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ABSTRACT 

In this paper, several parameterlstate estimation approaches for the determination of drag polm from flight 
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1. INTRODUCTION 

Determinationofthe performance characteristics 
of an aircraft during flight testing is of great 
importance'. Systematic evaluation of the drag 
polars of an aircraft using dynamic manoeuvres 
can be carried out over the full angle of  attack 
range of the aircraft. In recent years, parameter 
estimation methods have found extensive use in 
aircraft applications to determine aircraft performance 
and stability characteristics using dynamic 
manoeuvres2. The demands of improved performance 
characteristics of modern flight vehicles have led 
to aerodynamically unstable configurations which 
need to be highly augmented in order that they can 
be flown. For such an FBW aircraft, parameter 
estimation and determination of performance 
characteristics would require special considerations'. 

In this paper, several statelparameter estimation 
approaches are compared and evaluated for the .- 

first time for drag polar determination using responses 
generated from a 6-DOF simulator for an FBW 
aircraft in the country. 

gptik-&?rfiodqI-based approaches (MBAs) and 
non-model-based approaches (NMBAs) are used 
forthe determination of drag polars. Certain methods 
have potential application for real-time quick-look 
drag polar determination. Also, the results of  drag 
polar determination using a novel approach are 
presented. The latter method does not require knowledge 
of a priori statistics of process and measurement 
noises. 

2. PARAMETER1 STATE ESTIMATION, 
METHODS lisi ' 

.., ' .. .*.. ..- 
The parameterlstate estimation methods are 

linked as shown in Fig.1. The estimation before 
modelling4 (EBM) approach encompasses the NMBA. 
The main distinction between NMBA and MBA 
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is that in the latter the aerodynamic derivatives form for the present application. It isgiven in two 
are explicitly estimated either as direct parameters parts: Time propagation algorithm and measurement 
in stabilised output error method (SOEM) or as  update algorithm. 
additional states in extended U-D filter (EUDF) 
as  shown in Fig. 1. 2.2.1 lime Propagation Algorithm 

State vector evolution (prediction) 
2.1 State & Measurement Models - 

The following set of equations are considered: x ~ + ~  = b j + ~  ,:I (2) 

- Covariance update 
x ~ + ,  - 4,,,+,., +Gw, 

(1)  
- 

I, =I&] +VJ p,+, = btp;6r + w1 
Here, x is the state vector, w is the process 

noise with zero mean and c6variance matrix Q, z 
is the measurement vector and v is the measurement 
noise with zero mean and covariance matrix R, all 
of appropriate dimensions. 6 is the state transition 
matrix and If, the observation model. 

2.2 Basic U-D Filtering Approach 

This filter is implemented in the factorised 

With j= cijcr and covariance matrix Q, the 
time update factors 6 and 5 are obtained through 
modified Gram-Schmidt orthogonalisation process. 
The matrix U is an upper triangular matrix with 
unit elements on its main diagonal and D is a 
diagonal matrix. Covariance and gain processing 
algorithms, operating on U and D factors of state 
error covariance matrix P, are a technique for 
implementing 'square r w t  filtering' without requiring 

I 

COMPUTATION OF AERODYNAMIC 
COEFFICIENTS 

I SOEM EUDF 
I I T 

Figure I. Link between various methods for determination of  drag polars from flight data 
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computation of  square roots. U-D Kalman filtering 
algorithm is considered effi cient, stableand accurate 
for real-time applications. 

One defines 

with W = [w,,w ,,..., w*], 
Here, T denotes transpose of  vector/matrix. U, 

D factors of F =  W M T m a y  be computed now. For 
j = n, n-1, ..., 2, the following equations are recursively 
evaluated as  shown below: 

Here subscript D qualifies the weighted inder 
product wrt D. 

2.2.2 Measurement Update Algorithm 

The measurement update in Kalman filtering 
,combines apriori estimate : and error covariance 
ji with scalar observation z = aTx+v; a'= H to 
constrnct an ffiltered state) estimate and 
covariance a s  f o l ~ *  , ,,. 

Here, r is the measurement noise variance (for 
scafardata processing). Kalman gain K and updated 

, . . -- .. ~ : ~ .  . ..~., . 
covariahce.factofs fi and i) can be obtained from 
the follow.;n'& 'equations: , . . :  

. . 

Forj  = 2, ..., n recursively the following equations 
are evaluated: 

Where 6 = [ii,, ..., G,] fi = [& ,.... ;,I, and Kalman 

aJ = +vJfi' - 
2 = dJaJ_, /aJ  

ii, = i i J + a J K ,  
1, = - J / a J - l  

KJ+, = K, + vJii, 

gain is given by K=Kn+Jan. Here d" is predicted 

diagonal element, and 2, is the updated diagonal 

. 
(7) 

element of the D matrix. The U-D filterdescribed 
above is developed in 'C' language and implemented 
in DEC Alpha computer. It has been validated using 
simulated trajectory data and also real flight data. 
A priori specification of  the covariance matrices 

e process and measurement noise 
the, U-D. , , 

.A. 

2.3 Estimation before Modelling-Model-Based 
Approach 

This approach involves two steps. In the first 
step, sub-optimal smoothed states of vehicle are 
obtained using an EUDF algorithm to perform data 
compatibility. This essentially makes use of the 
redundancy present in the measured inertial and 
air data variahks to obtain the best state estimates 
from-@ae~atiiomaaoeuvres. Scale factors and 
bias inthe sensors are estimated by expanding 
the state vector to include these parameters as 
augmenting (additional) states and the time histories 
of the aerodynamic lift and drqg coefficieat forces 
corresponding to each manoeuvre are computed. 
In the second step, the aerodynamic parameters 
are estimated using the stepwise multiple linear 
regression (SMLR) method. For selecting an appropriate 
model structure, partial F statistics are used to 
build up the parameter vector by selecting significant 
parameters in the model, one at a time, "%I the 
regression equation is satisfied. In addxian, at each 
step, the values of partial F, total F, squared multiple 
correlation coefficient, resfdaal sum of squares 
and residual variance are evaluated. 
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is that in the latter the aerodynamic derivatives form for the present application. It'irgiven in two 
are explicitly estimated either as direct parameters parts: Time propagation algorithm addm&wrement 
in stabilised output.error method (SOEM) or as  update algorithm. 
additional states in extended U-D filter (EUDF) 
as shown in Fig. 1. 2.2.1 Erne Propagation Algorithm 

State vector evolution (prediction) 
2.1 State & Measurement Models 

. ~ - 
The following set of  equations are considered: ?,+I = 9,+1.,x, (2) 

Covariance update 
x,+, = 4,.j+,x, + CjWI 
2, = f i j  + V, (1) =#e.$" + GQG" 

.~ . . 
(3) 

Here, x is the state vector, w is the process 
noise with zero mean and cbvariance matrix Q, z With P= fi2,fi" and covariance matrix Q, the 

time update factors 0 and a are obtained through is the measurement vector and v is the measurement 
noise with zero mean and covariance m a t r i i 9 a l l "  ~. modified Gram-Schmidt orthogonalisation process. 

of appropriate dimensions. $I is the state transition The matrix U is an upper triangular matrix with 

matrix and H, the observation model. ' 

. unit elements on its main diagonal and D is a 
. . diagonal matrix. Covariance and gain processing 

2.2 Basic U-D Filtering Approach algorithms, operating on U and D factors of state 
error covariance matrix P, are a technique for 

This filter is implemented in the factorised implementing 'square root filtering' without requiring 

. , .  : :  
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Figure 1. Link behveen various methods for determination of drag polsrs from flight data 
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computation of square roots. U-D Kalman filtering 
algorithm is considered efficient, stable and accurate 
for real-time applications. 

One defines 

w = [ ~ Q G ] ;  = d H l g [ b , ~ ]  

with W = [wI,w 2,..., w"], 

Here, T denotes trgnspose o f  vectorlmatrix. U, 

D factors of P = m T r n a y  be computed now. For 
j = n, n-1, ..., 2,.the following equations are recursively 
evaluated as shown below: 

- D, = < wj"-~), wj"-~) > D  

Here subscript D qualifies the weighted inner 
product wrt D. 

2.2.2 Measurement Update Algorithm 

The measurement update in Kalman filtering 
pombines apriori estimate y and error covariance 
ji with scalar observation z = aTx+v; aT= H to 
construct Pn upda t~d  (filtered State) estimate and 
covariance as;fwlb* 4; . '.. ,. 

Here, r i s  the measurement noise variance (for 
scalar data processing). Kalman gain K and updated 

covariaoce factors fi and b can be obtained from 
the following equations: 

For j  = 2, ..., n recursively the following equations 
are evaluated: 

Where c=[i?, ,..., ii,]fi=[ii,,..,ir,,], and Kalman 

gain is given by K=K,,+,/z*. Here d" is predicted 

diagonal element, and 2, is the updated diagonal 

element of the D matrix. The U-D filter described 
above is developed in 'C' language and implemented 
in DEC Alpha computer. It has been validated using 
simulated trajectory data and also real flight data. 
A priori specification of the covariance matrices 
(Q and R) of the process and measurement noise 
is nc$qarylfp' . . t w i n e  . - the, U-D. 

:. , 
1 - 

2 3  Estimation before Modellin~Model-Based 
Approach 

This approach involves two steps. In the first 
step, sub-optimal smoothed states of vehicle are 
obtained using an EUDF algorithm to perform data 
compatibility. This essentislly makes use of the 
redundancy present in the measured inertial and 
air data v a r k b  to obtain the best state estimates 
f r o m t k e ; d p $ ~ ~ n o e u v r e s .  Scale factors and 
bias eft- inzhe Sensors are estimated by expanding 
t h e  state vector to include these parameters as 
augmenting (additional) states and the time histories 
of the aerodynamic lift and drag coefftcient forces 
corresponding to each manoeuvre are computed. 
In the second step, the aerodynamic parameters 
are estimated using the stepwise multiple linear 
regression (SMLR) method. For selecting an appropriate 
model structure, partial F statistics are used to 
build up the parameter vector by selecting significant 
parameters in the model, one at a time, unkl the 
regression equation is satisfied. In addition, at  each 
step, the values of partial F, total I;, squared multiple 
correlation coefficient, resfdeal sum of squares 
and residual variance are evaluated. 
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F i n n  2. F and R' vduea for lift and drag coefficients 
(model 1)-RC manoeuvre. 

The regression equations for C, and C,  (with 
linear terms of Taylor series) is of the form: 

v qz 
CD = CLa + Cu, -+ CDea + C,, - 

u, ' 2% 
+ CD,4 

~, . . . t  ~ ,.!L,, ><<!<-aP<r~r~-~~''  
The ~ ? f i ? ? l $ s ; i ~ ~ ~ & ~ & i ~ ; ~ $ d @ d ~ ~ ~ i ~ ~  

T h e ~ e . ~ a ! B r i a b b ~ ~ t t r e  sion equation for 
C, and C, in the order (based on the partial F 
statistics) shown in Table I .  Figure 2 shows the . 

plot of computed F and RZ versus variable entry 
number for a typical RC manoeuvre data. As can 
be seen in this figure, the trend for F and R2 for 
lift is acceptable. However, the trend of overall F 
for C ,  shows a decreasing ttend and the R2 value 
shows that this model is able to explain only 98 
per cent of the variation in C,. This indicates the 
need for additional terms in the model. An additional 
term with a as the variable is added to model 1 
resulting in *del 2 as given below: 

2.3.2 Model 2 

Tabk 1. Rcaultsof m o d e l a t r u ~ m ~  using EBM: 
Data set-1 (RC manoeuvre) 

Variable Relating R1 Overall F Partiel 
entered derivative (%) F stalisIics 

No. Name 
Lift parameters: Model I 

l a . 99.5450 0.1089E+06 0.52058 +03 

Drag parameters: Model 1 

4 q  el,- Not Entered 

Lift parameters: Model 2 

l a 1 ,  99.5450 0.1089E + 06 0.16998 + 03 

- 
Drag parameters: Model 2 

The @er in which the variables enter the regression 
equation is shown in Table I and the results of F 
and R z  are plotted in Fig. 3. The trends indicate 
the adequacy of this model for C ,  although the 
improvement in C, is only marginal. Hence a 
term is included only in drag equation and this 
structure is used for CI and C, in the MBAs. > 

Subsequently, the drag polars can be reconstructed 
using the estimated parameters in the Taylor series 
representation of the aerodynamic coefficients4. 
The advantage of using this method is that the 
model structure can be determined and used in 
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other techniques for further refinement. The method 
does not require initial values of the unknown 
parameters to start the estimation procedure (due ~oooooo 

to one-shot nature of the regression in the second 99 s 

step). 

2.4 U-D Filter-Non-Model-Bwed Approacb 

This is a NMBA in which the aerodynamic 
derivatives are not estimatedlrequired. As in EBM 
method, using kinematic consistency checking 
procedure, the aircraft states are reconstructed by 
EUDF. Using the filtered states (and the kinematic 
relations), the dimensional forces X and Zare computed. 
A centrally pivoted five-point algorithm for numerical 
differentiation obtains the time derivatives required 
at this stage. 

using the aircraft mass 
and lift coefficients (time histwiit9)' Ci>id;&-,-C$-- 
are obtained and the drag polar determined. The 
kinematic consistency equations6 are: 

2.4.1 State Equations 

- W C O S ~  WS+. NO) = h, J 

". .-;wi % ' ? E V i  

100000 

fWIRY I* ENTRY I* 

Fisure 3. F and I' vaiuer for lift and drag coefficients 
(model 2)-RC manoeuvre. 

2.4.2 Observation Equations 

where un, vn and w,, are the velocity components 
along three-axes at the nose boom and they are 
given by 

wherex,,, y,, and z,, are the nose boom offset distances 
from the center of gravity. Using the corrected 
states and linear accelerations in the following 
equations, the lift and drag coeff~cients can be 
estimated: 
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The lift and drag coefficients are compoted 
from C, and C,  using following equations: 

C, =-C,cosa+Cxsina 

CD = -Cx cosa - CZ sina (12) 

2.5 U-D Filter-based Model-Based Approach 

This is a MBA where the mathematical model 
(Taylor series expansion of the aerodynamic 
coefnbletits) is fbnnulated with unknown system 
parameters as augmented states and hence the parameter 
estimation problem is transformed into a state estimation 
problem leading to EUDF. ' 

Apriori specification of the covariance matrices 
of the process and measurement noise is necessary 
to use the EUDF.   he mathematical model formulation 
is as follows: 

2.5.1 State Model 

where b-, ba, and b, are the bias parameters in state 
equations. In addition to the above state model, all the 
unknown parameters in the state and observation 
equations are augmented as state vectors. 

2.5.2 Observation Msdel 

v, = v 
a ,=a  . . 

8, =8 

s F, a:- = -(c,)-- sin o, 
m 111 

with 

The lift and drag polars are determined using 
the estimated augmented state parmeters inEqn (15). 

The output error method7 (OEM) is the most 
widely used technique for the estimation of parameters 
of stable dynamical systems. It has been successfully 
utilised for the estimation of stability and control 
derivatives of aircraft from flight data. However, 
the method poses seve 
to parameter estimation for 
When basic is 

of the state model k a d s  io diverging solutions. 
This i n s t a b i l i t y : ~  to ournerical divergence 
can be overqF? b i  incorporating.stabilisation into 
the 0 ~ ~ ' i i s i d ~  measured states for those aerodynamic 
derivatives, which cause idstability ih the system 
model. While this approach has the advantage of 
stabilising the system, it needs accurate measurement 
of states. For the aerodynamic coefficients, the 
model structure selected using EBM (Fig. 1)  can 
be used. The state space mathemati&;model is 
formulated with three (V, a and 8 ),Mes and five 
(V, a, 0, ax and g)  observable variables. The unknown 
parameters in the state and observation equations 
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are estimated iteratively and these are used to construct 
the l i f t  and drag polars. The mathematical Formulation 
for stablised output error method (SOEM) is the 
same as in Eqns (13) to (1 5) except that the measured 
states a and q are used for artificial stabilisation 
of numerical integration ofthe state equations, i.e. 
Eqn (13). 

2.7 Extended Forgetting Factor Recursive 
Least Squares Method 

An effective recursive method called extended 
forgetting factor recursive least squares (EFFRLS) 
method for the estimation of drag polar is described. 
This method does not require knowledge of process 
and measurement noise statistics. It only requires 
a suitable choice . .  .. . of a forgetting factors (FF). The 
main ad&&aBe of  this method is that only one 
adjustable parameter is requird eempaFad to several 
elements of Qand R required f i r  t u n i d  . . . .f ::*,I,> 

filter. The algorithm used in the non-model base 
modes is given as 

Choice of FF is based on the following 
considerations. If the process noise variance is 
expected to be large, the FF should be small, since 
the past data is not giving more information on the 
current statelparameter. If the process noise variance 
is relatively smaller than the measurement noise 
variance, the FF should be of a large value. This 
implies that more data should be used to average 
out the effect of the noise on measurements. FF 
can also be linked to the column rank of the observation 
model H. lfthis rank is larger, there is more information 
(contained by the Ph measurement data) on the 
present state. FF can also be taken as inversely 
proportional to the condition number of the data 
matrix: 

If the condition number of the matrix is large, 
" ' ' t@S*+e.would like to give less emphasis on the 

past bata, and he@mdhe EE shquld be smaller. The 
condition number of a matrix is defined as the 
ratio of magnitude of the largest eigenvalue to the 
magnitude of the smallest eigenvalue. The above 
are general guidelines to choose a FF. For a given 
application specific evaluation study is generally 
required to arrive at a suitable FF. Thus the FF 
may be chosen as 

li. a 
Vaziee(R) 1 

Variance(Q) Condition ~ o . ( d a t a  matrix P )  

FF, I should be very close to 1 but less than 
1. If FF is equal to 1, then it gives ordinary least 
squares solution. The memory index (MI) of the 
filter can be defined as MI=I/(I-FF). Thus if 
FF =I, then MI is infinity - the filter is said to 
have infinite memory. This means that the entire 
data set is given equal weighing. If FF 2 1, the MI 
will also be s&ler(finite memory), thereby implying 
that the past data Bre given less weighting, since 
the weighting factor used in the least squares 
performance functional is given as 

1 
Column rank ( H )  

From the above it is clear that the weighting 
factor is intended to ensure that data in the distant 
past are forgotten in order to afford the possibility 
of following the statistical variation of the 
measurement data. 

3 RESULTS & DISCUSSIONS 

Aircraft responses are geded.iat three 
representative flight condi*$$;from the FBW 
aircraft simulator using twd&namic .. ~ . performance 
manoeuvres as  
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estimation (Alt = 8 km, (Alt = 8 km, (Alt = 8 km. (Alt = 8 km. 
approaches Mach No. = 0.6) Mach No. = 0.7) Mach No. = 0.8) Mach No. = 1.0) 

" " - " " " " " 
L, L" LL I ,, L, L" CL L ,) 

EFFRLS-NMBA 0.0151 0.0089 0.0159 0.0115 0.0163 0.0145 0.0169 0.0129 
EUDF-NMBA 0.0216 0.1586 0.0201 0.11 12 0.0190 0.1036 0.0442 0.4275 
EUDF-MBA 0.2597 0.9108 0.3940 0.6660 0.4939 1.0506 0.5439 0.3659 
SOEM 0.2198 0.7540 0.3747 0.5979 0.4746 1.0009 0.4973 0.2996 

WUT manoeuvre 
Parameter Data set I Data set 2 Data set 3 Data set 4 
estimation (Alt = 8 km, (Alt = 8 km, (Alt = 8 km. (Alt = 8 km. 
approaches Mach No. = 0.6) Mach No. = 0.7) Mach No. - 0.8) Mach No. = 1 .O) 

c, a C" c, c, c, c,, c, c,> 
EFFRLS-NMBA 0 0624 0.2664 0.0718 0.2908 0.0767 0.3144 0.0499 0.2413 
EUDF-NMBA 0.041 1 0.5960 0.0543 0.4930 0.0624 0.4588 0 0423 0.2261 
EUDF-MBA 0.6193 0.9564 0.4524 1.1780 0 3922 0.8220 0 3995 0 7903 
SOEM 0.3871 0.8862 0.481 1 1.2402 0.5078 0 8579 0 2487 0.4741 

x 100, where (.) = Lift or drag coefficient. Percentage fit error = 

i=l 

Roller Coaster other two MBAs. Drag polars results obtaiaed fmm 
Fa3 .~-Wmaekvce at a l t i tude8 k i  and 

@ ~ a c h  NO. 0.6 ke presented in Figs 4 and 5, respectively, 
for the four methods. It is seen that the results 
are satisfactory. Though more results have been 

at the rate of O.lg/s for Mach Nos.= 0.6, 0.7, 0.8 
generated at other flight conditions, but for the 

and 1.0 at altitude = 8 km. 
sake of brevity, these have not been included here. 

Wind-up-Turn The SOEM is an iterative process and hence 

Wind-up-turn (WUT) coupled manoeuvre data 
are generated for which the vehicle is progressively 
banked and loaded so that the g linearly builds up 
from Ig to nearly maximum g, and angle of attack 
ranges from 5" to 20°, at the same flight conditions 
as in RC manoeuvre. 

The RC manoeuvres are generated from the 
FBW aircraft simulator, while it is operating in the 
batch simulation mode. WUT data is generated by 
actually flying the simulator by a pilouengineer. 

Table 2 gives the fit error performance of different 
methods at  various flight conditions for two types 
of manoeuvres. It cai be seen that the EFFRLS- 
NMBA and EUDF-NMBA perform better than the 

requires more time for drag polar determination. 
EUDF is a recursive processand cBulQ be an attractive 
alternative to the SOEW. However, it requires proper 
choice of the process dineasurement noise statistics. 
The two-step meth6d EBM that helps in model 
selection h s e d  on statistical criteria is a good 
method for drag polar determination. However, it 
couid be more t%e consuming. It is included here 
only for the sake of completion and to show the 
link with other methods. ANMBAcould be preferkd 
over MBA, as it would require less computation 
time and would still give accurate resuksfor drag 
polars from flight data. It is also a potenfial candidate 
for real-time on-line determination of  drag polars. 
This approach has recently been validated using 
the data from transport category a~rcraft. It 1s being 
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-PIEASURED --I-- ESTIMATED -MASURE0 +ESTIMATED 

Figure 4. Drag polars--roller coaster manoeuvre (data set 1). Figure 5. Drag polars-wind-up-turn manoeuvre (data set 1) 

further s t d i f ~ r  in-flight drag polar determination. flight-test data. 
For the upcoming f l igh ts  of ah FBW aircraft the 
approaches evaluated here are planned to be used ACKNOWLEDGEMENT . . 
for the determination of  drag polars using real Thanks are due to Dr T.G. Pai, Project Director, 
flight test data. (Technology Development, Aeronautical Development 

4. CONCLUSION 

Mainly four parameterlstate estimation methods 
have been evaluated for the determination of drag 
polar from dynamic performance manoeuvre data 
for an FBW aircraft. While it is poss~ble to get 
very good estimates of drag polars from all the 
methods, the NMBAs are very efficient and less 
time consuming. They can also be applied for real 
time estimation of drag polars from flight data. A 
novel approach for estimation of drag polars has 
been validated. The latter requires to choose only 
one adjustable factor compared to several (as in 
Kalman filter cases). It is very promising method 
for on-line determination of drag polars from real 

Agency) for permission to publish the work. 
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