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ABSTRACT 

Over the past two decades, bifurcation and continuation methods have emerged as efficient tools for 
prcdiut~on. and control of t l~ght  instabilltics Bifurcation phsnumcna have been aysocinted with nonltnear 
behaiiour of aircrafi in actual flight tests. and the crit~cal control combinations, srh~ch sign~f) onset of 
instabil~t~es, ha\e bern identified for alma)?;t all gsnerdtlons oimodern tighter aircraft. A standard b~lurcation 
analysis procedure has been used in the p3st In this paper, thc hifurcat~on theor!. rslebant to prelini~nar) 
b~liurcation ana1)iis of nonlinear aircraft d)nantics, has hsen introduced. and 3 stcpsuise ntethodolog! 
wed in a standard b~furcation ana1)sis prucedurc ha, bcsn ~llustrated u,ith an application to open-loop 
d)namics of an F-18,IIARV model in lanriingconilgur~tion. Funher, an example manoeu\re is constructed. 
and numcrlcal time simulations of an F-18 HAKV model in this manoeuvre is curried oul tu vsl~date the 
predictions from the bifurcation analvsis. Numerical time simulation results confirm the onset of nonlinear 
behaviour at critical control combin-ations identified in bifurcation analysis of the aircraft model. Thus, 
bifurcation methods, in coniunctiou with selective numerical simulations. can be extremelv useful in the 
design, development, evalu~tiou, and flight training phases of a fighter aircraft developme& programme. 

Keywords: Bifurcation methods, standard bifurcation analysis, open-loop dynamics, flight control, flight 
instabilities, nonlinear aircraft dynamics, nonlinear dynamics, flight mechanics, fighter aircraft, 
aircrafi instabilities prediction, wing rock motion 

NOMENCLATURE P.4.r  Body axis roll, pitch, and yaw rates 

b Wing span S Wing planform area 

c Mean wing chord t Time 

C,C,,C, Drag, sideforce, and lift coefficients 
Tn, Maximum thrust 

C,, Cm, Cn Roll, pitch, and yaw moment coefficients 
"$  Speed of sound 

g Gravitational acceleration 
a.P Angles of attack and sideslip 

Ixj Iy 1: Inertia about aircraft X, Y, and Z 
axes Y, P Wind axis pitch and roll Euler angles 

M Mach number 6e ,  6a,  6 r  Elevator, aileron, and rudder deflections 

m Aircraft mass V Throttle, as fraction of maximum thrust 
- -- -. 
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6 0 Body axis roll and pitch Euler angles 

P Atmospheric density at sea level 
conditions 

Frequency of limit cycle oscillation 

Subscripts 

c r  Critical equilibrium point 

T T-periodic solution 

Equilibrium point 

1 .  INTRODUCTION 

Modern combat aircraft are being designed for 
controlled flights at high angles of attack and in 
rapid roll manoeuvres. However, high manoeuvre- 
ability is often achieved at the risk of losing flight 
stability. It is known that aircraft, in high angles 
of attack motion and in rapid roll manoeuvres, 
may undergo nonlinear transitions, such as jump 
between two rival equilibrium states, and 
transition from equilibrium to periodic motion 
(so-called limit cycle oscillation) in flights as 
controls are varied. Therefore, studying nonlinear 
phenomena, and prediction and control of various 
instabilities has always been one of the problems 
of major interest in flight dynamics. 

Carroll and Mehra'.  and Zagaynov and - - 
Goman2 introduced bifurcation and continuation 
theory-based methods a s  efficient tools for 
investigating nonlinear aircraft dynamics. Using 
bifurcation analysis methods, they predicted 
a variety of nonlinear phenomena occurring in flights, 
and associated each of  these with bifurcation 
phenomena. For example, wing rock motion was 
related to a Hopf bifurcation, and jump was found 
to he the result o f  a saddle-node bifurcation 
of equilibrium solutions. Carroll and Mehra also 
calculated steady spin modes of an aircraft. Thus, 
they were able to predict both the control surface 
deflections at which the aircraft would undergo 
stallispin divergence, and the resulting steady 
states of the aircraft. Since then, bifurcation 
analysis methods have become a standard tool 
for studying nonlinear aircraft dynamics. Some 

interesting studies pertaining to  applications 
of bifurcation methods to nonlinear aircraft 
dyhamics are available in l i terat~re ' .~.  

Results based on bifurcation methods have also 
been used as reference maps for control law design. 
Ananthkrishnan and Sudhakar7 used bifurcation 
methods to design a linear aileron-rudder inter- 
connect law to prevent jump phenomena occurring 
in roll manoeuvres of an aircraft. Lowenbergs 
proposed a bifurcation tailoring approach, where 
multiple control actuators could be scheduled to 
avoid undesirable dynamic behaviour like spin. 
Use o f  bifurcation methods in the aircraft 
design and development process has also been 
stressed upon by Lowenberg9, and most recently 
by Liaw and SongLo. Therefore, one can say that 
bifurcation theory-based methodology is becoming 
a powerful tool in nonlinear flight dynamics. 

This paper aims to  provide readers with an 
introduction to the bifurcation theory and to illustrate 
the standard bifurcation analysis procedure with 
an application to study the open-loop dynamics of 
an F-181HARV model" in landing configuration, 
and to validate the predictions from the bifurcation 
analysis of an F-181HARV model with numerical 
simulation results. For bifurcation analysis, AUTO97 
continuation algorithm12 has been used, and all 
numerical simulation rcsults have been produced 
on MATLAB. 

2 .  BIFURCATION THEORY 

In a bifurcation analysis, a dynamical system 
such as that for the dynamics of a rigid aircraft, 
is required to he represented by a set of first-order 
autonomous ordinary differential equations as 

where x is the vector of n state variables of the 
system, u is the varying control parameter, p is the 
vector of fixed control parameter, and f is the 
vector of nonlinear functions which includes the 
effects of aerodynamics, thrust, and gravity. In an 
analysis using bifurcation methods, it is of interest 
to solve for all possible asymptotic states as u is 
varied within the prescribed limits, while p are 
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always kept fixed at their starting values. For a 
fixed value of u = u,, two types of asymptotic 
states are commonly encountered: Steady state or 
equilibrium solution, denoted by x = x, at u =  u,, 
and (ii) periodic solution, x,(t + T) = x, (t) at 
u = u,, where T is the time period of the periodic 
solution. 

2.1 Stability of Asymptotic States 

Stability of an asymptotic state is computed 
by local linearisation of the  system about 
the asymptotic state under consideration and 
is based on Lyapunov's and Poincare's definitions 
of stabilityI3. 

2.1.1 Stability of Equilibrium Solutions 

The locally linearised system around an 
equilibrium solution is represented by the  
Jacobian matrix, J = aflax. Practically, stability 
of an equilibrium solution is decided by the 
eigenvalues of the Jacobian matrix, evaluated at 
the equilibrium solution under consideration. The 
condition for local asymptotic stability of the 
system at that equilibrium solution is that all the 
eigenvalues of J l i e  in the left half complex plane. 
One o r  more eigenvalues in the right half  
complex plane indicate an unstable steady state. 
A critical or non-hyperbolic" equilibrium state 
is the onc which has one or more eigenvalues 
lying on the imaginary axis, i.e., eigenvalues with 
a zero real part. The Iinearised stability criterion 
is not applicable to critical equilibrium states. 
Stability of a critical equilibrium state depends 
on the higher order terms (a2flaxx ay/ax3, etc.) 
in the Taylor series expansion of the system 
about the equilibrium point. 

2.1.2 Stubility of Periodic Solutions 

The locally linearised system around a 
periodic solution is represented by 6 x = A  (t) 6x, 
where 6x (t) = x (t) - x, (t) is a small perturbation 
from the periodic solution x, (t), and A(t) is 
a square n x n T-periodic matrix. A(t) can be 
transformed to a matrix known as the monodromy 
matrix". Eigenvalues of the monodromy matrix, 
known as Floquet multipliers, are used to indicate 

stability ofthe periodic solution. One ofthe Floquet 
multipliers is necessarily unity, the other (n - 1) 
must lie within the unit circle in the complex plane 
for ~ t a b i l i t y ' ~ .  

2.2 Local Bifurcations of Asymptotic States 

As stated earlier, in a bifurcation analysis, 
it is necessary t o  solve for all asymptotic states 
of the system a s  the control parameter u is varied. 
This is best done using a continuation algorithm. 
Locations where the  number and/or stability 
of equilibrium or periodic solutions change are 
called bifurcation points. Bifurcations that are 
based on the knowledge of local behaviour of 
equilibrium points, are called local bifurcations to 
distinguish them from global  bifurcation^'^. 

2.2.1 Local Bifurcations of Equilibrium 
Solutions 

There are  two types of bifurcations: 
( i )  s ta t ic  b i furcat ions  a r i se  when branches 
o f  equilibrium solutions meet a t  a point, and 
(ii) merging of periodic solutions and stationary 
solut ions  a t  a point is  called dynamic or 
Hopf bifurcation. 

2.2.1 .I Static Bifurcations 

In the x - u state-parameter space, a static 
bifurcation of equilibrium solutions of Eqn (1) 
occurs at (xc,, uc,), if the following conditions are 
satisfied: 

Jacobian matrix ( J )  evaluated at (xc,, uc,) has 
a zero eigenvalue, while all of  its other 
eigenvalues have non-zero real parts, i.e., 
rank (J) = n - I .  

The first condition ensures that the considered 
solution is an equilibrium solution or fixed point 
of Eqn ( I ) ,  and the second condition implies 
that this fixed point is a non-hyperbolic o r  
critical fixed point. There are three types of 
static bifurcationsI3 [Figs l(a)  - l(c)]: (i) saddle- 
node, (ii) pitchfork, and (iii) transcritical. These 
are  structurally different and have different 
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Rigure I. Basic bifurcations of equilibrium solutions 

interpretations, and can be easily distinguished Axc,, u',) = 0 
from each other in Fig.1; 

Jacobian matrix (4 evaluated at (xc,, u',), has 

2.2.1.2 Dynamic Bifurcations a pair of imaginary eigenvalues i jw,  while 
all of its other eigenvalues have non-zero 

When the scalar control parameter u is real parts. 
varied, a Hopf bifurcation of the equilibrium 
solutions of the system [Eqn ( I ) ]  is said% occur Again, these two conditions imply that 
at u = uc,, if the following conditions are satisfied the fixed point undergoing the bifurcation is a 
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non-hyperbolic or critical fixed point. When all 
the above conditions are satisfied, a periodic 
solution of period 2nIo is born at (xc, u ). The 

C'. 

Hopf bifurcation point, and the branch~ng of 
a single stable equilibrium solution branch 
into an  unstable equilibrium solution branch, 
and a stable periodic solution branch is shown 
in Fig.1 (d). 

2.2.2 Local Bifurcations of Periodic Solutions 

Periodic solutions can also undergo an 
exchange of ~ t a b i l i t y ' ~ .  Analogous to  local 
bifurcations of equilibrium solutions which 
depend on the location of eigenvalues in the 
complex plane, local bifurcations of periodic 
solutions are characterised by the location of  
Floquet multipliers on a unit circle in the complex 
plane. 

2.3 Contirwatipn Algorithms 

CBntinuation algorithms, used to compute 
branches of equilibrium and periodic solutions, 
are Bssed on the implicit function theoremi6. 
Continuation algorithm available in the public 
domain 'qs  ~ ~ ~ 0 9 7 ' .  I t  can compute branches 
of equilibrium points, periodic solutions, and 
also it can locate folds, periodldoubling 
bifurcations, etc.  Type of  each bifurcation 
point is a lso  determined. Start ing data  for  
computations is generally an equilibrium point. 
At Hopf bifurcation points, AUT097I2 generates 
starting data to compute periodic orbits. These 
can then be used a s  starting points to  compute 
bifurcations from periodic orbits. 

3. BIFURCATION ANALYSIS O F  AN 
F-l81HARV MODEL 

The aircraft model (Appendix A) is in 

the required form, x= f (x, u, p) ,  suitable for 
implementing bifurcation methods to study its 
dynamics. One can identify from a comparison 
o f  the aircraft model (Appendix A) with the 
general model of a nonlinear system [Eqn (I ) ]  
that, x = [M, a, p, p, q, r, 4, 01, and a typical 
choice of u and p for the pre sent analysis is, 
u = 6e, and p = [q. &a, 6r]. 

3.1 Steady State Continuation 

This is the first step in a standard bifurcation 
analysis. In this step, a continuation algorithm is 
used to compute all possible steady states of the 
system as the contfol parameter u is varied within 

,' the prescribed limlts. To begin with the continuation, 
a starting equilibrium point is needed, which can 
either be obtained using analytical methods or 
by numerical simulations of the model. For the 
present analysis, the starting equilibrium point 
is a level flight trim: 

where all angles are in radian and angular 
rates are in radian per second. Starting with 
this equilibrium point, the AUTO97 continuation 
a lgor i thm was used to  compute other steady 
states of the model (Appendix A) as elevator 
def lect ianvar ied within the prescribed limits. 
The throttle parameter q, aileron deflection 6a, 
and rudder deflection 6 r  were always kept fixed 
in this continuation at their starting values 
a s  given above. The steady states, so computed, 
are plotted in Fig. 2 as functions of 6e. Plots in 
Fig. 2 are popularly known as bifurcation diagrams. 

3.2 Interpreta t ion of Bifurcation Diagrams 
& Instability Prediction 

On the bifurcation diagrams plotted in Fig. 2,  
solutions represented by solid lines are stable 
trims, and those represented by dashed lines are 
unstable trims. Onset of instability is represented 
by a bifurcation point. Between the bifurcation 
points at a = 0.4 rad and a ;2 0.08 rad, represented 
by solid square and empty square respectively, 
lies the region of stable longitudinal trims, as the 
lateral state variables, (p, P,  r) are all zero in 
this region. The longitudinal trims in this region 
comprise three different phases of longitudinal 
flight, viz., level, ascent, and descent. This is 
quite expected as the throttle q,  which is also the 
thrust available, has been kept fixed in this 

*AUTO97 can be downloaded from the \+ehh~tc  f t p  cs concordlaca  
107 
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ae (rad) --- UNSTABLE TRIM 
STABLETRIM 

0 ~~TcHFORK BIFURCAT~ON HOPf BIFURCATION . STABLE PERIODIC SOLUTION 0 UNSTABLE PERIODIC SOLUTION 

Fig,,re ,jiagrams for F-IUHAIV open-loop dpa.ics as a function of elevator *efiection 

analysis, and elevator is the only control being lift and drag generated The three phases of the 

varied,   iff^^^^^ trim of the eievator longitudinal flight are characterised by the flight 

deflection bring the aircraft into different path angle, = (0 - a), and from an inspection 

phases of flight depending on the amount of of a and q values in F i g  2, one can 
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Figure 3. Control inputs for manoeuvre 

identify these on the bifurcation diagrams. At the Hopf bifurcation point, it is predicted that 
a ..; 0.4 rad, which is a descending trim ( y  < 0) the aircraft will undergo limit cycle oscillations. 
inflight, the aircraft encounters a Hopf bifurcation Also, as this instability is found to  be due to 
point, which in bifurcation theory (as observed the Dutch roll mode eigenvalues, this limit 
from [Fig. l(d)] is the onset of limit cycling motion. cycling motion is predicted to be wing rock. In 
As the longitudinal trims are unstable beyond the ascending phase (0.03 rad < a < 0.25 rad) of 
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Figure 4. Transient response of longitudinal state variables of aircraft in manoeuvre 

flight, as elevator is deflected down, a decreases, corresponds to a pitchfork bifurcation. Below 
flight path angle y decreases, and the aircraft is this point lies the region of unstable longitudinal 
encountered with a branch point a t  a .s. 0.08 rad. trim flight, and bifurcated stable solution branch 
One can identify from the basic bifurcation with non-zero values of lateral state variables. 
diagram [Fig. l(b)] that this branch point As the pitchfork bifurcatiou point was due to 
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the spiral mode eigenvalue of the aircraft, it is 
predicted that the stable solution branch with 
non-zero values o f  the lateral state variables 
corresponds to the coupled dynamics of the aircraft, 
which is the spirally divergent motion of the 
aircraft. The peak on the  spirally divergent 
solution branch is marked by a level trim flight 
( y  = 0) condition at a = 0.03 rad, below which 
aircraft starts descending. On this descending 
phase of flight, spiral mode eigenvalue of 
the aircraft again moves into the left half 
complex plane at a = -0.02 rad, below which, the 
descending phase o f  flight i s  represented by 
stable longitudinal trims. 

3.3 Validation of Predictions 

This step must be carried out to confirm the 
predictions based on bifurcation analysis with 
numerical time simulation results. A practical 
situation was taken to confirm the predictions 
based on bifurcation analysis by numerically 
simulating a manoeuvre of the F-l81HARV model. 
Description o f  the  manoeuvre is a s  follows: 
Starting from a level flight trim condition the 
aircraft is  banked and consequently yawed 
by applying aileron and rudder so  that it is 
heading in the opposite direction (n rad yaw). 
At the moment when heading has been achieved, 
aileron and rudder are brought back to neutral to 
level out wings. Next, t o  confirm the presence of 
instabilities, a s  identified on the  bifurcation 
diagrams, the aircraft is flown on longitudinal 
flight trims in the opposite heading attitude. 
After confirming the presence of instabilities, the 
aircraft is flown hack to the starting level flight 
condition while maintaining its heading in the 
opposite direction. On the longitudinal flight of the  
aircraft, only elevator is operated while keeping 
other controls at their fixed values, as done in the 
bifurcation analysis. Control inputs deployed to 
execute this manoeuvre are shown in Fig.3, and 
the simulation results are presented in Figs 4 
and 5 for longitudinal and lateral state variables, 
respectively. These numerical simulation results 
confirm the onset o f  spiral divergence at 
a = 0.08 rad, and wing rock instability at 
a = 0.4 rad, as predicted by the bifurcation 

analysis of the model. Onset of wing rock motion 
characterised by limit cycle oscillations dominated 
by lateral state variables of the aircraft can he 
observed (Fig. 5)  when elevator is deflected to 
6e = -0.257 rad corresponding to a = 0.4 rad. 
Spirally divergent motions of the aircraft starting 
at a = 0.08 rad, though not clearly visible in 
other lateral state variables because of their 
low magnitudes, can be observed in yaw angle 
response (Fig. 5) where yaw angle changes 
significantly in response to a 2s step aileron input 
introduced as a perturbation. Recovery from the 
wing rock motion is achieved by changing the 
elevator deflection in downward direction, and it 
can be observed from Figs 4 and 5 that the aircraft 
has been brought back to the initial level flight 
condition, while maintaining the heading angle 
at approximately n rad. 

4. CONCLUSION 

Nonlinear behaviour of fighter aircraft at 
high angles o f  attack is  complex due to its 
nonlinear aerodynamics, and it is, in general, difficult 
to predict aircraft behaviour in these regimes 
accurately. Investigation of this flight domain 
is usually carried out with exhaustive numerical 
simulations before the first flight has taken, and 
later on, by means of expensive and extensive 
flight testings. Bifurcation and continuation methods, 
however, provide an efficient and economical way 
for the analysis of nonlinear behaviour of aircraft 
and prediction of aircraft instabilities. Efficiency 
o f  the method makes it possible t o  analyse 
complicated nonlinear aerodynamic models using 
the complete equations of motion in the entire 
range of control surface deflections. With little 
time and effort, global stability information of the 
nonlinear behavior of aircraft is obtained. Critical 
control deflections that signify onset of instabilities 
are easily identified on bifurcation diagrams, and 
nonlinear behaviour of aircraft are accurately 
predicted. Selective numerical simulations around 
bifurcation points confirm the predictions based on 
bifurcation results. The critical control deflections 
could be used to define the boundary for safe 
flight, and can serve as warning signals for the 
pilot approaching the boundary in flight tests. For 
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the spiral mode eigenvalue of the aircraft, it is 
predicted that the stable solution branch with 
non-zero values of the lateral state variables 
corresponds to the coupled dynamics of the aircraft, 
which is the spirally divergent motion of the 
aircraft. The peak on the spirally divergent 
solution branch is marked by a level trim flight 
( y  = 0) condition at a = 0.03 rad, below which 
aircraft starts descending. On this descending 
phase of flight, spiral mode eigenvalue of 
the aircraft again moves into the left half 
complex plane at a = -0.02 rad, below which, the 
descending phase of flight is represented by 
stable longitudinal trims. 

3.3 Validation of Predictions 

This step must be carried out to confirm the 
predictions based on bifurcation analysis with 
numerical time simulation results. A practical 
situation was taken to confirm the predictions 
based on bifurcation analysis by numerically 
simulating a manoeuvre of the F-1 8IHARV model. 
Description of  the manoeuvre is as follows: 
Starting from a level flight trim condition the 
aircraft is banked and consequently yawed 
by applying aileron and rudder so  that it is 
heading in the opposite direction (?I rad yaw). 
At the moment when heading has been achieved, 
aileron and rudder are brought back to neutral to 
level out wings. Next, to  confirm the presence of 
instabilities, as identified on the bifurcation 
diagrams, the aircraft is flown on longitudinal 
flight trims in the opposite heading attitude. 
After confirming the presence of instabilities, the 
aircraft is flown back to the starting level flight 
condition while maintaining its heading in the 
opposite direction. On the longitudinal flight of the 
aircraft, only elevator is operated while keeping 
other controls at their fixed values, as done in the 
bifurcation analysis. Control inputs deployed to 
execute this manoeuvre are shown in Fig.3, and 
the simulation results are presented in Figs 4 
and 5 for longitudinal and lateral state variables, 
respectively. These numerical simulation results 
confirm the onset o f  spiral divergence at  
a = 0.08 rad, and wing rock instability at  
a = 0.4 rad, as predicted by the bifurcation 

analysis of the model. Onset of wing rock motion 
characterised by limit cycle oscillations dominated 
by lateral state variables of the aircraft can be 
observed (Fig. 5) when elevator is deflected to 
6e = -0.257 rad corresponding to a = 0.4 rad. 
Spirally divergent motions of the aircraft starting 
at a = 0.08 rad, though not clearly visible in 
other lateral state variables because of their 
low magnitudes, can be observed in yaw angle 
response (Fig. 5 )  where yaw angle changes 
significantly in response to a 2s step aileron input 
introduced as a perturbation. Recovery from the 
wing rock motion is achieved by changing the 
elevator deflection in downward direction, and it 
can be observed from Figs 4 and 5 that the aircraft 
has been brought back to  the initial level flight 
condition, while maintaining the heading angle 
at approximately n, rad. 

4.  CONCLUSION 

Nonlinear behaviour of fighter aircraft at 
high angles o f  attack is complex due to its 
nonlinear aerodynamics, and it is, in general, difficult 
to predict aircraft behaviour in these regimes 
accurately. Investigation of this flight domain 
is usually carried out with exhaustive numerical 
simulations before the first flight has taken, and 
later on, by means of expensive and extensive 
flight testings. Bifurcation and continuation methods, 
however, provide an efficient and economical way 
for the analysis of nonlinear behaviour of aircraft 
and prediction of aircraft instabilities. Efficiency 
of  the method makes it possible to  analyse 
complicated nonlinear aerodynamic models using 
the complete equations of motion in the entire 
range of control surface deflections. With little 
time and effort, global stability information of the 
nonlinear behavior of aircraft is obtained. Critical 
control deflections that signify onset of instabilities 
are easily identified on bifurcation diagrams, and 
nonlinear behaviour of aircraft are accurately 
predicted. Selective numerical simulations around 
bifurcation points confirm the predictions based on 
bifurcation results. The critical control deflections 
could be used to define the boundary for safe 
flight, and can serve as warning signals for the 
pilot approaching the boundary in flight tests. For 
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Figure 5. Transient response of lateral state variables of aircraft in manoeuvre 
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example, presence of Hopf bifurcation point 
(Fig. 2), which leads to the onset of wing rock 
motion, can be used as a warning signal for the 
pilot, so that the pilot stays away from entering 
into the oscillatory motion. 

Results obtained from bifurcation analysis are 
also important from control point of view, 
as a bifurcation diagram not only provides the 
critical control deflection at which unstable motion 
develops but also provides the mode of instability. 
Thus, it provides a complete reference map, which 
could be used as an aid to control law design. 
For instance, on the bifurcation diagrams (Fig. 2) 
for the open-loop dynamics of the F-181HARV 
model, presence of Hopf bifurcation point was 
related to the Dutch roll mode eigenvalues of the 
aircraft, and the branch point was related to the 
spiral mode eigenvalue. These information could 
be used to design control laws to stabilise the 
corresponding modes o f  the aircraft. 

The closed-loop dynamics of the aircraft (with 
control laws implemented) is expected to have 
expanded flight envelope with no bifurcation 
points in the prescribed range of control deflections. 
Bifurcation analysis procedure does not put any 
restrictions on the order of the system, additional 
equations representing actuator dynamics, and 
flight control systems could also be integrated in 
the aircraft governing equations of motion and 
their global effects on the dynamics be studied in 
a unified manner. 

REFERENCES 

1 .  Carroll, J.V. & Mehra, R.K. Bifurcation analysis 
of nonlinear aircraft dynamics. J. Guid. Cont. 
Dyn., 5(5), 1982, 529-36. 

2. Zagaynov, G.I. & Goman, M.G. Bifurcation 
analysis of critical aircraft flight regimes. 
1CAS84-4.2.1, September 1984, 21 7-23. 

3. Jahnke, C.C. & Culick, F.E.C. Application of 
bifurcation theory to the high-angle-of-attack 
dynamics of the F-14. JournalAircrujt, 31(1), 
1994, 26-34. 

4. Avanzini, G. & de Matteis, G. Bifurcation 
analysis of a highly augmented aircraft model, 
J. Guid. Cont. Dyn., 20(4), 1997, 754-59. 

5 .  Littleboy, D.M. &Smith, P.R. Using bifurcation 
methods to aid nonlinear dynamic inversion 
control law design. J. Gurd. Cont. Dyn., 1998, 
21(4), 632-38. 

6.  Goman, M.G.; Zagaynov, G.I. & Khramtsovsky, 
A.V. Application o f  bifurcation methods 
t o  nonlinear dynamics problems. Prog. 
Aerospace Sci., 1997, 33, 539-86. 

7. Ananthkrishnan, N. & Sudhakar, K. Prevention 
of jump in inertia-coupled roll maneuvers 
of aircraft, Journal Aircraft, 31(4), 1994, 
981-83. 

8.  Lowenberg, M.H. Development of control 
schedules to modify spin behaviour. American 
Institute of Aeronautics and Astronautics. 
AIAA Paper No. 98-4267, 1998, 286-96. 

9. Lowenberg, M.H. Bifurcation methods- a 
practical methodology for implementation by 
flight dynamicists. ICAS-S.IO(R), 1990, 1-1 I .  

10. Liaw, D.C. & Song, C.C. Analysis of longitudinal 
flight dynamics: A bifurcation-theoretic approach. 
J. Guid. Cont. Dyn., 2001, 24(1), 109-16. 

11. Fan, Y.; Lutze, F.H. & Cliff, E.M. Time-optimal 
lateral manoeuvers of an aircraft, J. Guid., 
Cont., Dyn., 1995, 18(5), 1106-12. 

12. Doedel, E.J.: Wang, X.J.; Fairgrieve, T.F.; 
Champneys, A.R.; Kuznetsov, Y.A. & Sandstede, 
B. AUTO 97: Continuation and bifurcation 
software for ordinary differential equations 
(with HomCont). California Institute of 
Technology, Pasadena, CA, 1998. 

13. Nayfeh, H. & Balachandran, B. Nonlinear 
applied dynamics. Springer-Verlag, New York, 
1985. 

14. Guckenheimer, J .  & Holmes, P. Nonlinear 
oscillations, dynamical systems, and bifurcations 
of vector fields. Springer-Verlag, New York, 
1983. 



DEF SCI J ,  VOL 52, NO 2, APRIL 2002 

15. Seydel, R. Practical bifurcation and stability 16. Allgower, E.L. & Georg, K.  Numerical 
analysis. Springer-Verlag, New York, 1994. continuation methods-an introduction. Springer- 

Verlag, Berlin, 1990. 

Contributor 

Mr Nandan Kumar Sinha is a research scholar in the Dept of Aerospace Engineering 
at  the Indian Institute of Technology (IIT) Bombay, Mumbai. He received his BTech 
from IIT Bombay in 1996 and MTech (Ae 
His areas of specialisation are: Flight 
bifurcation methods, and aerodynamics. 



SINHA. APPLiCATiONS OF BIFURCATION METHODS TO F-18IHARV OPEN-LOOP DYNAMICS 

APPENDIX A 

Mathematical Model of Aircraft Dynamics 

The governing equations of motion for rigid aircraft dynamics are as follows: 

a = q-- 1 
cosa+r  sina)sinp+- 

1 
(T,qsina +-C, (a ,6e)p(vs~)2 S - mgcospcosy) 

cosp mv, M 2 

. Ix - Iy  r = ----- 1 
pq +- P (v,W2 SbCn (a, P, P, r ,  da, dr) 

1, 21, 

8=qcos+-rsin+ 

where wind orientation angles C( and y can be determined from the following equations: 

siny =cosacospsinO-sinpsin$cosO-sinacospcos@cose 

s inp~~~y=sinOcosasin~+sin$cosOcos~-sinasin~cos$cosO , 

cospcosy =sinOsina+cosacosQcosO 


