31 per cent wrt sea
state S1. This indicates that difference in tether
tension for a least-probable sea state and most­
probable sea state is considerable. However, for
surge and heave responses, differences are about
98 per cent and 100 per cent, respectively. This
shows that though the surge and heave responses
are the major causes of an increase or decrease
in tether tension, their combined influence over the
tether tension is considerably less. The table also
shows that sway, roll, and yaw responses are almost
insignificant, but pitch response is significant at
least for the higher sea states.

Table 4. Response of TLP for 12 sea states

Root mean square (RMS)
Sea state Surge Sway Heave Pitch Ron Yaw Tether tension

(m) (m) (m) (rad) (rad) (rad) (N)

Sl 11.12 5.03xl0-6 1.50xlO·\ 1.74xlO·\ 5.38xl0·2 4.86xlO·7 4.62x107

S2 10.61 4.30x 10-6 1.35xl0·\ 1.65xlO·\ 5.14xlO·2 6.03xlO"7 4.51xl07

S3 10.01 3.55xlO-6 1.19xlO·\ 1.54xlO:\ 4.87xl0·2 3.68xlO·7 4.39xl07

S4 9.31 2.77xl0-6 1.02xlO·\ 1.39xl0·\ 4.55xl0·2 3.44xl0·7 4.25x107

S5 8.45 1.99xl0-6 8.4\)<10.2 1.19xlO·' 4.18xlO·2 3.19xlO·7 4.09xl07

S6 7.38 1.28xl0-6 6.39xl0·2 9.27xlO·2 3.74xl0·2 3.06xl0·7 3.90xl07

S7 6.00 5.68xI0·7 4.21xlO·2 5.76xlO·2 3.22xl0·2 1.63x10.7 3.65xl07

S8 4.25 5.34xlO·7 2.15xlO·2 1.56xlO·2 2.59xlO·2 1.31xl0·7 3.38x107

S9 2.25 1.91xl0·7 9.42xl0·3 9.60xlO·2 1.83x10·2 1.23xl0·7 3.52x 107

810 1.57 1.61xl0·7 4.72xl0·3 7.42xlO· 2 9.76xl0·3 7.85xl0·8 3.65x107

S11 1.58 8.36xl0·8 3.53xlO·3 2.94xl0·2 2.22xl0·3 3.05xl0·8 3.29xl07

S12 0.16 4.74xlO·\2 3.32xl0's 6.70xl0·3 4.89xl0·7 2.00xlO·\3 3.17xl07
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Figure 3. Yaw response of TLP for sea state 86 without impulsive force

Since the impulse force is acting on column 1,
it is getting a large lever arm, which provides a
large yaw moment to the TLP. It is due to this
reason that the yaw response, which was almost
zero in the absence of impulsive force, increases
substantially at 200 s and then decreases gradually,
due to the presence of damping forces (Figs 3 and 4).

6.0E+OI

4.0E+OI

Table 1 shows the comparison of peak responses
obtained from four different impulses. It was observed
that there is a significant variation in almost all the
responses. For rectangular impulse, the change in tether
tension is maximum and it is about 90 per cent more
compared to no impulse, and the changes in responses
are found to be minimum for the half-triang ular impulse.
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Figure 4. Yaw response of TLP for sea state 86 with sinusoidal impulsive force
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5. CONCLUSIONS

In the present study, responses in all the six
DOFs are obtained for 12 simulated sea states, for
waves coming parallel to the x-direction. It is observed
that for all the sea states, surge, heave, and pitch
responses are considerable and sway, roll, and yaw
responses are insignificant. It is also seen from
these responses that the sea state, which has minimum
probability of occurrence, gives maximum response
and the sea state which has maximum probability
of occurrence gives minimum response, Responses
obtained under combined wave and impulsive forces
showed that impulsive forces dramatically change
the responses of the TLP, It is also observed that
rectangular shaped impulsive forces are the most
severe in comparison to other impulsive forces,
The present study thus concludes that such impulsive
forces, though less probable, must be considered
in the designing of ships, etc" to avoid serious
consequences,
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