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ABSTRACT

Distributed generation systems offer several advantages over centralised power systems. However, faults within 
the system can lead to stability loss, reclosure failures, and voltage fluctuations, necessitating special attention to 
safeguard the system’s components. Identifying the location and nature of faults is crucial in preventing adverse 
effects on the system’s overall functionality. Various machine learning (ML) techniques have been proposed for 
fault location and categorization in distributed generation systems. While many of these techniques effectively 
pinpoint the fault’s location, accurately determining the fault type remains a challenge. This work presents a novel 
approach to enhance fault classification efficiency by transforming correlated fault data using Principal Component 
Analysis (PCA) in ML. The suggested findings demonstrate that the proposed method can significantly improve 
the performance of specific fault classification algorithms in power systems. The novelty adopted in reducing the 
dimensions before subjecting the data to the ML algorithm has given higher accuracy in identifying fault types in 
a faster time frame, thereby enhancing the security and stability of distributed generation systems. Notably, the 
suggested method achieved a faster time frame. This paper has explored excellent accuracy with two of the ML 
algorithms namely the; Random Forest Classifier and K-Nearest Neighbors underscoring their further potential for 
improving system protection.

Keywords: Distribution network; Distributed generation; Power system modeling; Fault classification; Machine 
learning (ML); Principal Component Analysis (PCA); Feature extraction

NOMENCLATURE
µ		  : Mean values
σ 		  : Standard deviations
λ 		  : Eigenvalues of the matrix

1.	 INTRODUCTION
The concept of the smart grid is rapidly evolving due to 

various limitations associated with conventional power plants 
primarily due to the substantial transmission costs and losses 
incurred when delivering power from these stations to end-
users. Distributed Generation (DG) plays a significant role 
in these smart grids, offering inherent advantages such as 
reduced transmission expenses, enhanced electricity supply to 
end-users, diminished distribution costs, heightened efficiency, 
improved reliability, decreased maintenance expenditures, 
and a more environmentally conscious energy culture1. The 
integration of DG into the smart grid necessitates an upgrade 
of the entire power transmission and distribution system from 
the conventional, centralized power generation model, which 
relies on massive power plants generating electricity centrally 
and distributing it over long distances via the grid.

Distributed Generation aims to generate energy at or 
near the point of consumption2, usually at a lower voltage 
level and typically under 50 MW. This concept is not only 

limited to generating power at scattered locations but also 
involves integrating energy storage technologies and various 
renewable energy sources. Here a comprehensive strategy is 
employed to achieve a reduction in transmission cost, stability, 
reliability, and enhanced efficiency, utilizing a wide range of 
energy sources such as nuclear, solar, tidal, wind, and mini-
hydro-power, all integrated with the established conventional 
centralized power generation system.

Mitigation of certain challenges must be addressed for 
the successful incorporation of DG into a smart grid. One 
major challenge is managing the entire distribution system in a 
healthy state without “islanding” during outages. This requires 
precise and reliable fault detection at the earliest possible 
moment when a fault occurs. Therefore, accurately identifying 
faults in terms of their location and type is essential for taking 
timely corrective actions and preserving the grid’s integrity.

Faults in distribution systems can arise from various 
factors, such as short circuits, equipment malfunctions, 
operational errors, overloads, vegetation growth, and ageing3. 
Line faults are the most prevalent in distribution systems4, with 
common types including single-line-to-ground (LG), line-to-
line (LL), double-line-to-ground (LLG), and balanced three-
phase faults (LLLG)5. The probability of the LG fault has been 
reported to be as high as 70 % in a distributed system, followed 
by 15 % for LL faults, 10 % for LLG faults, and a mere 5 % 
for LLLG faults, which, although rare, are the most severe and 
detrimental to the health of the entire grid6.
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Conventional fault location techniques7-12 and the 
conventional fault classification techniques13-17 are not precise 
and have inherent limitations. However, with Artificial 
Intelligence (AI) and Machine Learning (ML), better, faster, 
and more precise methods have been developed using various 
techniques. For example, Awasthi18, et al. proposed a fault-
type identification method using a shallow neural network in 
a real-time distributed generation system with two distributed 
generators and a utility grid. The dataset, derived from 
MATLAB simulations, was used to compare results from the 
training, validation, and testing phases. Although this approach 
is novel, however, the classification accuracy obtained is 
merely 90 %, highlighting a key limitation of this technique.

In contrast, Alsafasfeh19, et al. proposed a three-stage 
scheme for fault detection and classification. This approach 
involves using phase current signatures for fault detection. A 
two-stage classification process comprises training and testing, 
and Principal Component Analysis (PCA) for classification. 
Although classification accuracy of 94.54 % was achieved 
with a single template for each fault signature in the training 
set, the paper fails to address the computational speed and time 
required when using two templates per fault in the training set. 
Furthermore, no ML algorithm was utilized in the classification 
process.

Ajagekar20, et al. developed a hybrid Quantum Computing 
(QC)-based deep learning framework for fault diagnosis, using 
a Conditional Restricted Boltzmann Machine (CRBM)-based 
network to extract suitable features from time-series data.	
The method demonstrated some improvement in response time 
over traditional methods like Decision Tree (DT) or Artificial 
Neural Network (ANN) but the performance with missed 
data for triple line and triple line-to-ground faults requires 
further improvement. A fuzzy logic and neural network-based 
technique was explored in[21 for fault analysis in electric 
power systems, reporting accuracy rates of 89 % for fault 
type identification and 93 % for fault location. However, these 
accuracy rates are insufficient for the reliable operation of 
smart grids. A hybrid approach22 combines a Support Vector 
Machine (SVM) with transient voltage and current data to 
determine fault distance. This method, however, only identifies 
the fault distance and not the fault classification. SVM was 
evaluated for fault diagnosis using data from a 132/11kV grid 
substation, demonstrating commendable performance in both 
classification and regression tasks23. Tawab24, et al. employed 
Discrete Wavelet Transform (DWT) for fault classification 
and combined DWT with SVM to identify fault locations. The 
results obtained from the IEEE 33-bus system with distributed 
generators are highly promising, but the computational 
complexity of wavelet transform-based techniques may pose 
challenges for real-time applications.

Other researchers have explored various methods, with 
some claiming high reliability but lacking precisin, while others 
achieve precision but fall short of reliability25-30.   In response to 
these limitations, this paper proposes a novel method for fault 
classification in power systems by transforming correlated 
fault data using PCA to reduce the dimensionality of the feature 
space from eighteen fault variables (voltage and current) to 
just six. Our method demonstrates significantly improved 

efficiency, with performance gains of up to 100 % compared to 
the same approach without transformation.

This paper is organized into six sections. Section 1 
presents a comprehensive literature review, followed by the 
system background in Section 2. In Section 3, the proposed 
methodology is detailed, covering system modelling, data 
collection, normalization, and data transformation using PCA. 
Section 4 discusses various ML classification algorithms. 
Experimental results are presented in Section 5, and the paper 
concludes with Section 6.

2.	 SYSTEM BACKGROUND
A 66 kV distribution line, 100 km in length, is considered 

here, connected to a grid rated at 100 MVA, 132 kV, and 
50 Hz. A 100 MVA, 132/66 kV step-down transformer is 
installed between the grid and the distribution line to match the 
distribution line voltage. The system also includes two star-
grounded distributed generators, each rated at 100 kVA, 3.3 kV, 
and 50 Hz, which are connected to the distribution line through 
100 kVA, 3.3/66 kV, and 50 Hz transformers. Additionally, the 
distribution system is connected to a 10 kW load to dissipate 
power. The 100 Km line is divided into 2 km intervals for fault 
generation, and the fault parameters are recorded for these 
locations. The complete system is illustrated in Fig. 1. In the 
event of a fault, ensuring the distributed generation’s optimal 
operation, protection, and stability is paramount. 

Though fault parameters have been recorded at regular 
intervals of 2 Km only however the probability of occurrence 
of a fault can be anywhere in between these intervals too 
along the entire distribution line or near the generators. Hence 
higher the resolution of fault intervals the better performance 
of the algorithm would be achieved but at the cost of more 
computational time essentially, all faults fall into two main 
categories: open-circuit faults and short-circuit faults. Open-
circuit faults happen when one, two, or all three conductors 
become open, often referred to as series faults because they 
occur in series with the line. Conversely, short-circuit faults 
arise from the short-circuiting of phases and can be further 
classified into symmetrical and unsymmetrical faults. 
Symmetrical faults include three-phase short circuits and 
three-phase-to-ground faults. In contrast, unsymmetrical faults 
encompass single-line-to-ground, double-line-to-ground, 
and line-to-line faults. Symmetrical faults maintain system 
balance before and after their occurrence, while unsymmetrical 
faults cause discrepancies between pre-fault and post-fault 

Figure 1. 	 Single line diagram of the investigated distributed 
generation system.
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conditions. Therefore, the primary objective of this research 
is to accurately identify the fault type in distributed generation 
systems to ensure proper operation.

Figure 2. Proposed algorithm for fault classification.

Figure 3. MATLAB simulink model of investigated system.

3.	 METHODOLOGY
To accurately identify fault types in distributed generation 

systems, this paper introduces a novel method to enhance 
fault classification efficiency by transforming correlated fault 
voltages and currents using Principal Component Analysis 
(PCA). The proposed approach consists of four main steps, as 
outlined below, with a detailed algorithm depicted in Fig. 2.
Step 1:	 Data generation and pre-processing.
Step 2:	 Transformation of correlated voltages and currents  

	 using PCA and result extraction using various ML  
	 Methods.

Step 3:	 Obtaining results without transformation using  
	 various ML Methods for comparison.

Step 4: 	 Comparison of results.

In Step 1, data is generated using a MATLAB Simulink 
model for the proposed system shown in Fig. 1, this data is 
further normalized for better accuracy. In Step 2, the correlated 
voltages and currents are transformed using PCA, and various 
machine-learning algorithms are applied for fault identification. 
Step 3 involves the process of fault identification in the system 
when no transformation is applied so that the result can be 
compared after the application of the proposed method and 
show the comparison. Finally, in Step 4, a comparative analysis 
is conducted to assess the accuracy of different techniques. 
The specific details of each phase are further elaborated in the 
subsequent sections.

3.1	 System Modelling
System modelling is a crucial step in the proposed study. 

While the ideal source of data for machine learning and testing 
would be from a real powerhouse, collected over an extended 
period for all fault types, the approach is impractical due to its 
very high time-consuming nature and the difficulty of obtaining 
reliable data for all fault types. Therefore, MATLAB has been 
chosen as the platform to generate various faults at specified 
intervals and locations. The selection of location is critical and 
should be closely resembling with those of a practical power 
system as much as possible. The distributed power system 
depicted in Fig. 1 has been modelled in MATLAB, as shown 
in Fig. 3.
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3.2	 Fault Data Collection
All types of faults (single line-to-ground: RG, YG, 

BG; line-to-line: RY, RB, YB; double line-to-ground: RY-
G, RB-G, YB-G; and three-phase fault-to-ground: RYB-G; 
where A, B, and C represent the three phases and G denotes 
ground) are simulated in the distributed generation system at 
specified locations (every 2 km interval). Voltage and current 
measurements are collected for each fault type and location by 
conducting short-circuit and load flow tests.

3.3	 Fault Data Collection
To improve the performance of the ML model, data 

normalization is applied to standardize the values onto a 
consistent scale. Generally, there are four main techniques 
for normalization: scaling to a range, clipping, log scaling, 
and z-score normalization. In the research article by Singh32, 
et al., normalization is discussed in detail using a modified 
method also, which differs from the conventional approach 
where data is typically normalized using a single method. 
In our proposed system, we determine the upper and lower 
bounds of fault currents and voltages, which appear to follow 
an approximately uniform distribution. Specifically, we apply 
min-max scaling, often referred to as ’scaling to a range.’ For 
voltage and current, this process can be expressed as:

min

max min
normalized

f ff
f f

−
=

−              		           
(1)

where ’f’ represents either fault voltage or current. This scaling 
method transforms voltage and current values to a common 
scale within the range of 0 to 1.

3.4	 Data Transformation using Principal Component 
Analysis
Data dimensionality can primarily be reduced through 

two methods: feature selection or data transformation, also 
known as feature extraction. In feature selection, only the 
features that produce the best results are selected from the 
dataset. Conversely, feature extraction involves transforming 
the dataset into new, lower-dimensional features. Principal 
Component Analysis (PCA) is the most widely used machine 
learning technique for feature extraction in unsupervised 
learning. It is a statistical procedure that uses orthogonal 
transformations to convert correlated features into a set of 
linearly uncorrelated features called Principal Components 
(PCs). The steps involved in PCA include normalization, 
computation of the covariance matrix to identify correlations, 
computation of eigenvalues and eigenvectors to find the PCs, 
creation of a feature vector to decide which PCs to retain, 
and finally recasting the data along the PCs’ axis. Using this 
method and the corresponding Eqn., the original data can be 
projected onto a new axis called the Principal Component. The 
steps involved are explained below: 

Step 1: Standardization of fault voltages and currents so 
that their mean is zero and their standard deviation is one. The 
standardization is given by the following Eqn.:
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where:   
•	 V and I represent the fault voltages and currents, 

respectively.
•	 µV and µI are the mean values of voltage and current.
•	 σV and σI are the standard deviations of voltage and current.

Step 2: Estimation of the covariance, which shows the 
strength of the relationship between variables. For example, 
the covariance between two phase voltages VR and VY is 
computed as:

1
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=

−

∑
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where RV  and YV   are the mean values of phase R and 
Y voltages. A positive covariance indicates that as VR 
increases, VY also increases, while a negative covariance 
shows that as VR increases, VY decreases. Zero covariance 
means there is no relationship between VR and VY .

Step 3: Computation of eigenvalues and eigenvectors 
to identify the principal components This can be represented 
as follows: 

Let V be a matrix of size n×n and X be a non-zero 
vector of n × 1, then if the following equations hold:

VX Xλ=                    		                         (5)    
0VX Iλ− =                   			           (6)

Here, λ represents the eigenvalues of matrix V and X is 
the eigenvector. The above equation can be rearranged 
as:

( ) 0V I Xλ− =                 			            (7)

Figure 4. Voltage transformation using principal components.

Eqn. (7) is valid only when (V −λI) is a singular 
matrix, meaning its determinate is zero. The eigenvector 
can then be found using equation (5).

The entire process is illustrated in Fig. 4, where the x-axis 
represents the voltage of phase R, and the y-axis represents 
the voltage of phase Y. Various types of faults are depicted in 
the figure, and their variance is distributed along two principal 
axes, represented by PC1 and PC2, respectively.
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4.	 MACHINE LEARNING CLASSIFIERS
In the proposed research, various machine learning 

(ML) classifiers are employed, both with and without data 
transformation, and their results are compared for accuracy. A 
brief explanation of these classifiers is provided as follows:

4.1	 K-Nearest Neighbour (K-NN)
K-nearest neighbour (K-NN)32 is a common classification 

method based on feature similarity. The algorithm works on 
the basic concept of storing existing data and classifying new 
cases based on their similarity to the data in the database. The 
appropriate value of k is selected through parameter tuning 
and is chosen as the closest match to the new sample from 
the database. Graphically, in the context of faults, this can be 
represented as shown in Fig. 5. The grid fault voltages (VGR 
and VGY ) have been classified as line-to-line (LL) and line-to-
ground (LG) faults, as illustrated in Fig. 5(a) now when a new 
fault occurs, it is assigned as an LG fault based on its distance 
from the existing classified points, as shown in Fig. 5(b). The 
distance between a new fault and the two existing categories 
can be calculated using various metrics such as Euclidean 
Distance, Manhattan Distance, or Minkowski Distance. In 
our research, we used Euclidean Distance between two fault 
points, which is given as:

2 2
1 1 2 1tan (1,2) ( ) ( )GR GR GY GYDis ce V V V V= − + − 	         (8)

classifier, making decisions by traversing through a series of 
nodes and branches, where each branch represents a possible 
action based on true or false decisions. While the decision tree 
is primarily used for classification tasks, it can also be applied to 
regression problems; however, it is generally more effective for 
classification. A training dataset with a high degree of entropy 
is fed into the root node, where information gain is applied to 
reduce the entropy as the data progresses through the tree. A 
decision tree consists of two types of nodes: decision nodes 
and leaf nodes. The root node is initially provided with the 
entire dataset, and based on the decisions made, the data is split 
into subsets with lower entropy. This process continues until a 
leaf node, which represents the final decision, is reached. The 
fault classification process using a decision tree is illustrated 
in Fig. 6. In this figure, a comparison between a normal tree 
and a decision tree algorithm is also shown, where the data is 
initially classified into symmetrical and unsymmetrical faults 
and then further categorized into specific fault types.

Distance(1,2)

Figure 6. Fault classification using decision tree algorithm.

4.3	 Random Forest
The Random Forest (RF)13, is essentially an extension 

of the decision tree, consisting of a collection of decision 
trees, hence the term ‘forest’. More specifically, an RF is an 
ensemble classifier that utilizes the decision tree algorithm in 
a randomized manner. Unlike a single decision tree, where 
all variables are considered, an RF uses only a subset of the 
variables at each step to make node decisions. Initially, a 
bootstrap dataset is generated with randomness introduced in 
two ways: first, by randomly selecting samples to include in 
the bootstrap dataset, and second, by randomly selecting a pair 
of attributes at each step and choosing one of them to place at 
a node. The decision regarding which attributes to place at a 
node is made by carefully evaluating which attribute will better 
split the data. In essence, the RF acts as a decision-making 
ensemble, where multiple trees vote on the best classification, 
with the most frequently selected option being chosen as the 
final classification.

4.4	 Bagging Classifier
The Bagging classifier, also known as bootstrap 

aggregation, employs a method where ’X’ datasets are 
randomly selected with replacement from the original dataset, 
forming what is referred to as a bootstrap sample set33. These 
bootstrap sample sets are then used to train individual classifiers. 

(a)

(b)
Figure 5. 	 New fault classification using K-Nearest neighbour, 

(a) Before K-NN; and (b) After K-NN.

4.2	 Decision Tree 
The decision tree is a straightforward and easily 

visualized algorithm that can handle both linear and non-linear 
data without requiring scaling9. It operates as a tree-structured 
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As a result, ’X’ trained classifiers are generated, and these 
classifiers are ultimately combined to create a final ensemble 
model. This ensemble model makes decisions by leveraging a 
voting mechanism across all the individual classifiers.

4.5	 Naive Bayes
Naive Bayes34 is a machine learning algorithm used 

in supervised learning, which essentially employs Bayes’ 
probability theorem. The fundamental assumption of this 
method is that the variables used are all naive, or independent 
of each other, which is a prerequisite for applying the theorem. 
Although the Naive Bayes method is a simple learning 
algorithm, the independence criterion is often violated in 
practice. Bayes’ theorem is mathematically stated as follow:

(A ) ( ). ( / )( / )
( ) ( )

P B P A P B AP A B
P B P B

= =

      	          (9)

where 
P(A): The probability of A occurring
P(B): The probability of B occurring
P (A / B): The probability of A given B P((B | A): The 
probability of B given A
P (A ∩ B): The probability of both A and B occurring

5.	 EXPERIMENTAL RESULTS & DISCUSSION
The proposed distribution network model of Fig. 1 

has been developed, consisting of two identical distributed 
generators (DG1 and DG2), a grid, and a 100 km distribution 
line, as shown in Fig. 3. The voltage and current of the system 
under normal (healthy) conditions are depicted in Fig. 7. Since 
the voltage and current of DG2 are identical to those of DG1, 
they are not shown in this figure. These voltages and currents 
are sinusoidal and do not exhibit any faults. This model was 
used to simulate ten types of faults (RG, YG, BG; RY, RB, YB; 
RY-G, RB-G, YB-G; RYB-G;). These simulated faults were 
evenly distributed along the 100 km distribution line at 2 km 
intervals. 

The output waveform for the most severe fault (RYB-G) 
at the 2 km point on the distribution line is shown in Fig. 8. As 
mentioned earlier, the voltage and current waveforms for DG2 
are identical to those of DG1, so the waveform for DG2 is not 
shown here. During the short-circuit condition, the grid voltage 
tends to drop to almost zero, as shown in Fig. 8(a) while the 
current becomes very high, as depicted in Fig. 8(b). Similarly, 
the DG1 voltage drops to zero during the fault, and the current 
waveform becomes distorted, as shown in Fig. 8(c) and Fig. 
8(d). The grid voltage and current for all three phases and the 

voltages and currents for all three phases of DG1 and DG2 
were recorded for ten different fault types at 2 km intervals 
along the distribution line. 

This process resulted in nine fault voltage samples and 
nine fault current samples for each fault type, yielding 490 
samples of 18 data points each. These samples were then used 
in the proposed machine-learning model. Scatter plots were 
generated for each fault’s voltage and current values to gain 
a more comprehensive understanding of the fault data. These 
scatter plots, shown in Fig. 9, visually confirm the absence of 
outliers in the collected fault data. After confirming the absence 
of outliers in our recorded data, the correlated fault voltages 
and currents were transformed using Principal Components 
(PC). To optimize the results, we considered a PC range from 1 
to 8 and employed various classification algorithms, including 
K-Nearest Neighbour (K-NN), Decision Tree, Random Forest 
Classifier, Bagging Classifier, and Naive Bayes. For the K-NN 
algorithm, the nearest neighbor parameter K was varied from 1 
to 9. It was observed that when K = 1 and PC = 4, 5, or 6, the 
training and test accuracy of K-NN reached 100 %, as shown 
in Fig. 10. Therefore, K = 1 was selected for K-NN. 

A comparison of classification accuracy using the proposed 
method for different PC values, alongside classification 
without transformation for various algorithms, is summarized 
in Table 1. Without data transformation, classification accuracy 
ranges from 94 % to 99 %, with K- NN and Random Forest 
Classifier achieving accuracies of 99 % and 98 %, respectively. 
However, with the proposed method—specifically for K = 1 
and PC = 4—K-NN reaches 100 % accuracy, while the other 
algorithms attain a minimum accuracy of 95 %. Notably, 
employing PC = 6, as indicated in Table 1, further enhances 
the classification accuracy, achieving a minimum accuracy 
of 98 %. These accuracies are also presented in Fig. 11. As 
illustrated in the figure, all algorithms achieve nearly 100 per 
cent accuracy when the Principal Component (PC) is equal to 
four or higher. Notably, K-NN achieves 100 % accuracy for 
both test and training data when K equals 1 and PC is set to 
4. For further clarification, the confusion matrices illustrating 
the correspondence between true faults and predicted faults for 
the first two classification algorithms are displayed in Fig. 12. 

It is evident that the K-NN algorithm accurately classifies 
both true and predicted values, as shown in Fig. 12(a). 
Conversely, the Decision Tree algorithm achieves 98 % 
accuracy, with only three fault values misclassified, as shown 
in Fig. 12(b). Hence, the results suggest that the minimum 
value of PC can be chosen as 4 with K = 1. However, when 
PC = 6 and K = 1 in K-NN, it attains 100 % accuracy. The 

Table 1. Accuracy of different classifiers with and without data transformation

Algorithm Accuracy without 
transformation

Accuracy after data transformation (using PC value as)
1 2 3 4 5 6 7 8

K-nearest neighbors 98.98 54.08 83.67 84.69 1 1 1 1 98.98
Decision tree 94.90 54.08 74.49 81.63 95.92 96.94 97.96 97.96 97.96
Random forest classifier 97.96 54.08 76.53 85.71 97.96 98.98 1 1 98.98
Bagging classifier 97.98 37.76 58.16 70.41 98.99 97.96 98.98 98.98 98.98
Naive bayes 93.88 32.65 50.00 60.20 96.94 95.92 97.96 97.96 97.96
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Figure 7. 	 Grid, DG1 voltage and currents under normal conditions, (a) Grid voltage: Normal conditions; (b) Grid current: Normal 
conditions; (c) DG1 voltage: Normal conditions; and (d) DG1 current: Normal conditions.

(a)

(b)

(c)

(d)

(a)
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Figure 8. 	 Grid, DG1 voltage and currents under fault conditions, (a) Grid voltage: LLLG fault conditions; (b) Grid current: LLLG 
fault conditions; (c) DG1 voltage: LLLG fault conditions; and (d) DG1 current: LLLG fault conditions.

(b)

(c)

(d)

(b)(a)

(c) (d)
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Figure 9. 	 Scatter plot of fault voltages and currents for grid (Phases R, Y, B), DG1 (Phases R, Y, B), and DG2 (Phases R, Y, B), (a) 
Grid fault voltages: Phase R, Y, B; (b) Grid fault currents: Phase R, Y, B; (c) DG1 fault voltages: Phase R, Y, B; (d) DG1 
fault currents: Phase R, Y, B; (e) DG2 fault voltages: Phase R, Y, B; and (f) DG2 fault currents: Phase R, Y, B.

(e) (f)

(a) (b) (c)

(d) (e) (f)
Figure 10. Variation of testing and training data accuracy with different values of K in K-NN, (a) PC=1: Accuracy vs K;  

(b) PC=2: Accuracy vs K; (c) PC=3: Accuracy vs K; (d) PC=4: Accuracy vs K; (e) PC=5: Accuracy vs K; and (f)  PC=6: 
Accuracy vs K. 

random forest classifier also achieves 100 % accuracy, 
and the performance of other algorithms improves as well. 
Furthermore, the proposed method reduces the dimensionality 
of the original dataset from 490×18 to 490×6 through fault data 
transformation. In essence, it utilizes only 6 features instead of 
all 18. These findings indicate that fault data transformation 
using PCA can be a valuable technique for enhancing the 
performance of specific classification algorithms in power 
system data analysis.

6.	 CONCLUSION 
This study explored a novel fault data transformation 

technique leveraging machine learning (ML) to enhance 

fault classification accuracy in distributed power systems. 
The research involved developing a comprehensive 
distribution network model, comprising two identical 
distributed generators, a grid, and a 100 km distribution 
line. Ten different faults were introduced into the system 
at every 2 km of the distribution line, and various 
voltages and currents were recorded to classify the faults 
using different ML techniques. The resulting data formed 
a 490 × 18 matrix, which was reduced to 490 × 6 using 
the proposed data transformation technique with Principal 
Component Analysis (PCA). The introduction of PCA as 
a data transformation tool proved to be a crucial factor 
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Figure 11. Classification accuracy after data transformation 
with varying principal components.

Figure 12. Confusion matrices, (a) K-NN; and (b) Decision tree.

(a)

(b)

in improving the performance of various classification 
algorithms. Our key findings underscore the following:

•	 K-Nearest Neighbours (K-NN): In the absence of PCA, 
K-NN exhibited an accuracy of 98.98 %. After data 
transformation using PCA with four principal components 
(PCs), the accuracy significantly improved, achieving 
a near-perfect 100 %. When PCA was further extended 
to six PCs, the accuracy remained consistently high at 
100 %, indicating the potency of data transformation in 
refining K-NN’s classification performance.

•	 Decision Tree: The unaided Decision Tree algorithm 
demonstrated an accuracy of 94.90 %. With data 
transformation using four PCs, the accuracy surged to 
95.92 %, and with six PCs, it further improved to an 
impressive 97.96 %.

•	 Random Forest Classifier: The original Random 
Forest Classifier displayed an accuracy of 97.96 %. The 
introduction of data transformation using PCA with four 
PCs preserved the accuracy at 97.96 %, and with six PCs, 
it achieved a perfect classification accuracy of 100 %.

•	 Bagging Classifier: The Bagging Classifier achieved an 
accuracy of 97.98 %. With the transformation integrating 
four PCs, the accuracy improved to 98.99 %. When six 
PCs were employed, the accuracy remained high at  
98.98 %.

•	 Naive Bayes: In its original state, Naive Bayes attained an 
accuracy of 93.88 %. The inclusion of data transformation 
using PCA with four PCs resulted in an increased accuracy 
of 96.94 %, with a further enhancement observed when six 
PCs were applied, reaching 97.96 %.

This analysis highlights the substantial influence of fault 
data transformation (voltages and currents) using PCA on 
elevating classification accuracy across multiple algorithms. 
The research reaffirms that data transformation serves as a 
valuable tool to enhance classification accuracy and reduce 
dimensionality, promising to optimize the performance of a 
range of algorithms in the realm of power system data analysis.
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