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ABSTRACT 

Several higher-order shear deformation theories have been proposed for laminated plates, 
based on the expansions of displacements across the thickness, which are the same for all layers. 
In this study, a unified formulation of all higher-order theories is presented for cross-ply laminated 
plates based on polynomial expansions of displacements in the thickness coordinate z. It includes 
all the models available in literature. The governing equations for linear static and free-vibration 
response, and for buckling under inplane load are derived. The expressions for the stiffness 
matrix, inertia matrix, geometric stiffness matrix, and the load vector are developed for a simply 
supported rectangular plate using Navier's solution. A general purpose, single programme has 
been developed for all higher-order laminated plate theories. 
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NOMENCLATURE 

A Transformation matrix 

A~ ,, Generalised stiffness for the plate 

(I. h Plate sides 

11 Plate thickness 

If, Face sheet thickness 

I. Number of layers 

L, Young's ~nodulus 

(;,, Shear modulus 

Generalised inertia 

Generalised load 

Shear correction factors 

Stiffness matrices 

Geometrical stiffness matrices 

Inertia matrices 

Moments 

lnplane forces 

V ,  Poisson's ratio I? P, Load vectors 

f""" Fourier coefficients 0f.f Q,S;) Stiffness terms in a - E relations 

F~- F , ~  Genenlised force resultant and its elements p(;) Density 



Q, Q, Shear forces 

U, Y. w Displacements 

U, V,. w: 
I 

Series terms in displacements 

r y. z Cartesian coordinates 

t Time 

a, P mxla, nnlb 

o Natural frequency 

E; Strains 

01 Stresses 

1. INTRODUCTION 

For the efficient design of laminated composite 
and sandwich plates, a good understanding of 
their deformation characteristics under various load 
conditions are needed. Classical plate theory, 
first-order shear deformation theory (FSDT), and 
higher-order shear deformation theories (HSDTs) 
involving higher-order terms in the Taylor's expansion 
of the displacements in the thickness coordinate z 
have been developed for orthotropic and laminated 
plates. Lo'.=, et al. have presented, for a laminated 
plate, a closed-form solution with higher-order shear 
deformation theories, including the effect of transverse 
normal strain. Kant' derived the variationally consistent 
third-order theory for symmetrically laminated plate, 
including the distortion of the transverse normals 
and the effect of transverse normal stresslstrain. 
R e d d ~ ~ , ~  derived a third-order variationally consistent 
theory which satisfies the conditions of zero shear 
stress on the faces of the plate. Using the theory 
of Reddy, Senthilnathan6, et al. presented a simplified 
HSDT by splitting up the transverse displacement 
into bending and shear contributions. Pandya and 
Kant7, and Kant and Manjunathas have presented 
third-order HSDTs including the transverse normal 
strain in the former, for laminated cross-ply and 
sandwich plates and have given corresponding finite- 
element formulations. Noor and Burton9 presented 
an assessment of first-order shear deformation theories 
and HSDTs for the static, free vibration, and buckling 
analyses of laminated composite plates. Srinivasio, 
et al. Srinivas and Raoil, and NoorI2 presented 
exact three-dimensional elasticity solutions for 

the free vibration of isotropic, orthotropic, ant 
anisotropic composite laminated plates. Swaminathat 
and Kant13,'' have recently compared five non-classica 
plate theories for deflections and stresses unde 
transverse loads, natural frequencies of free vibrations 
and buckling loads under inplane static loads, fo 
cross-ply composite and sandwich simply-supportec 
plates. Paganoi5, and Pagano and HatfieldI6 haw 
given exact solutions for the rectangular cornposit, 
and sandwich plates. Noor" has given elasticit: 
solutions for stability of multilayered cornposit* 
plates. 

The objective ofthis study is to present a unifie~ 
general formulation of all higher-order theories fo 
geometrically nonlinear responses of cross-pl: 
plates, based on a single polynomial expansion o 
displacements in the thickness coordinate z. It include 
ten models studied by Swaminathani3 as specia 
cases. The governing equations for linear stati 
response under transverse load, free-vibration responsc 
and for buckling under inplane load, have bee 
derived. The expressions for the stiffness matri 
K, inertia matrix M, geometric stiffness matrix K, 
and the load vector P have been developed for 
simply supported rectangular plate using Navier' 
solution. A general purpose, single programme ha 
been developed for all higher-order laminated plat 
theories. 

2. UNIFIED FORMULATION OF GOVERNIN<. 
EQUATIONS 

Consider a laminated cross-ply composite c 
sandwich plate of sides a ,  b along axes x, y an 
thickness h with its mid-plane at z = 0. Summatio 
convention is used with the summation indicc 
i ,  r' ranging from 0 to p ;  j, J' ranging from 0 I 
q; and r, s ranging from 1 to 6. The displacemen 
are expanded as polynomials in the thickne: 
coordinate z: 

The number of tennsp + 1 in inplane displacemen 
can be different from the number of terms q+l i 



the transverse displacements. The virtual displacements 
are given by 

In the str+displacement relations, the nonlinearity 
is included only in the inplane strains due to w 
alone 

where subscript comma denotes partial differentiation. 
The strain increments SE; for 6u, 8v, Sw are: 

Two models of linear elastic constitutive equations 
are used. 

(a) If E, f 0, i.e.. q > I .  then actual Young's moduli 
are used for orthotropic material. 

(b) lfc,  = 0. i.e.. q = 0, then reduced moduli based 
on the approximation, a, = 0 are used. 

The constitutive equations are: 

where 

For Case (a )  

For Case (b) 

The 6 x 1 generalised force resultant matrices 
Fk for the mid-plane are defined as the integral of 
the product of 6 x 1 stress matrix a and the kth 
power of z across the thickness: 

The inplane forces N,, Nr, N,",, transverse shear 
forces Q", Q, and moments M,, Mv, M,? are related 
to the elemints Fit of F, as N, = F,,, Nr = -F2,, 
N . ~ , , = F , , Q . , = F , , , Q v = F 4 , , M . , = F , , , ~ , = F , , ,  
Mv = F,,, M_ = F,,..The generalised inertia I, 
and the generalised transverse load p ,  for the 
mid-plane are defined as 



The following equations of motion and boundary 
conditions are obtained using Hamilton's principle: 

at x = 0, a: prescribed values of 

F, ,  or U ,  F,, or vi 

F,,+J.,a., + Fw+f,wJ-,y + F,  or wj (12) 

at y = 0, b: prescribed values of 

Neglecting the nonlinear terms in Eqns (10) 
to (12), yields the linear equations of motion: 

and the linear boundary conditions: 

at x = 0, a: prescribed values of F l j  or u ,  

at y = 0, b: prescribed values of F, or uj,  

The linear strain-displacement relations are 
obtained from Eqn (3): 

Equations (5 ) ,  (8), (17) yield following relations 
for the generalised force resultants for the linear 
case: 

where 

h12 

A: = ~ Q I S ~ ' ~  are the generalised stiffness 
-h l2  

of the plate. 

where A,  B, D are the inplane, coupling and bending 
stiffness of the plate, respectively. For first-order 
shear deformation theroies: 

where k:;,k;. aye the shear correction factors for 
shears Qv ,Q,, respectively. 

The governing equations for buckling under 
inplane load for symmetric laminate are obtained 
as follows. The pre-buckling linear solution consists 
of constant values of F , ,  F , ,  F, which satisfy 



Eqn (10) with F ,(,,, = 0 F ,,,.,, = 0. Using this in 
Eqn (11) yields for j = 0, ... , q: 

3. NAVIER'S SOLUTION 

The displacement equations for linear dynamic 
response are obtained by using F,  from Eqn (18) 
in Eqn (14): 

for i = 0,. . ., p;  and j = 0,. . .q. The boundary conditions 
for simply-supported plate are taken as 

A t x = O , a : F , , = O , v i = O , w . = O ;  I 

at y = 0, b: F,, = 0, ui = 0, wj = 0 (22) 

The u ,  v, wj are expanded in the following 
series form which satisfy all conditions [Eqn (22)l: 

ui = x xu,? cosa xsinp ycoswt 

w, = x  ~ w ; " s i n a x s i n ~ y c o s w t  

vi = x Zv,? sina xcosp y c o s a  (23) 
p,, = C Cp,; sina xsinp ycoswt 

where a = mrda, B = nrdb and w is the frequency. 
Substituting u,, v,wj, Pz, from Eqn (23) in Eqn (21) 
yields: 

where u* = [u v w u v, w, u2 v, w2 ... IT, M is 0 . 0  0 . 1  
the inertia matrix, K 1s the stiffness, and P is the 
load vector. The non-zero elements of matrices M, 
K and P are: 

For the buckling problem under inplane loads, 
let the loads be increased proportionately with 

4, =ak, FZk 'GZk, F6k = S 6 k r  where Ek Fa F, 
define the proportion of loads and h is the buckling 
parameter. The Navier's solution of Eqn (20) is 
obtained by substituting from Eqn (23) and setting 
u = v = o :  

Ku' - jlK,u* = 0 (26) 

with non-zero elements of the geometric stiffness 
matrix KG being: 

One-term static solution for a simply 
supported plate subjected to a sinusoidal load on 
the top surface, i.e., 



is obtained by solving Ku' = P for u'. The force traction free bottom face. Equation (28) is integrated 
resultants are computed using Eqn (18). The layerwise. 
displacements, strains and stresses at point z in 
layer number il are obtained using Eqns (1). (3) To obtain frequencies of free oscillations of 

(retaining only linear terms) and (5). the (m,n)" mode, equations Ku* = w2Mu' are solved 
for all eieenvalues. - 

For FSDT models, a better estimate of zxz, 
z, 5 is obtained by integrating the equations of The buckling problem is considered for the 
equilibrium across the thickness. The equilibrium following prescribed inplane loads at the boundary: 
equations for x and y directions are integrated to - 
yield r=(z), zy&z). respectively. The equilibrium equation iVx=F;o, i j i ,=F, ,N,=~,  
for z direction is then integrated to yield uL(z). i.e.Nz:fiy :iV,::flo:&o:&o 

and - - -  
F,, = F,, = F,, = 0 for i # 0 

z 

7: (z) = UTJ~ (z) = I(-ad;" + /30? )dz For given (m,n) Ku' = hK,u' is solved for the 
o smallest eigenvalue h and reworked for other 

rw.x +cy.y +rUl.z = O  * values of (m,n) to obtain the absolutely smallest 
2 value of h.  

z r ( z )  = o ~ ( z )  = J(-PQ~MI +ao?)dz 
o (28) A computer program has been developed 

z ~ . ~  + r ~ ~ . ~  +OZ.Z = O * for solving static response, linear vibration frequencies, 
and buckling loads for any cross-ply composite1 
sandwich, simply supported rectangular plate using 

o the general unified formulation presented 

herein for any higher-order plate theory using 
since zz(-hl2) = zT(-h12) = cry(-hl2) = O  at the single displacement expansion across the thickness. 

Table 1. IdentiT~cation of elements of displacement vector u* and variables used in various theories 

z' i" element Variable Models 
of u* 

1 6 2 7  3 8 4 9 5  10 

P I "0 Uo "0 "0 "0 "0 

P 2 "0 "0 "0 "0 "0 "0 

P 3 wo '"0 wo wo wo wo wo $ + w i  $+w; wo wo 

z 4 "I s s 8. ex 8. s - %., - %,, 8" ex 
z 5  "1 0, 8, 0" 8, @? '-$,, - 4.y 8" 8" 

z 6  Wt '-? 
t 7 "2 4 4 
t s v2 vo "0 

2 9 w2 w; w; 
f 10 "3 0: 0: 0: -9: -$(e,+w,,) -$(e,+w,.,) -$%.. -L ,ha wi.= 

2 11 3 e; e; e; -8; -$(e,+~,,~) -$(e,+wo,,) -3wi.x -L ,hz Wo.l 

2 12 W3 9: 

size 6  1 2 5  9 5  7  5  7  3 5  



4. EXISTING THEORIES AS PARTICULAR 
CASES O F  UNIFIED FORMULATION 

The ten theories (model 1 to model 10) studied 
by Swaminathanu are the particular cases of the 
unified formulation presented herein as shown in 
Table 1. 

Model 1 to model 5 are for symmetric laminates 
and model 6 to model 10 are for unsymmetric 
laminates. Model 1 and model 6 have been originally 
presented by Kant', Pandya and Kant'; model 2 
and model 7 by Pandya and.Kant7; model 3 and 
model 8 by Reddy4; model 4 and model 9 by 
Senthilnathan6, et al. and model 5 and model 10 
are FSDT models with shear correction factors. 

ki = kk = 516 in models 3,8,4, and 9, the size of 
the assembled M, K, KG, P matrices is reduced 
from 5, 7, 5, 7 to 3, 5,2,4, respectively using the 
transformation matrix A from the actual vector u" 
formed by the independent displacement variables 
used in the formulation to the vector u' of the 
generalised formulation presented herein: u' = Au". 
Equations (24) and (26) can be unified as 

where the reduced matrices d, k, kc , P' are 
related to the matrices M, K, KG , P by 

The transformation matrices A for models 3, 
4, 8, and 9 are given respectively by 

After finding solution for u" for models 3, 4, 
8, and 9; use u' = A ;  to obtain u'. 

The general shear correction factors k:, k i  
are based on the quadratic variation of shear stress 
across the thickness: 

T, ;s:+r,(l-4z2/4h2) 

where T,,, is the mean stress. 

The shear strain energy based on rm across the 

thickness is modified by the factor k:so that 

J(T: / 2 ~ , , ) d r l k ~  =J(T~,  /2G5,)dz 

yielding 

- 
1 0  0 0 

0 1  0 0 
0 0  1 0 

0 0  0 1 

- 0  0 0 0 
4a 4 0 0 -- -- 
3h2 3h2 
4P 0 0 - -  0 - 

- 3h2 

- u* = 

- 
uo"" - 
v r  

"b"' 
,,;" 
v;" 

uT" 
vy - - 



' L i = l  
Qss ( 4  

Similarly, k i  is defined with Q,, replaced by 

Q 4 4 .  

The FSDT models with the more general values 
of k: and k i  are called model 11 and model 12 
for the symmetric and unsymmetric laminates, 
respectively. 

5. CONCLUSIONS 

A unified general formulation of all higher- 
order theories has been presented for geometrically 
nonlinear response of cross-ply composite and 
sandwich plates based on a single polynomial 
expansion of displacement in the thickness 
coordinate. It includes the existing ten models as 
special cases. The governing displacement equations 
for linear static, free-vibration response, and 
for buckling under inplane static load, have been 
derived. The stiffness, inertia, geometric stiffness 
matrices, and the load vector for simply supported 
rectangular plate have been developed using Navier's 
solution. A general purpose program has been 
developed for all higher-order theories of a laminated 
plate. t 
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