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ABSTRACT 

Radar imagery provides an all-weather and 24 h coverage, making it ideal for critical defence applications. 
In some applications, multiple images acquired of an area need to he registered for further processing. Such 
situations arise for battlefield surveillance based on satellite imagery. The registration has to be done 
between an earlier (reference) image and a new (live) image. For automated surveillance, registration is 
a prerequisite for change detection. Speed is essential due to large volumes of data involved and the need 
for quick responses. 

The reglstrauon transformation 1s quite simple, being mainly a global translation. (Scale and rotation 
conectionscan he applied based on known camera parameters). The challenge lies in the fact that the radar 
images are not as feature-rich as optical images and the image content varLtion can he as high as 90 per 
cent. Even though the change on the ground may not be drastic, seasonal variations can significantly alter 
the radar signatures of ground, vegetation, and water bodies. This necessitates a novel approach different 
from the techniques developed for optical images. An algorithm has been developed that leads to fast 
registration of radar images, even in the presence of specular noise and significant scene content variation. 
The key features of this approach are adaptability to sensorlterrain types, ability to handle large content 
variations and false positive rejection. The present work shows that this algorithm allows for various 
cost-performance trade-offs, making it suitable for a wide variety of applications. The algorithm, in 
various cost-performance configurations, is tested on a set of ERS images. Results of such tests have 
been reported, indicating the performance of the algorithm for various cost-performance trade-offs. 
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1. INTRODUCTION 

Radar satellite imagery is extensively used in 
defence because it provides an all-weather, and a 
24 h coverage of target areas. However, from the 
image processing point of view, radar images pose 
a special challenge because these are often very 
noisy and do not contain the well-defined geometric 
features present in optical imagery. As a result, 
image processing algorithms that process radar 
imagery tend to be computation-intensive as 
they try to remove the noise before detecting 

corners, and lines and contours. On the other 
hand, there exists a class of applications which 
require fast registration of radar images. These 
applications arise in the context of guidance and 
battlefield surveillance. In the first application, it 
is necessary to register an image acquired by an 
onboard radar with a stored reference image. 
The objective of the registration is to obtain a 
position fix so as to enable a course correction of 
the vehicle. In order for this image processing 
module to be useful, the registration must be as 
fast as possible. Typically, the onboard navigation 
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system provides reliable information regarding height 
and orientation of the vehicle. Using this information, 
the two images can he corrected for rotation and 
magnification. A similar situation arises in satellite 
surveillance. Images obtained on successive visits 
to an area have little scale or rotation variations, 
but usually have significant translation offsets. Due 
to large volumes of data generated daily, it would 
be desirable if an automated process could cue a 
human to look at only those areas where there 
have been some changes. In order to do this, the 
images must first be  registered with single-pixel 
accuracy. While this can be done manually, it is a 
very tedious and time-consuming task. The need 
for fast algorithms arises in this context due to 
sheer volume of data. It is to be noted that these 
applications do not require image interpretation- 
they only require image matching. 

An excellent survey of various methods', which 
includes methods developed for satellite images, 
medical images (MRI, PET) and computer vision 
applications. The overall schema identified for any 
registration is: (i) choice of features, (ii) choice of 
metric, and (iii) a search algorithm for identifying 
the solution. The present work Fits this schema. 
However, certain characteristics of the radar images 
rule out the use of the standard techniques used 

to implement the first two modules. These characteristics 
only will be highlighted here. 

In most of the applications, the change in image 
content between two images being registered is 
implicitly assumed to be small. This is a good 
assumption for optical images, in general. View 
point changes, lighting and movements of some 
objects leave the overall structure of the image 
unchanged while changing the details of individual 
objects in the scene. Such a situation allows the 
use of global transforms (FT-based correlation, FT 
phase-based techniques) as well as multiresolution 
approaches (coarse-to-fine methods). However, in 
seasonally variant radar images, often, only a few 
small details remain invariant between images while 
appearance of the vast majority of the image changes. 
This rules out all global transforms as well as 
multiresolution techniques except for certain areas, 
special areas like big cities. Thus, the general solution 
for radar images must be able to ignore the majority 
of the image and focus on the few invariant structures 
present. 

The above constraint indicates that a high level, 
feature-based approach may be suitable for the 
problem. As indicated, the desirable characteristics 
of features are: (i) invariance under expected sources 

Figure 1. Sample ERS-1 radar images. The big images were used to compute the features using principal component analysis. 
Various terrain types are shown. From left: Rivers (col. I), urban areas (cols. 2, 31, vegetation (col. 4) and hills 
(col. 5). The small images show the central areas of the big images, but in the dry season. 
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of distortions, (ii) relevance to the problem, and 
(iii) low computation costs. While the above criteria 
are relevant, the peculiarities of radar images taken 
across seasons rule out the usual features listed 
in the survey1, such as points, edges, corners, lines, 
moments, centroids, and higher level syntactic 
description. Once again, these peculiarities are 
focussed rather than giving an exhaustive analysis 
of each possible feature reported in the literature. 

Radar images are grainy due to specular noise 
inherent in any coherent imaging system. Thus, 
these can never be as smooth as optical images. 
The use of any point or linelcurve-based feature 
requires expensive smoothing.operations that can 
model the noise correctly. The radar images are 
characterised by bright spots: Comer reflectors 
(urban structures, bright linear features (mountain 
sides), dark regions (water bodies, such as rivers 
or lakes) and various types of textures (ground, 
vegetation). Thus, local, area-based texture features 
that capture bright spots as well, seem to be ideal. 
Higher level semantic structures are expensive 
and unreliable to compute. Geometric features based 
on large regionslobjects are very much prone to 
variation due to seasonal effects. Finally, an invariance 
wrt bias and contrast in the images is desirable. 

This study presents a registration technique 
that works under the constraints posed by seasonally 
variant radar images. A brief outline of the method 
is presented for completeness, though it has already 
been reported3. 

2. REGISTRATION ALGORITHM 

The registration algorithm consists of three 
steps: (i) feature set construction, (ii) feature extraction, 
and (iii) feature matching. The first step is adaptive 

-i t  produces features tuned to a particular imaging 
radar. The second step extracts features from the 
stored reference images. For each reference image, 
feature vectors are computed for various sub-images 
of size equal to the live image. These sub-images 
are sampled from the reference image with a sampling 
rate, r, determined by the expected accuracy of 
the system. These two steps are computationally 
intensive but must be done only once. These are 
typically done as an offline set-up step. The feature 
vector matching step is the third and the last step. 
This step has to be performed online for each live 
image and is optimised for speed. A single-feature 
vector is computed for the live image as a whole. 
It is then compared with the pre-computed feature 
vectors of the reference image sub-images. This 
produces a match coordinate and a confidence 
measure which indicates whether the match 
coordinates should be accepted. 

2.1 Feature Set Design 

The decision to use area features was taken 
to deal with the noise present in radar imagery. In 
particular, one would like to do a feature-level 
characterisation without having to do any noise 
removal. This would imply that larger the feature 
size, the better. However, large features have an 
associated disadvantage in that they lead to a loss 
of resolution. If features are defined as 64 x 64 
patterns, then the output of such a feature detector 
may not change if the input changes by only a few 
pixels. Thus, the dual considerations of noise 
immunity and resolution constrain the choice of 
feature size. Initially, a feature size of 32 x 32 
had been chosen3 and a feature set designed for 
that size. That analysis has been extended to 
feature sizes of 32 x 32, 24 x 24, 16 x 16, and 
8 x 8 in the present work. Since the task at hand 

Figure 2. Features extracted from ERS images at 16 x 16,24 x 24 and 32 x 32 resolutions. For each size, only first 32 principal 
components are shown. 
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requires discrimination rather than modelling1 of the associated eigenvalues enables one to 
reconstruction, principal components (PCs) are more determine M, the number of those features that 
appropriate than eigenvalues as choice of features. need to be used. This n r a ~ h  is shown for W = 32. 

24, 16, 8 in Fig. 3. It ;ai be seen that W = 32 < 
For each feature size (W) ,  the feature set = 16, = 24 l;, = 12, and = 16 l;, 

design proceeds as follows: = 8. This completes the feature set design. 

(a) Extraction of W x W sub-images from a data 
set of reference images 

(b) Principal component analysis (PCA) of sub-images 
to obtain the PCs. These will consist of W x W 
PCs, each a W x W gray scale pattern. 

(c) Examination of eigenva1,es associated with 
each PC to determine how-many PCs need to 
be used. 

The PCA yields an eigenvalue associated with 
each PC. From a plot of these eigenvalues, one 
can determine how many features, M, are adequate 
to describe the images for a given W. Since larger 
features describe a greater area, it is expected that 
for larger W, the plot of eigenvalues associated 
with the PCs will fall off slower indicating the need 
for more features. Thus, the PCA produces a family 
of features of the desired size and an examination 

2.2 Computation of Feature Vectors 

The large reference image is characterised as 
follows: (i) sub-images of sizes equal to the live 
images are extracted. These may be true reference 
and live images as in guidance applications. For 
surveillance or satellite time series alignment 
applications, these can be arbitrary, small size images 
(live) extracted from a single image for matching 
into a larger extracts (reference) from another 
image, (ii) for each sub-image, each W x Wfeature 
is used as a convolution kernel with a step size of 
W. Thus, if W = 32 and live image is 128 x 128, 
each feature produces 4 x 4 = 16 outputs. If M 
features are used, this will create a M*16 dimension 
feature vector for each sub-image, (iii) the dynamic 
range of the convolution outputs will be very large, 
though most values will be clustered around a mean. 

I VARIATION OF PC VALUES FOR FILTER SIZES : 32.24.16 8 8 

0 5 10 15 20 25 30 
PC NUMBER 

(a) 
Figure 3. Analysis of various feature sets: (a) shows the eigenvnlues associated with various PCs fur PC sizes of 32, 24 and 16 

pixels. 
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SVD ANALYSIS OF FILTER BANK OUTPUT : 32 32 X 32 FILTERS 

s = 1  - 

EIGENVALUE NUMBERS 
(b) 

I SVD ANALYSIS OF FILTER BANK OUTPUT : 32 24 X 24 FILTERS 

0 4 8 12 16 20 24 28 32 

EIGENVALUE NUMBERS 

(4 
S K I  ANALYSIS OF FILTER BANK OUTPUT : 32 16 X 16 FILTERS 

EIGENVALUE NUMBERS 

(d) 
Figure 3. Analysis of various feature sets: The flgnres @), (c) and (d) indicate the registration accuracy expected at PC size. 

S is the sampling rate of the h p u t  to the fllter hanks. The lowest value of S for which the graph saturates for each 
feature size indicates the minimum input separation required for change detection. This resolution is 4 pixels for 
32 x 32, 3 pixels for 24 x 24 and 2 pixeis for 16 x 16. 
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One can introduce nonlinearity at the convolution 
output that, in effect, does a (nonuniform) quantisation 
to give an 8-bit output that has a near-uniform 
distribution across its dynamic range. A sigmoid 
transfer function suffices in most cases to achieve 
this histogram equalisation3. 

The following characteristics of the above 
approach are worth noting. There is no preprocessing 
or noise removal step prior to feature extraction. 
The features are a low-level characterisation of 
the image, requiring no high-level understanding or 
modelling. The feature vector size is constant, 
independent of image content. The feature detector 
output values are always of equal significance, 
irrespective of their gray scale values. 

2.3 Matching Process 

The reference image is characterised by a large 
number of fixed-size feature vectors as described 
above. In an identical manner, a feature vector is 
computed for the live image. The metric used to compare. 
the vectors is thenomaliseddotproduct, [ ~ . ~ ) / ( J G J . J ~ J ) .  
This similarity measure is fast to compute, is not 

influenced by outliers, and also makes the system 
contrast-invariant3. If the feature kernels are chosen to 
have 0 bias (bipolar), the system as a whole becomes 
bias and contrast-invariant. 

After the calculation of the normalised dot 
products, one has a measure of similarity between 
the live image and various parts of the reference 
image. The maximum in the distribution of dot 
product values gives the location of the best match. 
Reliability measures can be formulated based on 
the statistics of this distribution. The measure used 
in this study is based on the maximum, mean and 
standard deviation: If the maximum is more than 
five standard deviations from the mean, it is considered 
a significant peak and its location is declared the 
registration location. If the maximum is not 
sufficiently large, that match is rejected and a 
NULL output is given. Random, seasonally variant 
image pairs often have no identifiable invariant 
features that can be used for reliable registration, 
even by human beings. Thus, a good match reliability 
measure is very critical to eliminate false positives. 

Figure 4. Two-sample image registration results show the liig images are the reference images. Corresponding to each reference 
image, two smaller images are shown. For each pair, the left image is the live image and the right image is the 
computed matching region in the reference. Both matches are accurate to within 2 pixels. 
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2.4 Computation Complexity 

The registration cost per image pair is dominated 
by the cost of generating feature vectors for reference 
image sub-images. The number of sub-images depends 
on r, the sampling step used in extracting the sub- 
images. This, in turn, depends on the expected 
accuracy of the system, determined by the feature 
size, W. The number of feature elements also depend 
on the feature size, Wand the number of features, 
M. The choice of feature set then determines the 
parameters for the feature extraction and feature 
matching process. Thus, W effectively determines 
the over all cost of the algorithm. 

The feature size, W determines the expected 
resolution of the system. The expected resolution 
of the system, for a given W, is estimated as follows: 

(a) A feature set is designed for a given feature size, 
W to get M principal componants of size W x W. 

(b) A filter bank with M of these PCs as filter 
kernels is constituted. The output of this filter 
bank for N W x W inputs taken from the 
reference images with a sampling of 6 is recorded, 
where N >> M. This creates an N x M matrix 
for each 6. 

(c) A singular value decomposition (SVD) is 
performed for each of these matrices and the 
singular values plotted. 

The SVD analysis indicates the expected 
resolution (registration accuracy). Assuming that 
for a particular W, the resolution of the system is 
r pixels. Then for 6 t r, the rank of the output 
matrix should be M (M < N). However, if 6 < r, 
then the rank will be < M. By plotting the singular 
values for matrices corresponding to various ti's, 
one can determine the smallest 6 for which the 
output matrix achieves full rank. These plots are 
shown in Fig. 3. These show that W = 32 a r = 4, 
W = 2 4 a r = 3 a n d  W =  1 6 3 r = 2 .  

The feature vectors are computed for sub- 
images taken from the reference images with a 
sampling of r pixels. Thus, the computation complexity 

scales as (1lr)l. The computation cost also varies 
directly as M varies as it determines the size of 
the feature vector. It has been shown that both r 
and M are related to W, the feature vector size. 
The above analysis only gives an upper bound on 
M and a lower bound for r. One can pick a smaller 
M or larger r to reduce computation cost at the 
expense of performance. The above analyses show 
that, for a fixed W, increasing M or reducing r 
beyond a certain point will not provide better results 
even though they add to the cost. Alternately, 
given a performance criterion, one can determine 
the Wthat yields the most computationally efficient 
solution. This provides one with a rational basis for 
selecting feature size and number of features for 
an expected resolution. 

4.  RESULTS 

Various configurations of the matching algorithm 
were tested on a set of 320 image pairs. These 
images are ERS-1 radar images and each image 
pair consists of two images of an area imaged in 
the dry season (April-June) and in the wet season 
(September-December). The 320 image pairs consisted 
of 16 sets of 20 image pairs. Each set was chosen 
along an arbitrary tract. As a result, there were 
only a few images in each sequence of 20 that 
contained enough invariant features to allow for 
reliable registration. 

A total of 22 configurations of the algorithm 
have been tested. The configurations varied in the 
choice of feature size (W), the number of features 
used (M) and the sampling rate (r) of sub-images 
in the reference images. For each configuration, 
one can compute the computation cost for matching 
an image pair. Thus, this test produced a performance 
measure (number of confident matches out of 320) 
for various computation costs (millions of floating- 
point operations (MFLOP's)). The cost has been 
calculated for 256 x 256 reference and 128 x 128 
live images. The last column shows the number of 
correct and confident matches. Most of the images 
lacked sufficient seasonally invariant featurres to 
enable confident matches. The results are shown 
in Table 1. Using this table, one may pick the 
cheapest configuration for achieving a given level 
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Table 1. Results of running a 320 image test set on various 
configurations of the registration algorithm. The 
parameters varied are the feature size (W), number 
of features (M) and sampling rate of sub-images from 
reference images (r) 

Configuration Computation No of confident 
costs (MFLOP's) matches 

of performance. This is shown as a graph of performance 
versus cost in Fig. 5. It may be noted that while 
various configurations of the algorithm produced 
confident and correct matches for approximately 
20-25 per cent of the images, there were no 
incorrect but confident matches. 

65 M 75 BO 85 90 

NUMBER OF MATCHES OUT OF 320 TESTS 

Flgure 5. Proposed algorlthm allows one to trade-off 
performance for cost. For the 320 image test set, 
only about 85 bad urban andlor Wfenturek Hence, 
the cost escalates rapidly as one tries to get more 
than 80 of the images coundently registered. 

5.  CONCLUSIONS 

An algorithm for fast registration of radar images 
has been presented. This algorithm is suitable for 
applications where scale and rotation corrections 
can be applied before hand or are not significant. 
The algorithm is robust to noise and seasonal 
variations. The inherent flexibility in the design 
of the algorithm allows for a cost-performance 
trade-off that enables one to tailor it for various 
applications. The false match rejection is very 
good, making this algorithm suitable for critical 
applications. 
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