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ABSTRACT 

Control forces are required for steering a launch vehicle to guide it to follow an optimal 
trajectory. Launch vehicle control involves two control loops, the inner loop deals with 
short-period dynamics, stability and the outer loop, known a s  the guidance loop, optimises 
the trajectory. The general nonlinear plant model is first approximated as a linear time-varying 
plant over  a nominal trajectory and then segmented as linear, time-invariant plant models at 
different time intervals. A major part of the plant model is the control power plant, which for a 
secondary injection thrust vector control system used for the solid booster stage of a 
launch vehicle is nonlinear due to various reasons. The controllers designed for different time 
regimes assume the control power plant as linear and are adapted smoothly by a technique called 
gain scheduling to cope with the plant model changes wrt time. In this paper, a fuzzy logic-based 
pre-compensator is developed to linearise the control power plant so that the controller design 
becomes valid. Simulation results are presented to validate the design and a novel preprocessing 
technique is developed to reduce the size of the fuzzy inference system. 

Keywords: Secondary injection thrust vector control system, launch vehicle, f u u y  logic. nonlinear plant 
model, fuzzy inference system, control power plant, control loop, fuzzy inference system. 
pre-compcnsalor 

NOMENCLATURE Fs Side force developed for single quadrant 
overation 

dl Physical opening o f  pintle valve in the pitch 
ov.c F Side force developed when control forces -*,a 

are required in the mutually perpendicular 
d2 Physical opening o f  pintle valve in the yaw plane. 

axis 
1 .  INTRODUCTlON 

dl ., Effective port opening in the pitch 
axis Two kinds o f  control power plants are used 

mainly for launch vehicle control. the engine - 
P lnjectant tank pressure gimbol control and the secondary injection thrust 
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vector control (SITVC). The former is used for (b) Nonlinearity due to the injectant tank pressure 
liquid engines and the latter for large solid boosters variation 
at loner stages. In a SlTVC system, the main 
nozzle is surrounded by a torroidal tube near 
the convergent end of the nozzle and many 

dl, = dl x 6 - 
electro-mechanically controlled port openings 
are provided uniformly on the torroid. Through 
these ports, a nonflammable liquid at high pressure 
is injected into the nozzle jet. The resulting deflection 
of the jet gives rise to side forces, which can be 
used for steering the main vehicle. 

Apart from actuator nonlinearities, there are 
three major nonlinearities in a SlTVC system. 
In this paper, a fuzzy logic-based pre-compensator 
is designed and developed to linearise all the 
nonlinearities except the actuator nonlinearity. 

The following three schemes were developed 
for the above design: 

(a) Adaptive neuro-fuzzy inference scheme (ANFIS) 
using TSK consequents 

(b) Adaptive standard additive model (ASAM)- 
based design 

(c) A reduced ASAM to represent the same 
pre-compensator by a novel preprocessing 
technique. 

All the three methods are found to be effective 
in linearising the control power plant. To evaluate 
the performance of the plant with and without pre- 
compensator, simulations were done using standard 
signals. The simulation study was carried out in the 
MatlablSimulink system-simulation environment. 
The response of the compensated plant and the 
reference model were compared to iustify the 
effectiveness of the compensator designed. 

2. PLANT DESCRIPTION 

The control power plant for the SlTVC system' 
has three types of nonlinearities apart from 
the actuator nonlinearity. These are 

(a )  Nonlinear relationship between the side force 
developed and the port opening 

For single quadrant operation, control 
forces are required in either pitch or yaw 
plane only. For that, the port opening of 
injectors in the required plane alone should be 
adjusted. When control force is required in a 
particular plane, say, pitch plane, the side 
force developed, is given by Fs = f (dlefl), 
where f (dle,,,) is calculated using curve 
fitting technique from the actual test data. 

(c) Nonlinearity due to simultaneous port 
opening of the adjacent quadrant ports (yaw- 
axis control). 

When control forces are required in the 
mutually perpendicular plane, simultaneous 
port opening of injectors on the adjacent 
quadrants become necessary, and then the 
side force developed is given by 

where d is the minimum of dl and d2. 

Hence, the plant under consideration has 
three inputs (dl ,  d2 and P)  and one output (0. 
A pre-cbmpensator is developed to take-care of 
all the above nonlinearities except the actuator 
nonlinearity, which thus makes the compensated 
plant to behave as a linear system. Thus, the assumption 
for the controller design becomes valid and its 
stability and performance analysis by linear techniques 
become justified, and hence, the whole design and 
analysis become robust. 

Using the test data for (a) and other nonlinear 
equations for (b) and (c) mentioned above, 
2890 samples of training vectors were generated 
for the plant. The pre-compensator can be treated 
as the inverse of the plant but for the scale factor, 
K whose value is taken as 20 for convenience. 
The input to the pre-compensator are command 
voltage (FIK), d2 and P (where d2 and P are the 
same as that of the plant) and its output is u. 



SUBHA RANI. el 0 1 :  THRUST VECTOR CONTROL. POWER PI.ANI I.IN~~ARISI\'I'ION I O R  A I.AIINCII V l ( l l l< ' l  I' 

FIK 

Figure I. Block diagram of the overall system 

which, in  turn, i s  given as input to the plant as 
shown in f ig  I .  

Figure I shows the block diagram o f  the overall 
system with pre-compensator. actuator and the 
nonlinear plant. In simulatio~~ex~eriments. a linear 
second-order model o f  damping ratio 0.7 and 
bandwidth 5Hz i s  taken as the actuator. 

3. PRE-COMPENSATOR DESIGN USING 
ANFIS WITH TSK CONSEQUENTS 

The pre-compensator is represented using 
ANFIS' subject to the following constraints: 

(a) Sugeno-type fuzzy inference system used for 
modelling 

The TS-type fi~zzy model having rule consequents 
as linear functions o f  input variahlcs tilakes tlic 
system notation very compact and efficient. Since 
the training data i s  uniformly distributed, the initial 
set o f  fuzzy rules are constructed using grid 
partit ioning technique. Four Gaussian-type 
membership functions are provided l'or each ol'tlie 
three input variables. and thus. 64 itilkrencc rulcs 
are provided in  total. Figures 2(n) and ?(b)  show 
the overall linear relation-ship hetween tlie pre- 
compensator input, FIK. and tlie plant output, I.' 
for different values o f  tR and P .  

4. ADAPTIVE STANDARD ADDITIVE 
MODEL-BASED PKE-COMPENSATOK 
DESIGN 

(b) Weighted average method used for 4.1 Standard Additive Model 
de-fuzzification. 

The standard additive modcl (SAM) includes 
(c) Unity weight assigned for each rule. almost al l  fuzzy systems found in practice. and 

200 

1 SCALE FACTOR : 20 kNN 
300 i SCALE FACTOR 20 kNN 

COMMAND FORCE 

(a) 

COMMAND FORCE 

(hl 

Figure 2. Overall linear relationship between the pre-compensator input. FIK and the plant outpul. F for command force vr side 
force: (a) for d.2 = 8 and P =  3.5 and (b) for d? = 0 and P = 8.0 
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m 
hence. can be viewed as the most generalised 
form. The SAM has the simple form of a convex 

Z W ,  * a , ( x ) * V ,  * C ,  
- , = I  

sum and can be extended to more complex fuzzy - 
I 

models where the then-part fuzzy sets are Z W ,  * a , ( x ) * v ,  
linear operators (TSK) or nonlinear operators. / = I  

SAMs can combine any number of weighted 
fuzzy systems into a common fuzzy system. m 

Figure 3 shows the architecture of a SAM". =c P, (X)C ,  
j=l  

In SAM, the fired then-part set where 

B: = a ,  ( x )  B, ( 1 )  

where a, (x)  is the degree to which the input 
r = ( x , . x  ,..., xn)  fires or activates the jlh rule 
and is foind using the product combiner, CJ is the then-part set centroids and 

7 is the then-part set volume or area. 

The m coefficients p, (x) ,  p ,(x)  ,...., p J x )  are 
convex i n  that each term is non-negative 
p,(x) r 0 and they sum to unity. 

The sum of fired then-part sets 

Thus, F(x)  is a convex sum of the m then-part 
set centroids. In  general, V, s can be different for 
different j and the same is true for w, as well. 

4.2 Pre-compensator Design 

Since the training data is uniformly distributed 
in the product space, grid partitioning technique The SAM output, F(x)  = Centroid [B(x) ]  

L ------------ J 

Figure 3. Architecture of siandard additive model 
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is chosen for generating the initial fuzzy inference 
system, and later, for fine tuning, supervised 
gradient descent algorithm is used. After trial and 
error, the size of the system is fixed as (9,5,5), 
i.e., 9 membership functions for the first input 
which is the command voltage and 5 membership 
functions each for the second and third input 
d2 and P, respectively. Thus, a total of 225 fuzzy 
rules are generated. Here, Gaussian-type membership 
functions of antecedent part and real number for 
consequent parts are taken. 

4.2.1 Adaptive Algorithm for SAM 

The supervised gradienf descent methods is 
used for learning the SAM model of a pre-compensator. 
Unlike other fuzzy systems, SAM systems have 
the flexibility to tune rule weights wJ and then-part 
volumes V, in addition to the tuning of antecedent 
and consequent membership function parameters. 
This makes SAM systems to learn faster than any 
other system. Here, the volumes are normalised to 
unity. The SAM output is given as 

where m = 225 

where 

The tuning process is as given below: 

(a) For each input vector, calculate the output 
F(x) using Eqns (8) to (10). 

(b) Compute the squared error E(x) = %* [d(x)- 
F(x)12, where d(x) and F(x) are the desired 
and the actual output of the fuzzy system for 

input x. In this method, the inference rules 
are tuned so as to minimise the objective 
function E. 

(c) Update the rule weights as follows: 

(11) 
where p(t) = Learning constant at time t, and 
E(X) = d(x) - F(x). 

Update the consequent parameters such 
that the centroids in the consequent parts 
are adjusted as below. 

Update the change in adjustable parameters 
of the antecedent part where the centre 
(m,) and width (9) of the gaussian-type 
membership functions are adjusted as below 

aE 
m,(t+l)=m,(t)-p(t)- 

am, 

C J  - F I )  (13) 

The learning iules of Eqns (I I) to (14) are to 
adaptively change the tuning parameters in a 
direction to minimise the objective function E. Thus 
using these learning rules, the tuning parameters 
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Figure 4. (a) Reference output (b) comparison of compensated and uncompensated output 

of inference rules are optimised to minimise the 
inference error between the desired output and 
the output of the fuzzy reasoning. Here, batch 
learning is used for updating the parameters. 

Figure 4 (a) shows the response of the reference 
model for an untrained input sequence of 1000 
samples. Figure 4(b) shows the response of the 
plant with and without pre-compensator for the 
same 1000 samples to verify the effectiveness of 
the linearisation scheme. 

5. NOVEL PREPROCESSING TECHNIQUE 
FOR PRE-COMPENSATOR DESIGN 

size by preprocessing its command input.. This 
is a novel approach but is specific for a system 
depending on its features. Based on the training 
data, the actual profile of the command input is as 
shown in Fig. 5(a). The preprocessed command 
profile is given in Fig. 5(b). The smoothening in the 
pre-processed command profile makes possible the 
fuzzy inference system size reduction. The three 
input of pre-compensator are command (FIK), d2, 
P and its output is u. For the preprocessing of 
command input, single quadrant operation (d2 = 0) 
is assumed. The preprocessing accounts for the 
pressure-dependent nonlinearity of the output 
at d2 = 0. 

The fuzzy inference system required to For single quadrant operation, the side force 
represent the pre-compensator is reduced in developed is given by 

Figure 5. (a) Command input (b) preprocessed command input 
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TlME COUNT 

Figure 6. (a) Reference output and (b) comparison of 

Fs= f (d l*)  

=0.1919*d& -5.655g2d1$ +65.07*dlfl (1% 

where 

( 1 7 )  

Let z = d l  * P1I2 

then 

where 

- 5 0 :  , , 1 , , , , , r I 
0 200 400 600 BOO 1000 

TIME COUNT 

(b) 

compensated and uncompensated output preprocessed case 

The inverse of the polynomial in Eqn ( 1 9 )  is 
obtained using curve-fitting technique as 

z = g1 ( F s )  

The actual command input of pre-compensator 
is FIK from which the equivalent values of side 
force, F are computed knowing the scale factor 
K whose value is 20.  Using the fitted inverse 
polynomial, 

2' = g-' (F) 

which now is the combination of preprocessed 
command and pressure (PI"). The preprocessed 
command so obtained is used for modelling the 
pre-compensator by replacing the command input 
of original training data. 

The initial fuzzy inference system for 
the pre-compensator is generated using grid 
partitioning technique. Thus, the centres of the 
initial membership functions are spaced equally 
along the domain of each input variable. After 
trial and error, it was found sufficient to use 
a system of size ( 9 , 4 , 2 ) ,  i.e., 9 membership 
functions for command input, 4 membership 
functions for d2 and 2 membership functions For 
pressure P in place of (9 ,5 ,5)  for the original S A M  
system, reducing the size of rule base from 
225 to 7 2  without loosing accuracy. Supervised 
gradient descent algorithm is used for fine tuning. 
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Figure 6(a) shows the response o f  the 
reference model for an untrained input sequence 
o f  1000 samples. Figure 6(b) shows the response 
o f l he  plant with and without pre-compensator for 
the same I000 samples to verify the effectiveness 
o f  the linearisation scheme. 

6. CONCLUSION 

The development o f  pre-compensator is carried 
out successfully using three different schemes: 
(i) ANFIS with TSK consequents, (ii) ASAM-based 
design, and ( i i i )  a novel preprocessing technique by 
which the pre-compensator is represented using a 
reduced ASAM. The adaptive algorithms have been 
developed for the second and third methods and 
also the preprocessing scheme developed has 
resulted i n  substantial reduction in  the size o f  the 
inference system. The design o f  pre-compensator 
has enabled the overall compensated system to 
behave as the desired linear system. 
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