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ABSTRACT

Forecasting the operational lifetime of a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
is crucial for ensuring the stability and robustness of electronic systems. These devices experience temperature
cycling, voltage stressing, and high-frequency switching over time, which subsequently degrades their electrical
characteristics, including threshold voltage, on-resistance, and gate charge. If these changes go unchecked, they
may result in issues that compromise the control and safety of the entire system. Life prediction enhances the
performance of electronic systems by focusing on the mitigation level of their failing subsystems, thereby improving
overall efficiency. The lifetime of a MOSFET can be determined by tracking the drain-to-source ON resistance
Ry on)) curve over its lifespan. The experimental result of the proposed system at a power level of 1100W with a
regu(lated output voltage of 211 VDC has an output voltage ripple of ~ 4.256 %, and the efficiency of the system is
93.51 %. The K-Nearest Neighbors (KNN) Regression method serves to estimate the R | variability and predict
well in advance. It utilizes a deep learning model that is trained on a provided dataset encompassing the lifecycle
of power MOSFETs. The results obtained are highly optimistic, indicating that the proposed method is efficient.
The presented method achieves over 99 % training efficiency. When evaluating this predictive model, the root mean
squared error (RMSE) was at 0.0006, alongside a 0.9987 R? score.
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1. INTRODUCTION

Generating high voltage and high power requires a
complex power converter consisting of multiple subsystems,
such as MOSFETs, capacitors, gate drivers, control circuits,
and cooling. The most critical devices which is also
susceptible to wear-out failure are the power modules/converters
MOSFETs. The reliability of these components varies based
on factors such as the mechanical strength of the devices,
the electrical loads applied, climatic conditions, control and
switching schemes, etc. These factors result in the deterioration
of component materials due to prolonged working of the
converter. Therefore, the converter reliability can influence the
system reliability based on its applications. On the other hand,
the converters are sensitive elements, and they are especially
highly susceptible to failures due to aging and external stress
factors'.

Continuous monitoring and prediction of drain-to-source
ON resistance Ry~ can help in preventive maintenance and
failure prediction of MOSFETs in industrial applications. The
scalability of the predictive marker to the degradation status of
the electronic device is a vital issue for estimating the residual
life of a device, which also makes a major concern for industry.
There are few Artificial Intelligence (Al)-based approaches
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developed with the aim of predicting the residual lifetime of

an electronic system?.

Following are the Risom effect on MOSFET Lifetime:

*  Increased Power Losses: A higher Rision leads to greater
conduction losses, thereby reducing efficiency.

e Thermal Stress: Increased heat dissipation accelerates
electro-migration and degradation of internal MOSFET
structures.

e Aging and Wear-Out: Over time, factors such as hot-
carrier injection (HCI), negative bias temperature
instability (NBTI), and oxide breakdown cause R,
increase, thereby affecting performance.

DS(on) to

A data-driven approach using a Takagi—Sugeno multiple
models-based framework is proposed in’. This framework
is used to assist in diagnostic decisions and to estimate the
residual lifetimes of a MOSFET.

A review is provided of online and offline system lifetime
modeling, highlighting predictive indicators of the degradation
of power devices*. Data-driven approaches are investigated
through friendly statistics, namely linear regression models and
Werner or Gamma Processes, as well as artificial intelligence
methods, such as genetic algorithms, deep learning, and
artificial neural networks. One such advantage of Al-based
methods is their high generalization capability, as pointed out
in the survey.
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A framework called DEEP Learning Reliability Awareness
of Converters at the Edge (DEEP RACE) was proposed in’ to
predict the lifetimes of high-speed MOSFET power electronic
converters. Long-Short-Term-Memory cells form the basis of
the Al engine, and the results related to lifetime prediction of
the MOSFET power device reveal an average miss prediction
of 8.9 %.

One of the primary advantages of KNN is its flexibility in
handling non-linear patterns. Unlike linear regression, which
assumes a predefined relationship between input parameters
and Ry . KNN makes no such assumptions. Its allows it to
adapt well to highly complex datasets, provided the proper
hyper parameter tuning is applied®.

Another significant benefit is that KNN does not require
extensive training. In contrast to artificial neural networks
(ANN), which demand substantial computational resources
and prolonged training periods, KNN operates solely based on
stored data and distance computations. This simplicity makes it
an attractive choice for scenarios where quick implementation
is required’.

Additionally, KNN is highly adaptable to changing
data. When new MOSFET data becomes available, it can
be incorporated directly without the need to retrain a model,
unlike regression-based approaches or ANN, which require
periodic retraining. It makes KNN particularly useful for real-
time applications where data distribution may evolve over
time®.

Finally, KNN is well-suited for applications with small
datasets. Unlike ANN, which typically requires a large volume
of data to train effectively, KNN can often deliver reasonable
performance even when data availability is limited. This
makes it a viable option in scenarios where gathering extensive
MOSFET degradation data is challenging’-'2. However, despite
its simplicity and effectiveness in various classification and
regression tasks, it presents some limitations that constrain its
broader applicability. KNN is highly sensitive to noisy data and
outliers, which can distort distance calculations and negatively
impact prediction accuracy. Additionally, the choice of
the parameter ‘k” significantly influences the model’s results,
and selecting an inappropriate value can lead to overfitting or
underfitting.

This paper utilizes variations in the drain to source ON
resistance R ¢ | and MOSFETs temperature data to develop a
model for predicting the useful life of MOSFETs and examines
an intelligent health monitoring system for power MOSFET
devices to assess the degradation level of the device using
artificial intelligence'®. The Ry on curve operates within a
range corresponding to the correct life cycle. This curve rises
above a certain point when the device begins to exhibit the
first signs of degradation. K-Nearest Neighbours (KNN) is the
model used, to predict the Remaining Useful Life (RUL) of
electrical devices'*.

2. DESIGN AND SIMULATION

The data is gathered from a Power Factor Corrected
Switched Mode Power Supply prototype designed to create
a high-power-density, high-efficiency AC-DC converter with
power factor correction capabilities. The proposed hardware
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prototype was tested at a power level of 2.2 kW and the rated
input voltage, yielding an output voltage of the second stage at
292 + 28V, along with output voltages of 5 V and 15V from the
auxiliary power supplies. The efficiency at this power level is
approximately 85 %, with the system temperature recorded at
40 °C under these conditions. The hardware system measures
10x6.65%2.95 inches and utilizes forced air cooling.

Atwo-stage converter is required in the proposed prototype.
The first part, which is an AC to DC power converter, has two
main parts. The first part’s design is primarily focused on
power factor correction, which aims to optimize the harmonic
distortion on the AC side®. It is achieved by adjusting the AC
input current to match both the phase and shape of the desired
AC input voltage. A measuring device integrated into a control
circuit compares the input voltage and current and then adjusts
the duty cycle of the switching device. The input waveform
of the AC source is Fourier transformed such that the current
aligns with the voltage. The drive stage employs a type-boost
AC-DC converter, which gives the system an output voltage
of V_, while the overall output voltage needed is V_, which is
around 270 VDC to V. to be what is termed as low range. Due
to this, the output voltage has to be reduced. The second part
of the system functions as a converter, converting DC to DC,
allowing the system to operate properly and adjust the output
voltage to 270 DC. The transformation down process is crucial,
as it protects the system from exceeding the output voltage
limitations and ensures the correct and reliable operation of
the system.

Table 1. Specifications of the converter

Parameters Value

Input voltage 230V £10 % AC
Output voltage 210+ 10 VDC
Output power 1.1 kW

-20°C to +55°C
Force Air cooling

Operating temperature
Cooling

PLECS software is utilized to model the specified
topologies. Upon meticulous evaluation, the interleaved boost
topology succeeded by a buck configuration presents the
following comprehensive advantages'®:

Cin L2

Rias M\/'D
Lp,

Figure 1. Simulation schematic of interleaved boost converter
followed by buck converter. MOSFET switching
circuit consist of three MOSFETs (S, S ,, S ,), three
gate drivers (S1, S2, S0), Inductors (L, L,, L,) and
rectifiers (D , D, D, D , D, D, D).
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* It provides a decrease in inductor dimensions relative to
alternative topologies

*  The output voltage ripple and total harmonic distortion in
the input current are minimal and within acceptable limits

»  Parallel power processing enhances the number of power
components yet diminishes the current rating of each
individual channel, hence permitting the utilization of
power semiconductors with decreased current ratings.
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Figure 2. Simulation result of proposed system operating at
1100W where (a) the input ac voltage (Vg); (b) input
AC current (Ig); (c) voltage of the buck converter(V);
and (d) Output current of the buck converter(I).
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Figure 3. Simulation results showing input AC current in-phase
with input AC voltage, output power, and loss analysis
at 1100 W power level.

This topology is chosen for the power factor adjusted
supply necessary for this project. The suggested system operates
in an open-loop mode at a power level of approximately 1.1
kW.

Table 2. Specifications of the MOSFET

Symbol Parameters Value Unit
VDSS Drain to source 650 v
voltage
Gate to source
+
VGSS voltage, DC 30 v
ID Max Drain current 44 A
PD Power dissipation 312 W @ TC =25°C
i, Operating and =55
storage temperature  to °C
TSTG range +150
Drain to source on
DStony? Max resistance 72 mQ @ 10V

Buck contraller
and gate driver

Figure 4. Hardware setup.

Simulation of the proposed converter based on the
specifications summarized in Table I. Figure 1 illustrates the
simulation schematic of the system implemented in PLECS.
The interleaved boost and buck stages can be easily identified
in Fig. 1. Figures 2 and 3 show the various waveforms
corresponding to the simulation model in Fig. 1.

After performing a preliminary analysis, the inductor and
capacitor values are plugged into the simulation model of the
proposed converter shown in Fig. 1. The calculated efficiency
(77) of the system as per the simulations is 96.63 %.

3. EXPERIMENTAL SETUP

The experiment is conducted at the power level of 1100
W and rated input voltage. The NVHLO72N65S3 from onsemi
MOSFET is used as a switching device. The specifications are
given in Table 2'7.

The buck output voltage is 211V. In Fig. 4, testing of
proposed system with an enclosure involves evaluating its
performance and functionality within a controlled environment.
The enclosure provides a realistic operating environment that
simulates real-world conditions and potential challenges.
Through this testing, one can assess the system’s compatibility
with the enclosure, verify its structural integrity, evaluate
thermal management, and identify any potential interference
or connectivity issues. Experimental results shown in Fig. 5
involve the operation of the proposed system at a power level
of 1100W with a regulated output voltage of 211.011 =9 VDC
at a rated input voltage as per specifications. The output voltage
ripple is ~4.256 %. The input current total harmonic distortion
(THD) of the system is ~7.772 %. The system’s efficiency
is 93.51 %. The hardware operated without any disruptions
or fluctuations, demonstrating its improved stability and
resilience under higher voltage conditions. The efficiency (7) is
93.51 %. During the measurement process, a controlled voltage
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is applied between the drain and source terminals and the
resulting drain current is simultaneously measured by a source
measure unit (SMU). The R value is then calculated by
dividing the voltage drop across tfle MOSFET by the measured
drain current.

50.000Hz
1.7125%
P-P

Hir
RMS

CH1

e= | Record Length  Sa iwer  CH1 F Al
10k 0.000KY  Channel | Acauire

CH2: Output voltage of

the buck converter RMS -CH2 =211.442V

CHI: Input AC voltage =~ RMS :CHI1 =22541V

CH4: Input AC current Current THD : 7.7725 %
CH3: Output current of

the buck converter RMS -CH3 =35.15A

Figure 5. Experimental result at 1100 W.

Table 3. Simulation & practical results

Simulation result Hardware results

Power - -

level (W) Efficiency % voltage Efficiency % voltage
(in %) Ripple (in %) Ripple

1100 96.63 0.24 93.51 4.256

4. PROPOSED ALGORITHM

The described work, which utilizes KNN for predicting
the MOSFET’s on-resistance (R, ) is significant in the
context of power electronics, semiconductor device modeling,
and reliability analysis. It provides an alternative approach to
traditional regression models and Artificial Neural Networks
(ANN) for predicting device characteristics based on
experimental or simulated data'®.

K-Nearest Neighbors (KNN) is a straightforward yet
effective tool for classification and regression in machine
learning. Rather than learning, it keeps the whole set of data in
order to make a forecast. KNN determines the likelihood of the
point by estimating the distance between it and all the points
in the training dataset in metrics such as Euclidean, Manhattan
or Minkowski'®. To classify a new data point, KNN employs a
majority vote based on its K nearest neighbors. It acts as follows
for regression problems - it takes these K closest neighbors and
finds their mean to estimate the value of a new point. When K
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is too small, overfitting occurs, as the noise in the dataset is
included, and when it is too large, the underlap is too smooth
since the predictions are overly confident. Due to the way KNN
works, it has high prediction times because it finds the distance
of all training points when making a prediction, which makes
it hard to scale due to high operational costs. To predict values
accurately, KNN is sensitive to irrelevant features and distance
measures, which can hinder successful predictions. KNN,
however, is still one of the most widely used algorithms in
recommendation systems for collaborative filtering, financial
predictions, medical diagnosis, image and facial recognition,
document classification, and detecting spam messages. When
explainability is needed, and the problem is simple enough, it
is easy and intuitive, which is why it is effective?®%.

For regression tasks, KNN is evaluated using the Root
Mean Square Error (RMSE) and coefficient of determination.
As far as being a model accuracy measurement is concerned,
RMSE in itself is the error measurement, and it does estimate
and indicate what is the magnitude of evaluation error. RMSE
can be described as the distance between predicted and actual
values, but on a large scale, because it assumes the average of
squared differences between the predicted and actual values
and then extracts the square root from it

RMSE is denoted by:

,/ 2 i=3) (1

where, y, represents the actual value, J, the predicted
value, and in the number of observations.

The R®> score, also known as the coefficient of
determination, indicates the proportion of the variance in the
dependent variable that is predictable from the independent
variables. The R* score of 1 indicates perfect predictions, while
a score of 0 indicates that the model does not explain any of
the variance.

The R? is obtained as:

1— Z,:l (yi _)A}i)z
2 =)

where 3 is the mean of the actual values. Together, RMSE
and R?provide a comprehensive assessment of a KNN model’s
performance, with RMSE quantifying the prediction error and
R? explaining the model’s explanatory power. These metrics
are crucial for fine-tuning the algorithm and ensuring it delivers
reliable and accurate predictions in practical applications®-%.

In the current implementation of KNN for MOSFET
reliability prediction, no metaheuristic optimization technique
(such as Genetic Algorithm, Differential Evolution (DE) or
Particle Swarm Optimization (PSO)) was applied. The number
of neighbors (k) is set manually based on trial and error or
cross-validation. Typical values of k are 3, 5, 7,.... and are
selected based on the one that gives the best accuracy. For
this optimization, the model is trained for 30 values of &, and
the optimal result of RMSE and R? are achieved for /=2. The
Euclidean distance is used as distance matrix.

2

5. OPTIMIZATION TECHNIQUES
Essential configuration variables that are set before a
model is trained are called hyper parameters. Hyper parameters
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Table 4. Comparison with previously used approaches

Performance Metric

Ref. Device Parameter used Approach(s) used
MOSFET (Metal Oxide Threshold Voltage Root Mean Squared
29 Semiconductor Field Effect (Vi) & Error (RMSE): 0.0135 K-Nearest Neighbor (KNN) regression
Transistor) R?:0.98
30 Bitcoin Historical Data RMSE: 389770 K-Nearest Neighbor (KNN) regression
31 Shallot Price Euclidean Distance RMSE: 72 K-Nearest Neighbor (KNN) regression
iﬁg}ggjﬁgg énl\?[tgls(;xcli(iiui i Threshold Voltage Adaptive Neuro-Fuzzy Inference System
3 and metal gate/high-K (MGK) (Vth), On-State Explicitly not mentioned (ANFIS), K-Nearest Neighbor (KNN),
. g & Resistance (R_DS (Accuracy: 99 %) Support Vector Machine (SVM), Random
circuits at the 22 nm technology
(on)). Forest (RF)
node.
Current, voltage, Explicitly not mentioned
33 Photovoltaic (PV) strings power, irradiance, P Y K-Nearest Neighbor (KNN)

temperature

Second-order sallen-key
34 band pass filter, fourth-order
chebychev type 1 low pass filter

Damping ratio,

Electrochemical

Proton Exchange Membrane impedance, average

35

Fuel Cell (PEMFC) single chip voltages,
currents
MOS.FET (Meta1.0x1de Remaining useful life
36 Semiconductor Field Effect
. (RUL)
Transistor)
Proposed  Si RDS(on)

(Accuracy: 0.994)

Explicitly not mentioned
(Accuracy: greater than
95 %)

Second-order Sallen-Key band pass filter,
Fourth-order Chebychev Type 1 low pass
filter

Proton Exchange Membrane Fuel Cell

Explicitly not mentioned (PEMFC)

Root Mean Squared
Percentage Error
(RMSPE): 1.25 %,

RMSE:0.00140
R?:0.9999

Random Forest classifier, Bayesian Ridge
regressor.

KNN Model with Evolutionary
Optimization

have a direct impact on the learning process, in contrast to
parameters, which are discovered through the data?’. A critical
stage in machine learning is hyper parameter tuning, which
involves determining the best values for these variables.
The objective is to identify the hyper parameter values that
maximize the model’s performance on a specific task. There
are several types of hyper parameter tuning techniques, a few
of which are discussed as follows?-2,

Algorithm I: Evolutionary Optimizations Learning Model Algorithm
for Reliability Aged Model

Step 1: Initialization

Start by collecting historical R = measurements from MOSFET
degradation cycles and organizing them into a dataset. Each sample
is structured as a time series window containing the last n values of

DS(on)”

Step 2: Distance Computation

For a given input vector x containing the most recent n values of
R oy COMpute the Euclidean distance between x and each stored
vector y in the training dataset:

d(x.y)=, /Z(x )

Step 3: Neighbor Selection

Sort all distances and select the K closest vectors from the dataset.
These represent the most similar past instances to the current input
vector.

Step 4: Prediction Computation
Estimate the next Risom value by averaging the corresponding next-
step values from the K-selected neighbors:

A 1 &
Rpgiom (t+1) = EZRDS(M)U +1)
i=1

Step 5: Iteration

Update the input vector by appending the predicted Rigom value and
sliding the window forward. Repeat the process for further predic-
tions.

6. RESULT AND DISCUSSION

The results obtained after training the KNN model with
its Evolutionary optimization techniques is discussed in the
following sections.

In the KNN model optimized by using the evolution
optimization technique, it is seen that the values of RMSE and
R? obtained were 0.0018 and 0.999968 respectively. Figure 6
shows the graph ON resistance vs time for the entire dataset
using evolution.

One of the significant drawbacks of KNN is its
computational cost, as it requires storing the entire dataset
and making predictions based on distance calculations, which
becomes computationally expensive as the dataset size grows.
Another significant limitation is as the number of features/
stresses increases, KNN’s performance tends to degrade
because distance-based methods struggle in high-dimensional
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Figure 6. ON resistance vs time for the entire dataset using
evolution.

spaces. This issue is less pronounced in regression models,
and artificial neural networks (ANN) can effectively learn and
adapt in such environments®’.

Additionally, KNN is highly sensitive to noisy data
and outliers. Since it relies on the nearest neighbors, the
presence of incorrect or extreme values can significantly
impact predictions. On the other hand, regression models
and properly trained ANN can generalize better and exhibit
greater robustness against noise®. A comparative study with
previously published work is given in Table III.

Real-time measurement of the on-state resistance R -
of MOSFETs presents numerous implementation challenges,
particularly in high-speed and high-power applications. One
of the most critical issues is the temperature dependency of
R (on- Since the resistance increases with junction temperature,
real-time monitoring must include thermal tracking or
compensation to avoid misinterpretation of the device’s health
or efficiency. Additionally, electromagnetic interference (EMI)
and high-frequency switching noise in power electronic
circuits complicate the accurate sensing of voltage and current
during the conduction phase. These noise sources can distort
real-time signals, leading to erroneous R ¢ - calculations
unless advanced filtering or differential sensing techniques are
employed®*.

7. CONCLUSION

The measurement of the on-resistance R o of MOSFETs
holds significant industrial relevance, particularly in power
electronics, automotive systems, and consumer electronics.
Accurate Ry - characterization is crucial for evaluating
conduction losses, thermal performance, and overall energy
efficiency of power devices. The proposed K-Nearest
Neighbour’s (KNN) Regression techniques are trained and
tested. It is observed that the RMSE and R? score parameter
values are 0.0006 and 0.9987. From the obtained values, it
can be concluded that the KNN model optimized using the
Evolution hyper parameter optimizing technique outperforms
the other optimization techniques in terms of precision and
accuracy. Further, our proposed model predicts with almost
minimal error and has a good degree of fitting.
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