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ABSTRACT 

A constitutive theory for snow, developed by the authors, is applied to solve for the short-term 
settlement of footine on snow foundation. The constitutive law used is a microstructurally-based formulation ~~~ ~~ ~ ~ - 
whish includes the effects of bond deformation and fracture. I t  also ~nc ludes  tranile") creep effects and 
strain hardenine ofsnow The foundation problem is solved for stress and displacement distr~hut~on. ulth -~~~~~~~ ~~~ ~ 

two different l&ds of 0.008 MPa and 0.'1 MPa distributed uniformly oveia part of the top face. The 
stress distribution matches closely with the existing theoretical results. 

Keywords: Constitutive theory of snow, transient creep effects, bond deformation and fracture. strain 
hardening of snow 

1. CONSTITUTIVE THEORY 

Snow existing under equitemperature conditions 
is made of spherical ice grains connected by bonds 
or necks. The constitutive behaviour of snow is 
determined by the size of the ice particles and the 
geometry of bonds connecting the  grains. 
Because of their smaller cross-section, the bonds 
or the necks are subjected to much higher stresses 
when compared to the ice particles, and therefore 
undergo large deformations. It is the straining a f  
necks which is responsible for deformation of snow, 
particularly a t  low stresses. At higher stresses, 
the necks undergo fracture, and interparticle slip 
becomes a significant deformation mechanism. It 
is this relative displacement between the particles 
responsible for strains in snow at large stresses. 
At these stresses, snow behaves somewhat like 
other granular materials. The deformation of snow 
is therefore an averaged effect of  the deformation 
o f  the unbroken necks and o f  relative sliding 
between particles with broken necks. 

Rev~sed 18 October 2000 

A constitutive theory taking into account these 
deformation mechanisms, has been suggested by 
Mahajan and Brown'. In this theory, the stresses 
at the points of  contact of  a representative particle 
are calculated using the  variational approach 
suggested by Kanatani2. Next, the strains in the 
necks are calculated using equations developed for 
constitutive behaviour of ice. If fracturing of necks 
takes place, empirical relations are developed to 
model the strains a t  the contact points. due to the 
relative sliding between ice particles. The strains 
are then averaged, over the repcesentative particle. 
to obtain the strains in snow. 

Consider a typical ice grain and the necks or 
bonds which connect it to other grains. To calculate 
the stresses in the necks, a local coordinate system. 
as illustrated in Fig. I ,  is setup at the contact point. 
The stress vector at the contact point or the ice 
neck is resolved into three components along the 
coordinate axis of this local coordinate system. 
The unit vectors for this coordinate system are: 
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Figure I. Coordinate system: 1-2-3 global coordinate system 
centred at ice particle centre. 1'-2'-3' neckcoordinate 
system centred at the centre o f  neck. 

111~ =cosa cospe, +sina sinpe, - shoe ,  

HI? = -- sin a el + cosa e2 

NI, =cosa sinp el t sina cospe2 +cospe, 

Tlie stress vector in  the necks, on the face 
with normal $7, is given by 

where a" is the traction vector on the bond. A,  is 
the contact area. P is the probability of contact, y 
the density ratio defined as density of iceldensity 
of snow, cr is the particle size and I" is the traction 
vector on snow. 

The vector rl is same vector as m, in Eqn ( I )  
above. Tlie components of stress on the face with 
normal 11 are given as 

The strain rates in the necks are based 
on the theory developed by Szyszkowski and 
Glockner3 and are given by the following relations: 

where 

In Eqn (4) v is the Poisson's ratio; E is the 
Young's modulus, j is the creep compliance, and 
v, and v, are constants. The sv is the deviatoric 
stress. The strain rate is decomposed into elastic, 
recoverable creep and plastic components. 

The expressions for various components as 
observed from Eqn (4) are: 

. (I tv) . v . 
e,, =- 

E 0 4  - E a k k S , ,  

If averaging is done over the area of contact a"" 
lying between the solid angle imbedded by angles p ' l  

' I  
u to a + A a  and p to p + Ap, one obtains: V z  
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Instead of directly solving the ~ntegral  
in Eqn (8), Szyszkowski and Glockner3 have 
approximated Eqns (8) and (9) by a generalised 
Kelvin body in series with a nonlinear dashpot. 
The equations for the Kelvin body are written as 

(5b.)" +&;(a";)"-' = E,e; (no summation) (1 I) 

where e, is the effective v~scous stress tensor 

defined above, 6; is the component of effective 

stress in the spring and 6; is the "- component of 

effective stress in the dashpot. The value of the 
constants v, and v, depends on the stress in the 
necks. If the principal tensile stress in the neck 
is < 0.7 MPa, the constants v, and v, have values 
of 10.8 and 235, respectively. Otherwise, v, is 
equal to 5040. The values of the constants for two 
cases are different because the deforming 
mechanisms, as explained by Boyce and Spence', 
are different. For principal stress in necks is 
2 0.7 MPa, superplastic deformation occurs 
whereas for stress higher than this, dislocation 
creep becomes predominant. 

The strains in the ice necks are next transformed 
to the snow coordinate system by the equation: 

where Q is an orthogonal transformation matrix 
carrying the local coordinate system centred at the 
neck to the global coordinate system centred at ice 
particle centre (Fig. I ) .  

If the principal stress in necks is > 0.7 MPa 
and principal strain exceeds 5 x I@', it is assumed 
that the neck has lost the ability to carry principal 
tensile stress, and therefore fractures. After the 
occurrence of fracture, deformations in snow are 
due to interparticle sliding. 

The tangential and normal velocities and 
displacements are calculated using the equation 

where 5 and tnor are the velocity and the component 

of traction in the direction normal to the grain 

surface at the neck, respectively. The j i s  the 
tangential velocity, tau is the component of 
traction in the shearing direction, and disp is the 
relative displacement between the grains at a 
particular time. The expression Ildispm appears 
because as the sliding displacement increases, 
the particles form new contacrs with other particles 
and this impedes further relative displacement. 
This seems to account for much of the strain 
hardening in snow. The parameter m was obtained, 
using regression fit, as a function of effective 
strain in snow. The constant c,, in Eqns (14) and 
(IS), has a value of 3.906 x lo-'. The constant c, 
depends on the ratio of shear to compressive stress 
at the point of contact. If the absolute value of the 
ratio of shear to compressive stress is < 0.5, then 
c, is equal to 0.3. Otherwise, it has a value of 
0.40. The constant n has a value of 1.8. The 
parameters c,, c, and m have slightly different 
values for tensile stress states. For tension c, is 
5.468 x 10.' and c, is approx. 0.1. The strain rate 
is given by the expression: 

The strain in snow is the average of strain in 
all necks. 

where EosinPdadP on the right hand side is 
obtained from Eqn (1 3) or Eqn (1 7), depending on 



DEF SCI J, VOL 51, NO 4, OCTOBER ZOO1 

Figure 2. Foundation with stress of Q MPa (B = 0.45 m). 
Symmetry wrt x, allows only half-of- foundation and 
snowcover repion to be mnalysed. 

whether it is a broken neck or a neck undergoing 
superplastic deformation. The is the strain 
in snow averaged over the solid angle. 

2.  NUMERICAL SOLUTION 
I t  has been experi~nentally observed that for 

symtiletrical loading, the vertical and horizontal 
extent of the deformation zone (pressure bulb) in 
a foundation extends to about two times the width 
of the footing'. For simplicity. a rectangular area 
underneath the footing is considered as shown in 
Fig. 2. The dimensions of this rectangle are larger 
than the observed size of the pressure bulb. 

Plane strain has been assumed for this problem, 
and therefore, a 3-D state of stress exists. The 
method followed in solving these problems is a 
commonly used technique involving creep of 
structures. This method is closely linked to the 
elastic solution procedure. This relation between 
creep and elastic solutions derives from the fact 
that, after initial loading, creep strains arising during 
the passage of time require that stresses change 2 

by elastic straining to accommodate these changes'. 

The stress strain relation for isotropic elastic 
material is: 

where h and p are Lame's constants. This last 
relation can be written as . 

au, au 
0 . .  = h ( & - e & ) 6 , + p ( - + ~ - 2 e ~ )  (18) 
'I ax, ax, ax, 

Substituting this into the equilibrium equation, 
one gets: 

% a?; p ( ~ ~ ~ j ) + ( l + p ) A j ~ u ,  + pbj=1--+2pZh; (19) 
ax, 

For the case of plane strain, the reduced Navier's. 
equations are: 
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The boundary conditions are: 
G [( I+- I ) - "" + (1 - 2) *] + pb2 

Top face: (1-219 ax: (1-2v) ax: . . 

x, = 2.25 m Q =. Q, 0 s x, s 0.45 m 

Q = 0 x, > 0.45 m 

T,= 0 0 5 x, r; 0.9 m 

Using the above relations in the constitutive 
relations (Eqn (1 8)), one gets: 

Axis of symmetry: 

Bottom and right vertical side: 

and 

If the boundary conditions for the top face are 
substituted into Eqns (20) and (21), one obtains: 

[( ) % + ( l + ~ ) & ]  G 1+- 
(1 -2v) ax: (1.- 2v) & 

- - " [%+%+%) 
(l+vXl-2v) ax, ax, ax, (26) 

+2G(T;' +- dr:,) --- 2 w 2  

ax, ax, (I-2v) dx, 

aeS; +a; 
+2G(m, *,I 2 3-41 

(1 - 2v) ax, 

The symmetry boundary condition, in 
substitution into the Eqn (20), acquires the form 

It has been assumed that all the necks fracture 
after a certain time. The above differential equations 
with boundary conditions are solved using the 
finite deference method. Central finite differences 
have been used throughout. A grid with mesh 
refinement near the top face has been used. The 
problem was solved for two different values of 
Q,, namely 0.008 MPa and 0.1 MPa. 

Although not obvious, these equations are time 
dependent. The time dependence appears beoause 
the creep strains in the above equations change 
with time. The first step in solving these equations 
involves finding the elastic solution at time t = 0. 
For this the creep terms on the right hand side are 
set to zero. The stresses from this elastic solution 
are then used to calculate the creep strain rates 
using equations. Once the creep strains have been 
calculated from these creep rate equations, these 
are substituted in the above differential equations, 
which are solved for displacements at end of time 
step. The new stresses at the end of time step are 
next calculated. Due to the rather complex nature 
of creep equations, it is not possible to use implicit 
method to integrate the creep strain rate equations 
and the explicit methods have been used, posses 
a big limitation on the size of the time step. 
The grain data reported by Hansen was used. For 
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a compressive stress of 8 x 10.' MPa with a time 
step of 120 s, a steadystate of stress is not reached 
even after 300 iterations, although the rate of 
change of stress does exhibit a decreasing trend. 
For instance, the rate of change of the largest stress 
decreases from 1.5 x lo4 MPa/hr at the beginning 
to 3 x 1e9 MPaIhr by the 300" iteration. Since this 
rate of change is small, it was decided to assume a 
steadystate of stress after 3000 time steps. 

For Q equal to 0.1 MPa, there are areas under 
the loading where stresses are high enough to cause 
the neck fracturing after a very small period of 
time. On the other hand, there are areas away 
from the loading region at which the stresses are 
low enough that according to the theory developed, 
superplastic deformation should be taking place in 
necks. At the boundary of these two areas, there 
are regions where ice necks, at a particular solid 
angle, have a principal stress of, eg, 0.7 MPa at 
one grid point, and at the next grid point the 
orincival neck stress, for the same solid angle, is 
0.705 M P ~ .  In the theory it has been assumed that 
for stresses < 0.7 MPa superplastic deformation 
takes place, whereas for stresses greater than this 
value, deformation is due to sliding of particles. 
Therefore at the first grid point the neck is 
undergoing a superplastic deformation, whereas at 
the second grid point there is relatice sliding between 
the particles. This results in discontinuous strain 
rates (because the strain rates for superplastic 
deformation end sliding are different) and also leads 
to a situation where regions of low stress have 
higher strain rates as compared to regions with 
higher stress (superplastic strain rate at 0.7 MPa 
is higher than sliding rate at the same stress). To 
avoid this discontinuity in strain rates, it was 
assumed that necks remain intact for the first 50 
iterations, deforming according to the creep law 
for high stresses. After 50 iterations, all necks 
were assumed to  have broken, and relative sliding 
of particles was taken as the sole deforming 
mechanics for the whole problem. The solution 
becomes unstable rather quickly if this assumption 
is not made. 

the high stresses change negligibly, but the low 
stresses, instead of decreasing, begin increasing 
and the problem becomes unstable, as indicated by 
large changes in lateral stresses and a decrease in 
vertical displacement instead of an increase. It is 
possible that by use of a still smaller time step this 
problem can be remedied, but this would also result 
in an increased computational time. This instability 
seems to be associated with the strain hardeninp. - 
in that constitutive equation becoming significant. 
Most multiaxial creep problems are solved using 
implicit method, and even then a very short time 
step has to be used. So the instability with the use 
of the explicit method for strain hardening problem 
is not surprising. It was decided to  take the stresses 
at the end of 150 iterations as the stresses to be 
used for all future iterations. By imposing this 
restriction, the equilibrium equation is being violated. 
However, the change in maximum stresses by the 
150th iteration are small and this assumption was 
considered to be reasonable. 

For low compressive stress of 8 x 10.' MPa, 
the normalised vertical stress component [stress/ 

At this load it was found that with a time step Figure 3. stress by , hr for 
of 120 s the stresses continue to decrease, as was Q = a.008 MPa. The stress were assumed to 
expected, for 150 iterations. However, after that have reached a steady value at this time. 
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Figure 4. Displacement contours by 60 hr (Q = 0.008 MPa) 

(8 x 10-3MPa)J contours are shown in Fig. 3 and 
the displacement contours at the end of 60 hr are 
shown in Fig. 4. A steadystate of stress was assumed 
to have been reached by 7 hr. From these, it 
becomes apparent that the stresses are much higher 
closer to the axis of symmetry and fall to a very 
low value as one moves away from this axis of 
symmetry and fall to a very low value as one 
moves away from this axis. Also, the stresses 
beneath the loaded area at 0.45 m from the bottom 
are about 65 per cent of the stresses at 0.45 m 
from top. Figure 5 illustrates the stress distribution 
along two vertical sections. For  a section at the 
axis of symmetry, the stresses first decrease with 
height and then rise. The stresses are high at the 
bottom because the body force effect is almost 
half the value of applied stress. Had the body 
forces not been taken into account, the stress at 
the bottom would have been much lower than that 
stress at the top At the section 0.5 m from the 
axis of symmetry, Q = 0. Here, the stress at the 
bottom is only about 25 per cent lower than that 
at a section along axis of symmetry, probably 
because the stresses here again are largely due 

Figure 5. Stress distribution along verticalsection at centrelioe 
and 0.5 m from centreline (Q = 0.008 MPa). 

to weight of snow. From Fig. 4, it is seen that 
vertical displacements are the highest right under 
the applied load. At the end of 60 hr the maximum 
vertical displacement is 0.1 cm. The maximum 
horizontal displacement is about 0.25 times more 
than this value. 

For Q equal to 0.1 MPa, the body f ~ r c e s  are 
insignificant compared to the external load. The 

Figure 6. Normalired stress contours by 5 hr for Q=0.1 MPa. 
The stresses were assumed to have reached a steady 
value at this time. 
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Figure 7. Displacement contours by 30 hr (Q = 0.1 MPa) 

normalised stress contours and displacement 
contours are shown i n  Figs 6 and 7, respectively. 
The stress in  the section right under the footing 
shows a big drop within the top 0.50 m, the 
stresses at 1.6 m are 20 per cent of the value at 
the top. This is consistent with experimental 
data according to which the pressure bulb 
extends to about two times the width of the 
footing. Body forces being insignificant compared 
to load, the stresses at the bottom are < 10 per cent 
of the values at the top. This is in sharp contrast 

to values at the bottom for Q = 8 x I e 3  MPa, 
which were almost 75 per cent of the values at the 
top. Figure 8 shows the stress distribution at a 
section 0.45 m from axis of symmetry. This shows 
a fairly constant value for stresses from top to 
bottom. The displacement contours in Fig. 8 shows 
that major displacements are largely restricted to 
about the top 0.9 m of the foundation. The gradients - 
in vertical displacement were more gradual for 
8 x lo5 MPa, than for 0.1 MPa. The maximum 
displacement at the end of 30 hr was 0.57 cm. 

CONCLUSION 

In this paper, a constitutive theory developed 
earlier has been applied to solve the settlement of 
foundation subject to a uniformly distri'buted load 
on a part of its top surface. The constitutive theory 
is based on the microstructure and various constants 
used have not to be changed when the grain size 
or bond size changes. The theory is also able to 
model strain hardening in snow due to increase in 
the 3-D cuordination number with increase in 
strains. However, no attempt has been made to 
model strain hardening d u e  to metamorphic 
processes which are active during deformation. 
Since, the short duration deformation are considered, 
the later may not be important. 

Presently, there is not much data available for 
comparison with the example given here. The data 
presented by ReedS and used by Dandekar and 
Brown6 for comparison of their results is for 
long-term settlement of foundation. The general 
behaviour of Dandekar's result was in agreement 
with the data presented by Reed. The stress 
distribution determined with the theory presented 
here matches closely to that presented by Dandekar 
and Brown6. !::''I, ,, , ,  

The present theory suffers from drawbacks of 
excessive computational time and instability of I 

8 0.2 x, = 0.5 m solution once strain hardening becomes significant. 
z This problem may be remedied, as has been 

0 
0 0.45 0.90 1.35 1.80 2.25 suggested by Mahajan and Brown, by the use of 

XI (m) invariant theory. The data required for determining 
Figure 8. Stress distribution along vertical section at centreline the various constants in the invariant theory 'can 

and 0.5 m from centreline (Q = 0.1 MPa). be obtained from the present theory. 
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