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ABSTRACT

Forecasting the operational lifetime of a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) 
is crucial for ensuring the stability and robustness of electronic systems. These devices experience temperature 
cycling, voltage stressing, and high-frequency switching over time, which subsequently degrades their electrical 
characteristics, including threshold voltage, on-resistance, and gate charge. If these changes go unchecked, they 
may result in issues that compromise the control and safety of the entire system. Life prediction enhances the 
performance of electronic systems by focusing on the mitigation level of their failing subsystems, thereby improving 
overall efficiency. The lifetime of a MOSFET can be determined by tracking the drain-to-source ON resistance 
(RDS(on)) curve over its lifespan. The experimental result of the proposed system at a power level of 1100W with a 
regulated output voltage of 211 VDC has an output voltage ripple of ~ 4.256 %, and the efficiency of the system is  
93.51 %. The K-Nearest Neighbors (KNN) Regression method serves to estimate the RDS(on) variability and predict 
well in advance. It utilizes a deep learning model that is trained on a provided dataset encompassing the lifecycle 
of power MOSFETs. The results obtained are highly optimistic, indicating that the proposed method is efficient. 
The presented method achieves over 99 % training efficiency. When evaluating this predictive model, the root mean 
squared error (RMSE) was at 0.0006, alongside a 0.9987 R2 score.
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1.	 INTRODUCTION
Generating high voltage and high power requires a 

complex power converter consisting of multiple subsystems, 
such as MOSFETs, capacitors, gate drivers, control circuits, 
and  cooling. The most critical devices which is  also 
susceptible to wear-out failure are the power modules/converters 
MOSFETs. The reliability of these components  varies based 
on factors such as the mechanical strength of the devices, 
the electrical loads applied, climatic conditions, control and 
switching schemes, etc. These factors result in the deterioration 
of component materials due to prolonged  working of the 
converter. Therefore, the converter  reliability can influence the 
system reliability based on its applications. On the other hand, 
the converters are sensitive elements, and they are especially 
highly susceptible to failures due  to aging and external stress 
factors1.

Continuous monitoring and prediction of drain-to-source 
ON resistance RDS(on) can help in preventive maintenance and 
failure prediction of MOSFETs in industrial applications. The 
scalability of the predictive marker to the degradation status of 
the electronic device is a vital issue for estimating the residual 
life of a device, which  also makes a major concern for industry. 
There are few Artificial Intelligence (AI)-based approaches 

developed with the aim of predicting the residual  lifetime of 
an electronic system2.

Following are the RDS(on) effect on MOSFET Lifetime:
•	 Increased Power Losses: A higher RDS(on) leads to greater 

conduction losses, thereby reducing efficiency.
•	 Thermal Stress: Increased heat dissipation accelerates 

electro-migration and degradation of internal MOSFET 
structures.

•	 Aging and Wear-Out: Over time, factors such as hot-
carrier injection (HCI), negative bias temperature 
instability (NBTI), and oxide breakdown cause RDS(on) to 
increase, thereby affecting performance.

A data-driven approach using a Takagi–Sugeno  multiple 
models-based framework is proposed in3. This framework 
is used to assist in diagnostic decisions and to estimate the 
residual lifetimes of  a MOSFET.

A review is provided of online and offline system lifetime 
modeling, highlighting predictive indicators of the degradation 
of  power devices4. Data-driven approaches are investigated 
through friendly statistics, namely linear regression models  and 
Werner or Gamma Processes, as well as artificial intelligence 
methods, such as genetic algorithms, deep learning, and 
artificial neural networks. One such advantage of AI-based 
methods is their high generalization capability, as pointed  out 
in the survey.
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A framework called DEEP Learning Reliability Awareness 
of Converters at the Edge (DEEP RACE) was proposed  in5 to 
predict the lifetimes of high-speed MOSFET power electronic 
converters. Long-Short-Term-Memory cells form the basis of 
the AI engine, and the results related to lifetime prediction of 
the MOSFET  power device reveal an average miss prediction 
of 8.9 %.

One of the primary advantages of KNN is its flexibility in 
handling non-linear patterns. Unlike linear regression, which 
assumes a predefined relationship between input parameters 
and RDS(on), KNN makes no such assumptions. Its allows it to 
adapt well to highly complex datasets, provided the proper 
hyper parameter tuning is applied6.

Another significant benefit is that KNN does not require 
extensive training. In contrast to artificial neural networks 
(ANN), which demand substantial computational resources 
and prolonged training periods, KNN operates solely based on 
stored data and distance computations. This simplicity makes it 
an attractive choice for scenarios where quick implementation 
is required7.

Additionally, KNN is highly adaptable to changing 
data. When new MOSFET data becomes available, it can 
be incorporated directly without the need to retrain a model, 
unlike regression-based approaches or ANN, which require 
periodic retraining. It makes KNN particularly useful for real-
time applications where data distribution may evolve over 
time8.

Finally, KNN is well-suited for applications with small 
datasets. Unlike ANN, which typically requires a large volume 
of data to train effectively, KNN can often deliver reasonable 
performance even when data availability is limited. This 
makes it a viable option in scenarios where gathering extensive 
MOSFET degradation data is challenging9-12. However, despite 
its simplicity and effectiveness in various classification and 
regression tasks, it presents some limitations that constrain its 
broader applicability. KNN is highly sensitive to noisy data and 
outliers, which can distort distance calculations and negatively 
impact prediction accuracy.  	 Additionally, the choice of 
the parameter ‘k’ significantly influences the model’s results, 
and selecting an inappropriate value can lead to overfitting or 
underfitting.

This paper utilizes variations in the drain to source ON 
resistance RDS(on) and MOSFETs temperature data to develop a 
model for predicting the useful life of MOSFETs and examines 
an intelligent health monitoring system for power MOSFET 
devices to assess the degradation level of the device using 
artificial intelligence13. The RDS(on) curve  operates within a 
range corresponding to the correct life cycle. This curve rises 
above a certain point when the device begins to exhibit the 
first signs of degradation. K-Nearest Neighbours (KNN) is the 
model used, to predict  the Remaining Useful Life (RUL) of 
electrical devices14.

2.	 DESIGN AND SIMULATION
The data is gathered from a Power Factor Corrected 

Switched Mode Power Supply prototype designed to create 
a high-power-density, high-efficiency AC-DC converter with 
power factor correction capabilities. The proposed hardware 

prototype was tested at a power level of 2.2 kW and the rated 
input voltage, yielding an output voltage of the second stage at 
292 ± 28 V, along with output voltages of 5 V and 15 V from the 
auxiliary power supplies. The efficiency at this power level is 
approximately 85 %, with the system temperature recorded at 
40 °C under these conditions. The hardware system measures 
10×6.65×2.95 inches and utilizes forced air cooling. 

A two-stage converter is required in the proposed prototype. 
The first part, which is an AC to DC power converter, has two 
main parts. The first part’s design is primarily focused on 
power factor correction, which aims to optimize the harmonic 
distortion on the AC side15. It is achieved by adjusting the AC 
input current to match both the phase and shape of the desired 
AC input voltage. A measuring device integrated into a control 
circuit compares the input voltage and current and then adjusts 
the duty cycle of the switching device. The input waveform 
of the AC source is Fourier transformed such that the current 
aligns with the voltage. The drive stage employs a type-boost 
AC-DC converter, which gives the system an output voltage 
of Vo1, while the overall output voltage needed is Vof, which is 
around 270 VDC to Vof  to be what is termed as low range. Due 
to this, the output voltage has to be reduced. The second part 
of the system functions as a converter, converting DC to DC, 
allowing the system to operate properly and adjust the output 
voltage to 270 DC. The transformation down process is crucial, 
as it protects the system from exceeding the output voltage 
limitations and ensures the correct and reliable operation of 
the system.

Table 1. Specifications of the converter

Parameters Value
Input voltage 230V ±10  % AC
Output voltage 210 ± 10 VDC
Output power 1.1 kW
Operating temperature -20 0C to +55 0C
Cooling Force Air cooling

PLECS software is utilized to model the specified 
topologies. Upon meticulous evaluation, the interleaved boost 
topology succeeded by a buck configuration presents the 
following comprehensive advantages16:

Dr1

Dr3 Dr4

Dr2

Sw1

Sw3

L1

L2

D1

D2

Sw2

Clink

D3

L3

C1 Rload

Figure 1. 	 Simulation schematic of interleaved boost converter 
followed by buck converter. MOSFET switching 
circuit consist of three MOSFETs (Sw1, Sw2, Sw3), three 
gate drivers (S1, S2, S0), Inductors (L1, L2, L3) and 
rectifiers (Dr1, Dr2, Dr3, Dr4, D1, D2, D3).
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•	 It provides a decrease in inductor dimensions relative to 
alternative topologies

•	 The output voltage ripple and total harmonic distortion in 
the input current are minimal and within acceptable limits

•	 Parallel power processing enhances the number of power 
components yet diminishes the current rating of each 
individual channel, hence permitting the utilization of 
power semiconductors with decreased current ratings. 

Simulation of the proposed converter based on  the 
specifications summarized in Table I. Figure 1 illustrates the 
simulation schematic of the system implemented in PLECS. 
The interleaved boost and buck stages can be easily identified 
in Fig. 1. Figures 2 and 3 show the various waveforms 
corresponding to the simulation model in Fig. 1.

After performing a preliminary analysis, the inductor and 
capacitor values are plugged into the simulation model of the 
proposed converter shown in Fig. 1. The calculated efficiency 
(η) of the system as per the simulations is 96.63 %.

3.	 EXPERIMENTAL SETUP
The experiment is conducted at the power level of 1100 

W and rated input voltage. The NVHL072N65S3 from onsemi 
MOSFET is used as a switching device. The specifications are 
given in Table 217.

The buck output voltage is 211V. In Fig. 4, testing of 
proposed system with an enclosure involves evaluating its 
performance and functionality within a controlled environment. 
The enclosure provides a realistic operating environment that 
simulates real-world conditions and potential challenges. 
Through this testing, one can assess the system’s compatibility 
with the enclosure, verify its structural integrity, evaluate 
thermal management, and identify any potential interference 
or connectivity issues. Experimental results shown in Fig. 5 
involve the operation of the proposed system at a power level 
of 1100W with a regulated output voltage of 211.011 ± 9 VDC 
at a rated input voltage as per specifications. The output voltage 
ripple is ~ 4.256 %. The input current total harmonic distortion 
(THD) of the system is ~7.772 %. The system’s efficiency 
is 93.51 %. The hardware operated without any disruptions 
or fluctuations, demonstrating its improved stability and 
resilience under higher voltage conditions. The efficiency (η) is  
93.51 %. During the measurement process, a controlled voltage 

Figure 2. 	 Simulation result of proposed system operating at 
1100W where (a) the input ac voltage (Vg); (b) input 
AC current (Ig); (c) voltage of the buck converter(Vo);  
and (d) Output current of the buck converter(Io).

Figure 3. 	 Simulation results showing input AC current in-phase 
with input AC voltage, output power, and loss analysis 
at 1100 W power level.

Table 2. Specifications of the MOSFET

Symbol Parameters Value Unit

VDSS Drain to source 
voltage 650 V

VGSS Gate to source 
voltage, DC ±30 V

ID Max Drain current 44 A
PD Power dissipation 312 W @ TC = 25°C
Tj,

TSTG

Operating and 
storage temperature 
range 

−55 
to 
+150 

°C

RDS(on), Max Drain to source on 
resistance 72 mΩ @ 10 V

Figure 4. Hardware setup.

This topology is chosen for the power factor adjusted 
supply necessary for this project. The suggested system operates 
in an open-loop mode at a power level of approximately 1.1 
kW.
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is applied between the drain and source terminals and the 
resulting drain current is simultaneously measured by a source 
measure unit (SMU). The RDS(on) value is then calculated by 
dividing the voltage drop across the MOSFET by the measured 
drain current.

is too small, overfitting occurs, as the noise in the dataset is 
included, and when it is too large, the underlap is too smooth 
since the predictions are overly confident. Due to the way KNN 
works, it has high prediction times because it finds the distance 
of all training points when making a prediction, which makes 
it hard to scale due to high operational costs. To predict values 
accurately, KNN is sensitive to irrelevant features and distance 
measures, which can hinder successful predictions. KNN, 
however, is still one of the most widely used algorithms in 
recommendation systems for collaborative filtering, financial 
predictions, medical diagnosis, image and facial recognition, 
document classification, and detecting spam messages. When 
explainability is needed, and the problem is simple enough, it 
is easy and intuitive, which is why it is effective20-23.  

For regression tasks, KNN is evaluated  using the Root 
Mean Square Error (RMSE) and coefficient of determination. 
As far as being a model accuracy measurement is concerned, 
RMSE in itself is the error measurement, and it does estimate 
and indicate what is the magnitude of evaluation error. RMSE 
can be described as the distance between predicted and actual 
values, but on a large scale, because it assumes the average of 
squared differences between the predicted and actual values 
and then extracts the square root from it24.

RMSE is denoted by:
2
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where, yi represents the actual value, ˆiy  the predicted 
value, and in the number of observations.

The R2  score, also known as the coefficient of 
determination, indicates the proportion of the variance in the 
dependent variable that is predictable from the independent 
variables. The R2 score of 1 indicates perfect predictions, while 
a score of 0 indicates that the model does not explain any of 
the variance.
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where y  is the mean of the actual values. Together, RMSE 
and R2 provide a comprehensive assessment of a KNN model’s 
performance, with RMSE quantifying the prediction error and 
R2 explaining the model’s explanatory power. These metrics 
are crucial for fine-tuning the algorithm and ensuring it delivers 
reliable and accurate predictions in practical applications25-26.

In the current implementation of KNN for MOSFET 
reliability prediction, no metaheuristic optimization technique 
(such as Genetic Algorithm, Differential Evolution (DE) or 
Particle Swarm Optimization (PSO)) was applied. The number 
of neighbors (k) is set manually based on trial and error or 
cross-validation. Typical values of k are 3, 5, 7,…. and are 
selected based on the one that gives the best accuracy. For 
this optimization, the model is trained for 30 values of k, and 
the optimal result of RMSE and R2 are achieved for k=2. The 
Euclidean distance is used as distance matrix.

5.	 OPTIMIZATION TECHNIQUES
Essential configuration variables that are set before a 

model is trained are called hyper parameters. Hyper parameters 

CH2: Output voltage of 
the buck converter RMS  :CH2 = 211.442V

CH1: Input AC voltage RMS  :CH1 = 225.41V

CH4: Input AC current Current THD : 7.7725 %

CH3: Output current of 
the buck converter RMS  :CH3 = 5.15A

Figure 5. Experimental result at 1100 W.

Table 3. Simulation & practical results

Power 
level (W)

Simulation result Hardware results
Efficiency 
(in %) 

 % voltage 
Ripple 

Efficiency 
(in %)

 % voltage 
Ripple

1100 96.63  0.24 93.51 4.256

4.	 PROPOSED ALGORITHM
The described work, which utilizes KNN for predicting 

the MOSFET’s on-resistance (RDS(on)) is significant in the 
context of power electronics, semiconductor device modeling, 
and reliability analysis. It provides an alternative approach to 
traditional regression models and Artificial Neural Networks 
(ANN) for predicting device characteristics based on 
experimental or simulated data18.

K-Nearest Neighbors (KNN) is a straightforward yet 
effective tool for classification and regression in machine 
learning. Rather than learning, it keeps the whole set of data in 
order to make a forecast. KNN determines the likelihood of the 
point by estimating the distance between it and all the points 
in the training dataset in metrics such as Euclidean, Manhattan 
or Minkowski19. To classify a new data point, KNN employs a 
majority vote based on its K nearest neighbors. It acts as follows 
for regression problems - it takes these K closest neighbors and 
finds their mean to estimate the value of a new point. When K 
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Table 4. Comparison with previously used approaches

Ref. Device Parameter Performance Metric 
used Approach(s) used

29
MOSFET (Metal Oxide 
Semiconductor Field Effect 
Transistor)

Threshold Voltage 
(Vth)

Root Mean Squared 
Error (RMSE): 0.0135
R²: 0.98

K-Nearest Neighbor (KNN) regression

30 Bitcoin Historical Data RMSE: 389770 K-Nearest Neighbor (KNN) regression

31 Shallot Price Euclidean Distance RMSE: 72 K-Nearest Neighbor (KNN) regression

32 

Complementary metal oxide 
semiconductor (CMOS) circuits 
and metal gate/high-K (MGK) 
circuits at the 22 nm technology 
node. 

Threshold Voltage 
(Vth), On-State 
Resistance (R_DS 
(on)).

Explicitly not mentioned 
(Accuracy: 99 %)

Adaptive Neuro-Fuzzy Inference System 
(ANFIS), K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), Random 
Forest (RF)

33 Photovoltaic (PV) strings
Current, voltage, 
power, irradiance, 
temperature 

Explicitly not mentioned 
(Accuracy: 0.994) K-Nearest Neighbor (KNN)

34
Second-order sallen-key 
band pass filter, fourth-order 
chebychev type 1 low pass filter 

Damping ratio,
Explicitly not mentioned 
(Accuracy: greater than 
95 %)

Second-order Sallen-Key band pass filter, 
Fourth-order Chebychev Type 1 low pass 
filter 

35 Proton Exchange Membrane 
Fuel Cell (PEMFC)

Electrochemical 
impedance, average 
single chip voltages, 
currents

Explicitly not mentioned Proton Exchange Membrane Fuel Cell 
(PEMFC)

36
MOSFET (Metal Oxide 
Semiconductor Field Effect 
Transistor)

Remaining useful life 
(RUL) 

Root Mean Squared 
Percentage Error 
(RMSPE): 1.25 %,

Random Forest classifier, Bayesian Ridge 
regressor.

Proposed Si RDS(on) RMSE:0.00140
R² :0.9999

KNN Model with Evolutionary 
Optimization 

have a direct impact on the learning process, in contrast to 
parameters, which are discovered through the data27. A critical 
stage in machine learning is hyper parameter tuning, which 
involves determining the best values for these variables. 
The objective is to identify the hyper parameter values that 
maximize the model’s performance on a specific task. There 
are several types of hyper parameter tuning techniques, a few 
of which are discussed as follows28-32.

Algorithm I: Evolutionary Optimizations Learning Model Algorithm 
for Reliability Aged Model

Step 1: Initialization
Start by collecting historical RDS(on) measurements from MOSFET 
degradation cycles and organizing them into a dataset. Each sample 
is structured as a time series window containing the last n values of 
RDS(on).

Step 2: Distance Computation
For a given input vector x containing the most recent n values of 
RDS(on), compute the Euclidean distance between x and each stored 
vector y in the training dataset:

2

1
( , ) ( )

n

i i
i

d x y x y
=

= −∑
Step 3: Neighbor Selection
Sort all distances and select the K closest vectors from the dataset. 
These represent the most similar past instances to the current input 
vector.

Step 4: Prediction Computation
Estimate the next RDS(on) value by averaging the corresponding next-
step values from the K-selected neighbors:
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Step 5: Iteration
Update the input vector by appending the predicted RDS(on) value and 
sliding the window forward. Repeat the process for further predic-
tions.

6.	 RESULT AND DISCUSSION
The results obtained after training the KNN model with 

its Evolutionary optimization techniques is discussed in the 
following sections. 

In the KNN model optimized by using the evolution 
optimization technique, it is seen that the values of RMSE and 
R2 obtained were 0.0018 and 0.999968 respectively. Figure 6 
shows the graph ON resistance vs time for the entire dataset 
using evolution.

One of the significant drawbacks of KNN is its 
computational cost, as it requires storing the entire dataset 
and making predictions based on distance calculations, which 
becomes computationally expensive as the dataset size grows. 
Another significant limitation is as the number of features/
stresses increases, KNN’s performance tends to degrade 
because distance-based methods struggle in high-dimensional 
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spaces. This issue is less pronounced in regression models, 
and artificial neural networks (ANN) can effectively learn and 
adapt in such environments37.

Additionally, KNN is highly sensitive to noisy data 
and outliers. Since it relies on the nearest neighbors, the 
presence of incorrect or extreme values can significantly 
impact predictions. On the other hand, regression models 
and properly trained ANN can generalize better and exhibit 
greater robustness against noise38. A comparative study with 
previously published work is given in Table III.

Real-time measurement of the on-state resistance RDS(on) 
of MOSFETs presents numerous implementation challenges, 
particularly in high-speed and high-power applications. One 
of the most critical issues is the temperature dependency of 
RDS(on). Since the resistance increases with junction temperature, 
real-time monitoring must include thermal tracking or 
compensation to avoid misinterpretation of the device’s health 
or efficiency. Additionally, electromagnetic interference (EMI) 
and high-frequency switching noise in power electronic 
circuits complicate the accurate sensing of voltage and current 
during the conduction phase. These noise sources can distort 
real-time signals, leading to erroneous RDS(on) calculations 
unless advanced filtering or differential sensing techniques are 
employed39-40.

7.	 CONCLUSION
The measurement of the on-resistance RDS(on) of MOSFETs 

holds significant industrial relevance, particularly in power 
electronics, automotive systems, and consumer electronics. 
Accurate RDS(on) characterization is crucial for evaluating 
conduction losses, thermal performance, and overall energy 
efficiency of power devices. The proposed K-Nearest 
Neighbour’s (KNN) Regression techniques are trained and 
tested. It is observed that the RMSE and R2 score parameter 
values are 0.0006 and 0.9987. From the obtained values, it 
can be concluded that the KNN model optimized using the 
Evolution hyper parameter optimizing technique outperforms 
the other optimization techniques in terms of precision and 
accuracy. Further, our proposed model predicts with almost 
minimal error and has a good degree of fitting. 
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