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ABSTRACT

L - In this paper, several parameter/state estimation approaches for the determination of drag polars from flight
o %gﬂ: Geseribed and evaluated for a fly-by-wire (FBW) aircraft. Both model-based approaches (MBAs) and
LA ﬁé‘i a

:.;V.A:.».z-i e i :
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found that the NMBAs pcrﬁmnbm:er
of drag polars. The merits of an NMBA.

approaches (NMBAs) are considered. Dynamic response data from roller coaster and wind-
! gcnerated in a FBW aircraft flight simulator at different flight conditions and the typical
: &Melnppmdl to estimate the drag polar has been evaluated. It has been
. Classically, the MBAs have been used for the determination
no;pgqgm specification of the detailed model of the

acrodynamic coefficients and it can be suitably ussd for onfﬁ‘*’le e§txﬁxanon o’l’ clrag pohrs fmm the ﬂnght data .

of aerospace vehicles.
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1. IN'I'RODUCTION

Determmatlonaf the performance characteristics
of an aircraft during flight testing is of great
importance'. Systematic evaluation of the drag
polars of an aircraft using dynamic manoeuvres
can be carried out over the full angle of attack
range of the aircraft. In recent years, parameter
estimation methods have found extensive use in
aircraft applications to determine aircraft performance
and stability characteristics using dynamic
manoeuvres’. The demands of improved performance
characteristics of modern flight vehicles have led
to aerodynamically unstable configurations which
need to be highly augmented in order that they can
be flown. For such an FBW aircraft, parameter
estimation and determination of performance
characteristics would require special considerations®.

In this paper, several state/parameter estimation
approaches are compared and evafuated for the

i EEAN

first time for drag polar determination using responses
generated from a 6-DOF simulator for an FBW
aircraft in the country.

\é model-based approaches (MBAs) and

non- model—basad approaches (NMBAs) are used
~for the determination of drag polars. Certain methods

have potential application for real-time quick-look
drag polar determination. Also, the results of drag
polar determination using a novel approach are
presented. The latter method does not require knowledge
of a priori statistics of process and measurement
noises.

2. PARAMETER/ STATE ESTIMATION
METHODS wagg

23 e‘é.

The parameter/state estimation methods are
linked as shown in Fig.l. The estimation before
modelling! (EBM) approach encompasses the NMBA.
The main distinction between NMBA and MBA
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is that in the latter the aerodynamic derivatives
are explicitly estimated either as direct parameters
in stabilised output error method (SOEM) or as
additional states in extended U-D filter (EUDF)
as shown in Fig. 1.

2.1 State & Measurement Models

The following set of equatlons are cons:dered.‘ <

X

S+ = ¢j,j+lxj + ij

Here, x is the state vector, w is the process
noise with zero mean and covariance matrix Q, z .

is the measurement vector and v is the measurement

noise with zero mean and covarlance matrix R, all

of appropriate. dimensions. ¢ is.the state transition
matrix and H, the observation ‘model.

2.2 Basic U-D Filtering Approach
This filter is implemented in the factorised

- FLIGHT DATA

z;=Hx; +v, _ S . (],)

form for the present application. It_'?ni_rs;'gi_xen in two
parts: Time propagation algorithm arid fieasurement
update algorithm.

2.2.1 Time Propagation Algorithm

State vector evolution (prediction)

: .7 Jh‘:.:.f+.| =¢_¥+l{.7j£‘j - ‘ ' (2)
" Covariance update
Pa=9Pe"+GOG" 3

Wath P=0D{™ and covariance matrix Q the

“time update factors U and D are obtained through

modified Gram-Schmidt orthogonalisation process.

" The matrix U is an upper triangular matrix with

unit elements on its main diagonal and D is a
diagonal matrix. Covariance and gain processing
algorithms, operating on U and D factors of state
error covariance matrix P, are a technique for
implementing ‘square root filtering” without requiring
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Figure‘.l. Link between various m'etl;bds for determination of dra'g polars from flight ﬂata
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computation of square roots. U-D Kalman filtering
algorithm is considered efficient, stable and accurate
for real-time applications.

One defines

=[¢(‘J|G]; D= dmg[D Q]
with #7= [w.w,..w],

Here, T denotes tran3p6§e of vector/matrix. U,
D factors of P=WDW "may be computed now. For
J=n, n-1,..., 2, the following equations are recursively
evaluated as shown below:

— (n=j} _ (n-J)
—..<-wj-, W >D

— (n-i) . (n-j} B
N E<W LW >p /D, Ci= 11

(n=j+1) _ ("-J‘) (I j)w(" -4)
(n- |) w b s

=<wp W D B )

t

LI

_\;:1

Here subscript D quahﬁes the we:ghted mner-:

product wrt D.

222 Measurement Update Algorithm

The measurement update in Kalman filtering
gombines a priori estimate 3 and error covariance
7 with scalar observation z = a'x+v; a’= H to
construct an ﬂpdaind *(ﬁltered state) estlmate and

covariance’ as follows: <. i
K= Pa/a,
:Y = i'-l'-K(Z—aTY) (5)
= a'Pa+r '
P= P—KaP

Here, r is the measurement noise variance (for

scaiardata processmg) Kalman gain K and updated

covanance fors U and D can be obtained from
the following equatlons

&I = El"/“l;-ﬂl- = r+nf;
K] = (n0..0)

Forj=2,.,n recurswely the following equations
are evaluated:

a; = a;, +vf)

dj = djaj_, /aj

u, = uj+ﬂ.ij >

Ay = =S e o

Kia= K, +vu, )

thre.ff:[ﬁi,.'.., 'ii,,], ff=[ﬁ,,...,

gain is given by K=K /a  Here d is predicted

ﬁ,,], and Katman

diagonal element, and 3’1 is the Aul')da‘ted diagonal

element of the D matrix. The U-D filter described
above is developed in ‘C’ language and implemented
in DEC Alpha computer. It has been validated using
simulated trajectory data and aiso real flight data.
A priori specification of the covariance matrices

s :(Q and R) of the process and measurement noise
is necéssary for tumng the U—D L

23 Estlmatlon befor'e Modellmg—-Model—Based
Approach

This approach involves two steps. In the first
step, sub-optimal smoothed states of vehicle are
obtained using an EUDF aigorithm to perform data
compatibility. This essentially makes use of the
redundancy present in the measured inertial and
air data variables to-obtain the best state estimates
from thedyhamic manoeuvres. Scale factors and
bias efrorsinthe sensors are estimated by expanding
the state vector to include these parameters as
augmenting (additional) states and the time histories
of the aerodynamic lift and drag coefficient forces
corresponding to each manoeuvre are computed
In the second step, the aerodynamic parameters
are estimated using the stepwise multiple linear:
regression (SMLR) method. For selecting an appropriate.
model structure, partial F statistics are used to
build up the parameter vector by selecting s:gmficant
parameters in the model, one at a time, until the
regression equation is satisfied. In addition, at each
step, the values of partial F, total F, squared multiple
correlation coefficient, residual’ sum of squares
and residual variance are evaluated.
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is that in the latter the aerodynamic derivatives
are explicitly estimated either as direct parameters
in stabilised output error method (SOEM) or as
additional states in extended U-D filter (EUDF)
as shown in Fig. 1.

2.1 State & Measurement Models

The following set of equatio'ns are considered: .

Xjt =9, 0%, + GW,

1)

Here, x is the state vector, w is the process

noise with zero mean and covariance matrix Q, z -

is the measurement vector and v is the measurement

noise with zero mean and covariance matrix']@f'al:l‘“
of appropriate dimensions. ¢ is.the state transition .

matrix and H, the observation model. " -
2.2 Basic U-D Filtering Approaéli |
This filter is implemented in the factorised

. FLIGHT DATA

form for the present application. It?:is:‘g;f‘{en in two
parts: Time propagation algorithm and measurement
update algorithm.

2.2.1 Time Propagation Algorithm

State vector evolution (prediction)

—~—

%j =801,%, (2)
Covariance update
(3)

Bu=4Be"+GOGT

With p_{pi/” and covariance matrix O, the
time update factors U and D are obtained through
modified Gram-Schmidt orthogonalisation process.

“The matrix U is an upper triangular matrix with
~ unit elements on its main diagonal and D is a

diagonal matrix. Covariance and gain processing
algorithms, operating on U and D factors of state
error covariance matrix P, are a technique for
implementing ‘square root filtering” without requiring
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Figure ‘1. Link between various metiféds for determi.ﬁation of drag pelars from ﬂight.dn.ta
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computation of square roots. U-D Kalman filtering
algorithm is considered ¢fficient, stable and accurate
for real-time applications.

One defines
=[etrc] b= dmg{b g
WapsW, ],

with W7 = {w,,
Here, T denotes tranSpose of vector/matrix. U,
D factors of P=WDW Tmay be computed now. For

j=n, n-1,.., 2, the following equations are recursively
evaluated as. shown below:

B, = <wt", (...,) D

7 = (n- J') (H‘J)
.,U(U) <w; ", w} >D/D Ci= 1,
Wi = ) U(l,_])w}" ) '
ﬁl (n- 1) wl

I B e T )

Here subscript D qualifies the weighted inier’

product wrt D.

2.2.2 Measurement Update Algorithm

The measurement update in Kalman filtering
combines a priori estimate ¥ and error covariance
7 with scalar observation z = a’x+v; a’= H to
construct an’ updated (filtered state) estlmate and
covariance as' follows: I

K= Pala,
X=X+ K(z—aTSF)
- )
a=a Pa+r
P = P-KaP
Here, r is the measurement noise variance (for
scalar data processmg) Kalman gain X and updated

covarmnce factors U and D can be obtained from
the followmg equatlons

f = UT A f: (-f,--uj;i)
v =Dfi  w.=df
dy =dy/a;ap = renf;

; i= l,Z..:,ﬁ (6)

Forj=2,..n recurswely the following equations
are evaluated:

a, @ + VS

d = d a;,/a;

u, = uj +A Kt

Ky = K, +vi; |

Where T =[4,...,3,} U=[i....,&,]. and Kalman

gain is given by K=K /. Here d is predicted
diagonal element, and a"j is the updated diagonal
element of the D matrix. The U-D filter described
above is developed in ‘C’ language and implemented
in DEC Alpha computer. It has been validated using

simulated trajectory data and also real flight data.
A priori specification of the covariance matrices

~ {Q and R) of the process and measurement noise
I8 m:be%gary’f?r tunmg the U D

23 Estlmatmn before Modellmg—Model-Based
Approack

This approach involves two steps. In the first
step, sub-optimal smoothed states of vehicle are
obtained using an EUDF algorithm to perform data
compatibility. This essentially makes use of the
redundancy present in the measured inertial and
air data variables to-obtain the best state estimates
fromfthadytmmnoeuvres Scale factors and
bias efrors in‘the sensors are estimated by expanding
the:'state vector to include these parameters as

 augmenting (additional) states and the time histories

of the aerodynamic lift and drag coefTicient forces
corresponding to each manoeuvre are computed.
In .the second step, the aerodynamic parameters
are estimated using the stepwise multiple linear:
regression (SMLR) method. For selecting an appropriate.
model structure, partial F statistics are used to
build up the parameter vector by selecting significant
parameters in the model, one at a time, until the
regression equation is satisfied. In addition, at each
step, the values of partial F, total F, squared multiple
correlation coefficient, residiaal sum of squares
and residual variance are evaluated.
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1006000~ R n 100,

OF pomr g,
800000 99.9
“ 500000 o 990
400000 99.7
200000 9.6
] . — 9954 — . '
. w000 96.0
FOR C FOR C,
? %0.0 v
30000 N
w = 98.6
20000 8.4
10000 T ; T 98.24 . . -
o0 3 [ 1 2 3 &
T T CENTRY: Heo ' ENTRY No.

Figure 2. F and R* values for lift and drag coefficients
{madel 1}-RC manoeuvre.

~ The regression equations for C, and C, (with
linear terms of Taylor series) is of the form

©2.3.1 Model 1

Vv
C, = C.,q + C,y

be 63

V . c
Cp = Cp, + Cp, wrCnat cpq—g—::+,cpﬁ5e

TE kbl ‘ti"-“g

~ The varighles. lexm&@m&@ vt 5.

These, va;;gblgs_ggggg the © sion equation for
C, and C, in the order (based on the partial F
statistics) shown in Table 1. Figure 2 shows the
plot of computed F and R? versus variable entry
number for a typical RC manoeuvre data. As can
be seen in this figure, the trend for F and R? for
lift is acceptable. However, the trend of overall F
for C,, shows a decreasing treiid and the R? value
shows that this modeti is able to explain onily 98
per cent of the variation in C,,. This indicates the
need for additional terms in the modet. An additional
term with a?as the variable is added to model 1
resulting in ‘miodel 2 as ‘giv'eii below:

2.3.2 Model 2

. vV
C":--Q’-v+C’4-;+CL..°‘-+CL,202.+C —+C 69

24y
vV ¢
Co=Cp+ Cn.ym* Coat Cpa?+Cp, —29;; + c,)ﬂae
86.

Table 1, Results of modelstructnredﬁmhuion using EBM:
Data set-1 (RC manoeuvre)

Variable  Relating R? Overall F .l‘at_'tial

entered  derivative (%) F statistics
Ne. Name

Lift parameters: Model |

1a C,, 995450  0.1089E+06 0.5205E + 03

2v G 998320 0.1476E+06 0.i316E + 02

3a,  Cu, . 999285 0.2310E+06 0.6641E+02

4q G, 999842° 0.7852E+06 0.41B6E + 02
Drag parameters: Model 1
ta G, 985372  03355E+05 0.9379E + 02
2y Cp,. 987239  0.1923E+05 0.9502E + 01
35, Cp, 988348 0.1402E+05 0.6869E+ 01
449 Gy Not Entered
Lift parameters: Model 2
tae G, 995450 0.1089E+06 0.1699E + 03

2¥v G, 998320 0.1476E+06 0.1776E + 02

36, Ci, -99.928% 292310E+06-0.4380E% 03
sl Gy 0 99.9842 0 0.7852E+ 06 0.9524E + 02
5o Ci, 999967 02950E+07 0.4278E+02
Drag parameters: Model 2
1a Co, 996417 0.1385E+06 0.1288E +03
2a Cp, 998844 0.2147E + 06 -0.5696E + 02
39 Cp, 999234 0.2155E +06 - 0.2219E + 02
45, Cpn, 999614 0.3208E+06 0.2499E + 02
5v Cp, 999664 0.2937E+06 -0.8513E + 0!

The order in which the variables enter the regression
equat:on ns ‘shown in Table 1 and the resuits of F
and R? are plotted in Fig. 3. The trends indicate
the adequacy of this model for C, although the
improvement in C, is only marginal. Hence «?
term is included only in drag equation and this
structure is used for C, and C, in the MBAs.
Subsequently, the drag polars can be reconstructed
using the estimated parameters in the-Taylor series
representation of the aerodynamic coefficients?.
The advantage of using this method is that the
model structure can be determined and used in
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other techniques for further refinement. The method
does not require initial values of the unknown
parameters to start the estimation procedure (due
to one-shot nature of the regress:on in the second

step).

24 U-D Fi!ter—Non—Mod_él-BM Approach

This is a NMBA in which the aerodynamic
derivatives are not estimated/required. As in EBM
method, using kinematic consistency checking
procedure, the aircraft states are reconstructed by
EUDF. Using the filtered states (and the kinematic
relations), the dimensional forces X and Z are computed.
A centrally pivoted five-point algorithm for numerical
differentiation obtains the time derivatives required
at this stage.

Next, thé«ﬂme histories of the nondimensional
aerodynamic ¢oeff cients € #nd C are computed

using the aircraft mass clias

iThe
and lift coefficients (time histories) C,’ “and- C SEdit

are obtained and the drag polar determmed The
kinematic consistency equations® are:

24.1 State Equations

.. "gsm0+{a Aﬂ}; s
=-(r Ar)‘u-i-(p-Ap)w e B
+gcos95m¢+(a —Aa), V(O)_. _
w=—(p-Ap)v+(g-Ag)u
+gcosOcos¢ +(a, —Aa,), w0)=w,
¢=—(p-Ap)+(g-Ag)sintan®  ®
L f(’_"’Ar)cOS‘ﬁtane, ¢(0).=¢°
6= (q_AQ)m¢ ~(r—a r)
ot o(0)=0
(9‘ Aq)san¢sec9 .

+(r - Ar)cos¢sec9 v{0)=vw,
it = usin @ — vcos@sin
—wcosOcosd,

ho)=h, |

iwnoooj- FOR tl. 1::: FOR
w 2000000 w9 e
1000000+ 9.2
99.6
0 R L L ) S ————

00000+ FOR C,
300600
w .
200000
: §

3
ENTRY No.

miv No.‘
Flgure 3. F and R? values for lift and drag coefficients
(model 2)-RC manocuyvre.

2.4.2 Observation Equatlons '

V., = Ju +vi+wl + AV

m =K, tm-l(%;l)+ Ao

R
13

where u , v, and w,_ are the velocity components
along three-axes at the nose boom and they are
given by

%, =u - (F—Ar)yu + (q—Aq)z,,
v, =v - (p-Ap)z, + (r-Ar)x, (10)
(g-Ag)x, + (p-AD)y,

W, =W -

where x_, y_and z, are the nose boom offset distances
from the center of gravity. Using the corrected
states and linear accelerations in the following
equations, the lift and drag coefficients can be
estimated:

i q:( X)+E-cosor
m
TAY . 11
=%(Cz)-;’smc,' an
87



DEF SCI.J, YOL 51, NO !, JANUARY 2001 -

The lift and drag coefficients are computed
from C, and C, using following equations: -

C, =—C,cosa+Cysina
Cp =-Cyxcosa—Cysina

2.5 U-D Filter-based Model-Based Approach

This is a MBA where the mathematical model
(Taylor series expansion of the aerodynamic
- coefficients) is formulated ‘with unknown system
parameters as augmented states and hence the parameter
estimation problem is transformed into a state estimation
problem leading to EUDF. "

A priori specification of the covariance matrices
of the process and measurement noise is necessary
to use the EUDF. The mathematical model formulation
is as follows: '

2.5.1 State Model

v £,
+Cp, -5;0—+ CDMGQ) +—';;cos(a+ 67)

+ gsin(a - 6)+ b,

“13)

'--—— C, +C +C
¢ F, .., |
+ C,_q %ﬂ—+ CLG,SEJ - Wsm(ow q_r)+ q|

+._§qos(q—,9)_+ by '

8=g+b, | J

where b , b and b, are the bias parameters in state
equatmns In addntlon to the above state model, all the
unknown parameters in the state and observation
equations are augmented as state vectors.

83

(12)

2.5.2 Observation Madel

: am—a
6,=0
= E C. +_I.-;-;-. COS. Gm . (14)
a,, m__( x) ~< 003.0;

———

ﬁ(CZ)‘.% sin o,

wifh_ e e e

Cy==Cioosa-Cpsina. .

Cx Ctsma CDcosu
U,

¥ (15)

qc
+ CD‘] E—

0

+ C'Dse S,

The lift and drag polars are determined using
the estimated augmente:d state parameters. in Eqn (15).

2~5 m Olipﬂt Error Method -

- The output error method’ (OEM) is the most
widely used technique for the estimation of parameters
of stable dynamical systems. It has been successfully
utilised for the estimation of stability and control
derivatives of aircraft from flight data. However,
the method poses severe difficulties when applied
to parameter estimation for ﬂy—by-wnre (FBW') aircraft.
When the basic aircraft is unstable, hiericali intégration
of the state model feads to diverging solutions.
This instability caused.due to pumerical divergence
can be overcomse by incorporating stabilisation into
the OEM using measured states for those acrodynamic
derivatives, which cause instability in the system
model. While this approach has the advantage of

-stabilising the system, it needs accurate measurement

of states. For the aerodynamic coefficients, the
model structure selected using EBM (Fig. 1) can
be used. The state space mathematicasi=model is
formulated with three (¥, a and 0 ):states and five
(¥, @, 6, a,and a)) observable variables. The unknown
parameters in the state and observation equations
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- are estimated iteratively and these are usedto construct
the lift and drag polars. The mathematical formulation
for stablised output error method (SOEM) is the
" same as in Eqns (13) to (15) except that the measured
states a and g are used for artificial stabilisation
of numerical integration of the state equations, i.e.
Eqn (13). :

2.7 Extended Forgetting Factor Recursive
Least Squares Method

An effective recursive method called extended
forgetting factor recursive least squares (EFFRLS)
method for the estimation of drag polar is described.
This method does not require knowledge of process
and measurement noise statistics. [t only requires
a suitable choice of a forgetting factor® (FF). The
main advanfage of this method is that only one
adjustable parameter is required compaged to several
elements of Q and R required for tuning of a!;l(gigﬁag
filter. The algorithm used in the non-model base
mode? is given as

Xpalj = Pexys
Xrl/jal = ‘Dk[l-k/j(ym —H @i ax; )]

-1
Ly = By @1t (“ +H; +1‘f’,+1/k1"k/, ;+1/kH’ )

J‘:ﬁz+l/;+l —(X3+V1+l st f
=A ‘Pk[f Lk/, Ay +vk]-’};/;

Pl
A

(16)

FF, A should be very close to 1 but less than
1. If FF is equal to 1, then it gives ordinary least
squares solution. The memory index (MI) of the
filter can be defined as MI=1/(i-FF). Thus if
FF =1, then MI is infinity — the filter is said to
have infinite memory. This means that the entire
data set is gaven equal weighing. If FF > 1, the MI
will also be smaller (finite memory), thereby implying
that the past data are given less weighting, since
the weighting factor used in the least squares
performance functional is given as

- .
AR

DETERMINATION OF DRAG CHARACTERISTICS

Choice of FF is based on the following
- considerations. If the process noise variance is
expected-to be large, the FF should be small, since
the past data is not giving more information on the
current state/parameter. If the process noise variance
is relatively smaller than the measurement noise
variance, the FF should be of a large value. This
implies that more data should be used to average
out the effect of the noise on measurements. FF
can aiso be linked to the column rank of the observation
. model H. Ifthis rank is larger, there is more information
- (contained by the A™ measurement data) on the
present state. FF can also be taken as inversely
proportionai to the condition number of the data
matrix:

Pk/j = ( ki Xisj )_I

If the condition number of the matrix is large,

T4 ik pie would like to give less emphasis on the

past data, and hm&he FF shauld be smaller. The

condition number of ‘a matrix is defined as the

ratio of magnitude of the largest eigenvalue to the

magnitude of the smallest eigenvalue. The above

are general guidelines to choose a FF. For a given

application specific evaluation study is generally

required to arrive at a suitabie FF. Thus the FF
may be chosen as

o Variance(R) 1
Variance{Q) Condition No.(data matrix P)
1
Columnrank ( H )

- From the above it is clear that the weighting
factor is intended to ensure that data in the distant
past are forgotten in order to afford the possibility
of following the statistical variation of the
measurement data.

3 RESUi;TS & DISCUSSIONS

Aircraft responses are gmmat three
representative flight condlt;@tgs from the FBW
aircraft simulator usmg two: dﬂynamrc performance
manoeuvres as

&9
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Table 2. Percehtage’ fit error for lift and drag coefficients

RC manoeuvure

Parameter Data set | Data set 2 Data set 3 Data set 4
* estimation (Al = 8 km, {Alt = 8 km, (Al = 8 km, (Alt =8 km,
" approaches Mach No. = 0.6) - - Mach No. = 0.7) - Mach No. = 0.8) Mach No. = 1.0}
C, c, C, . C, : C, C, C, C,

- EFFRLS-NMBA  0.0151 0.0089 ~  0.0159 0.0115 0.0163 0.0145 0.0169 0.0129
EUDF-NMBA 0.0216 - 0.1586 - 0.0201 0.1112 0.0190 0.1036 0.0442 0.4275
EUDF-MBA 0.2597 0.9103 0.3940 0.6660 0.4939 1.0506 0.5439 03659
SOEM 0.2198 (.7540 _ 0.3747  0.5979 0.4746  1.0009 0.4973  0.2996

. S WUT manoceuvre :
Parameter Data set | . Data set 2 Data set 3. Data set 4
estimation (Alt = 8§ km, {Alt = 8 km, (Alt = 8 km, (Alt = 8 km,
approaches Mach No. = 0.6) Mach No. = 0.7) Mach No. = 0.8) Mach No = 1.0)
< : Cp - ¢ Cy < C ICL‘ ¢
EFFRLS-NMBA 0.0624 0.2664 0.0718  0.2908 ©0.0767 0.3144 ©0.0499° 0.2413
EUDF-NMBA 0.0411 0.5960 0.0543  0.4930 0.0624 (.4588 0.0423  0.2261
EUDF-MBA 0.6193 - 0.9564 0.4524  1.1780- 0.3922  0.8220 0.3995  0.7903
~SOEM 0.3871 0.8862 0.4811 1.2402 0.5078 0.8579 0.2487 0.4741

N 2
EI(C(‘ Yrue = C'(. )esr)
Percentage fit error = — N 3 x 100, where (.) = Lift or drag coefficient.

:El (C(. Mrue )

Roller Coaster o other two MBAs. Drag polars results obtamed from

o RE and-WUT mmanoeuvre at altitude § km and
Mach No 0. 6arepresented in Figs 4 and 5, respectively,
for the four methods. It is seen that the results
are satisfactory. Though more results have been
generated at other flight conditions, but for the
sake of brevity, these have not been included here.

Roller coaster (RC) longttudmali‘ =7
are genera&dfff‘br which' thé® W vehicte 1§
takeri throiigh lg—2g-ﬁ§- 1E'n6rmial acce!eratlon cycle
at the rate of 0.1g/s for Mach Nos.=0.6, 0.7, 0.8
and 1.0 at altitude =8 km.

Wind-up-Turn The SOEM is an iterative process and hence
requires more time for drag polar determination.
EUDF is a recursive processand eguld bean atiractive
alternative to the SOEM. However, it requires proper
choice of the process and-measurément noise statistics.
The two-step method EBM that helps in model
selection ‘based on statistical criteria is a good
method: for drag polar determination. However, it

Wind-up-turn (WUT) coupled manoeuvre data
are generated for which the vehicle is progressively
banked and loaded so that the g finearly builds up
from 1g to nearly maximum g, and angle of attack
ranges from 5° to 20°, at the same flight conditions
as in RC manoeuvre.

The RC manoeuvres are generated from the ¢ould be more time consuming. It is included here
FBW aircraft simulator, while it is operating in the only for the sake of completion and to show the
batch simulation mode. WUT data is generated by link with other methods. ANMBA could be preferred
actually flying the simulator by a pilot/engineer. over MBA, as it would require less computation

time and would still give accurate results™for drag

Table 2 gives the fit error performance of different polars from flight data. It is also a potenftial candidate
methods at various flight conditions for two types for real-time on-line determination of drag polars.
of manoeuvres. It can be seen that the EFFRLS- This approach has recently béen validated using

NMBA and EUDF-NMBA perform better than the the data from transport category aircraft. It is being
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EFFRLS - NMBA EUDF - NMBA
5
T T T T T - T
0.2 03 04 05 02 03 0.4 05
o] . B
EUDF - MBA : | soemM

T T T T T T
0.2 03 0.4 05 02 03 0.4 05
G G

MEASURED ——+—ESTIMATED

Figure 4. Drag polars—roller coaster manoeuvre (data set 1).

further studied for in-flight drag polar determination.
For the upcoming flights of an FBW aircraft the
approaches evaluated here are p}anned to be used
for the determination of drag polars using real
flight test data.

4. CONCLUSION

Mainly four parameter/state estimation methods
have been evaluated for the determination of drag
polar from dynamic performance manoeuvre data
for an FBW aircraft. While it is possible to get
very good estimates of drag polars from all the
methods, the NMBAs are very efficient and less
time consuming. They can also be applied for real
time estimation of drag polars from flight data. A
novel approach for estimation of drag polars has
been validated. The latter requires to choose only
one adjustable factor compared to several (as in
Kalman filter cases). It is very promising method
for on-line determination of drag polars from real

EFFRLS - NMBA EUDF - NMBA
K &
- 1 i T T T T
0.2 03 0.4 05 0.2 03 0.4 0.5
c C
EUDF-MBA 1 soem
&
T T m T T T
0.2 0.3 0.4 0.5 0.2 0.3 0.4 05
[ "
— MEASURED —+— ESTIMATED

Figure 5. Drag polars—wind-up-turn manoeuvre (data set 1)
flight-test data.
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