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ABSTRACT

Due to advancements in technological trends, interest in frequency multipliers is increasing in the research 
community. However, the linearization approach on frequency multipliers differs from that of power amplifiers 
and hence cannot be directly implementable for end-to-end high-frequency systems. This paper discusses recent 
computational approaches and proposes a model for improving performance metrics, especially the adjacent channel 
power ratio. This paper shows theoretical trends, mathematical approaches to current trends, and the proposed 
model. It then establishes the theory by experimental implementation and compares the proposition results to the 
models in the literature.
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1. INTRODUCTION
In recent years, due to the advancement of technological 

needs, a fundamental shift for higher frequencies has been 
observed. From an implementation point of view, cost is an 
important driving factor. Hence, a trade-off between the 
accurate requirements and the equipment cost is always 
needed. Therefore, to have a balanced selection of resources for 
optimum and reasonable output from equipment(s), Frequency 
Multiplication (FM) is one area of vital interest for high-
frequency communication, which is one of the key reasons that 
frequency multipliers are among the core components and areas 
of interest in literature. Hence, the literature contains extensive 
works on FMs in this field of area. This paper presented here is 
extended version of the paper presented in second international 
conference on microwave, antenna and communication1. 

Frequency multipliers are helpful in several conditions; 
for example, FM may be used to avoid a complete RF chain2. 
Thereby saving costs for the entire system. Another example 
where FMs may be of great importance is where the high 
frequencies are needed owing to the fmax limit of FMs > fmax limit 
of transistors3. In addition, FM helps translate the frequencies 
to produce steady envelope modulation2. FMs are highly 
nonlinear and tend to have distortions in AM modulations2. The 
distortions in FMs are not just in amplitude but also in phase. 
Hence, the envelope of the output would not be as desired3. This 
particular drawback gives the intent to have linearization of 
frequency multipliers, which is vital and would thereby impact 
the complete system. In literature, linearization, especially 
DPD of power amplifiers, has been widely covered4–8. In open 

texts, frequency quadrupling architectures have been proposed 
by authors using linearization with DPD and allowing the 
signal to have low distortion at the output9. Also, in literature, 
the frequency quadrupler transmitter’s new arch was shown 
to have DPD linearization9. Authors investigated frequency 
quadruplers at 3.56 GHz as a proof of concept, wherein the 
QMP model was devised for forward modelling and based 
on it, the QDPD model was shown to be developed for 
inverse modelling of frequency multipliers for enablement of 
linearization3. 

However, using direct PA DPD implementation in FMs 
is not feasible mainly due to the following: 1) nth-order phase 
multiplication not being considered in the DPD linearization 
of PA3, 2) DAC/ADC with high speed is required to 
implement DPD of PA in FMs10, thereby increasing the cost of 
implementation of the entire system. Therefore, linearization 
of power amplifiers cannot be directly implemented in 
frequency multipliers. For FM specific in literature, feedback 
DPD in stages using cascaded methodology has been shown10. 
Also, the authors used GMP-nth-order power nonlinear models 
for FMs10. Also, in recent papers, DPD-based CFNN has been 
shown to offset distortions in frequency quadrupler, which 
was validated at 24 GHz and showed linearity restoration11. 
The authors demonstrated a new modified polynomial model 
computational approach for improvement of ACPR over 
state-of-art approaches of MP and GMP models for frequency 
quadruplers1. This paper attempts to extend it with wavelet 
decomposition and multiscale principal component analysis 
by enhancing in/out of band results, whose mathematical 
approach is covered in detail in the second section.

This paper has been organized into the following 
segments: mathematical computational system approaches 



DEF. SCI. J., VOL. 75, NO. 3, MAY 2025

286

of state-of-the-art & current modelling have been covered in 
the second segment, also the mathematical modelling of the 
proposed system has been described in segment two. Segment 
three describes the physical realization of the experimental 
setup and implementation of the experiment for the modelling 
described in segment two. Further, in segment four, results are 
shown, and a comparison to the performance of state-of-the-art 
models and recent approaches is shown, followed by the fifth 
segment comprising conclusions.

2. SYSTEM MODELING AND COMPUTATIONAL 
APPROACHES 
A number of models have been described in the 

literature11-12 to overcome nonlinearities. Along with classical 
modelling approaches, new techniques and algorithms 
have been developed and are there, in theory, which set the 
foundations for experimental applications that can be used 
to enhance the newly proposed approaches, which will be 
depicted in the next section and thereby are physically realised 
in subsequent sections.

2.1 Polynomial-Based Models
To effectively tackle the memory-based nonlinearities 

shaped by prior inputs1,12, it is imperative to investigate 
polynomial-based models. This section covers classical 
polynomial-based approaches, which are the foundations of 
computational approaches proposed in the subsequent sections.

2.1.1 Memory Polynomial Model
In literature, the Hammerstein model consists of a 

nonlinearity followed by a linear filter model (g)12. It can 
be generalized by employing different filters for each order 
k, organized in a two-dimensional array with power series 
coefficients bkm. For narrowband signals, combinations of the 
form ( 1)( ) | ( ) | kn n mb b −−  yield memory polynomial, which can 
be defined below1,12 :
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where, k denotes the order of the envelope.

The Eqn. (1) illustrates that the output can be defined as 
a polynomial function of the present input signal alongside 
its previous values, thus embodying the system’s nonlinear 
behaviour.

2.1.2 Generalized Memory Polynomial Model
The memory polynomial depicted in the previous section 

can be extended in a broader paradigm by introducing delays 
and time-domain offsets between the signal and envelope1,11,12. 
Thus, the generalized polynomial model can be characterized 
as follows:
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The number of coefficients for signal-strength, signal-
retarded & signal-advanced envelope(s) are specified by a aK L ,

b b bK L M & c c cK L M respectively1,3,11,13.

2.1.3 Q-MP Model (Frequency Quadrupler specific 
based Model) 

For a frequency multiplier, the output can be represented 
as follows3:

1
( ) ( )

N
n

n
n

t tg a b
=

= ∑
           

(3)

here, an are coefficients & N is nonlinearity order.

Thus, for an input modulated signal b(t) with magnitude 
l(t) and phase q(t), the output equation of frequency multiplier 
will be as in following Eqn. (4)1,3,11.

Figure 1.  Standard Computational Approach 1: Dual Stage 
Approach1,11,14,15.

Figure 2. Standard Computational Approach21,3,11.
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Now, for the frequency quadrupler, only the harmonics of 
order four would be accounted for as follows3:
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The above is an RF passband form of frequency quadrupler 
without memory effects where K is nonlinearity order, ck is 
coefficient of kth order and l(t) is the magnitude of b(t) signal3. 
The Eqn (5) shows that the frequency expansion & phase are 
changing in the order of four due to the frequency quadrupler 
being in action. However, Eqn. (5) also gives us the insight that 
even harmonics from higher-order nonlinearities, i.e., greater 
than four for a quadrupler also, affect the output1,3. In extension 
to the Eqn. (5), the equation  can also be expressed in complex 
baseband form without memory effects by substituting 

( )( ) ( ) j nn n e qb l= leads to the following output3:
4 2( 1)
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To incorporate memory effects, the above equation can be 
redefined, including the memory terms below1,3:
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 In Eqn. (7), 1 2, .... nM M M represent memory depth, k 
depicts the order of nonlinearity and

1 2...... nm m m kc represent the 
complex coefficients.

2.2 Computational Approaches for Frequency Quadrupler
In conventional approaches to power amplifiers, the 

forward model and inverse model are similar to each other; 
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therefore, forward-inverse models are swappable for an 
inverse input-output relationship; but, as observed in the 
previous section, due to the nth-order nature of the nth 
frequency multiplier (n=4 for quadrupler), the frequency 
multipliers cannot have direct inverse input-output relationship 
by swapping each-other3. Thus, direct implementation of 
conventional techniques used in power amplifiers is not 
possible. Thus, there is a need to have different approaches for 
frequency quadruplers, which are covered in this section.

2.2.1 Direct Computational Approach
In literature1,3,11,14, to do inverse modelling, one method is 

to directly swap g(n) and b4(n) & thereby, extract the complex 
coefficients for the generation of the DPD signal; however, 
direct implementation gives rise to an abrupt shift in signal 
along with 2π phase change due to Gibb’s phenomena leading 
to increase in noise which leads to decrement of NMSE 
(covered in subsequent section) and thus leads to signal quality 
degradation. Hence, as mentioned above, direct implementation 
is not recommended due to its drawbacks.

2.2.2 Standard Computational Approaches (SCA)
SCA1: In literature, as per papers11,14,15 in Fig. 1, there is 

a dual-stage approach wherein the signal b(n) is first passed 
through the Pre-Distortion block to provide output, which is 
then subsequently passed through the phase unwarp block to 
give '( )ng  (to avoid Gibb’s phenomena),  which is then passed 
through the multiplicative root F, i.e., (1/4 for quadrupler) to 
provide 1 '( )F ng  . 

passed through the quadrupler to give ( )ng . The input-output 
relationships for above in pretext of Fig 2, can be defined by 
following Eqn.1,3:
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Here, memory depth, nonlinear order & complex 

coefficients of the inverse model are defined by 1 2, .... nM M M , k  
and 

1 2...... nm m m kc  respectively. 
From previous Eqn. (8) 

1 2...... nm m m kc  can be derived & 
subsequently then 2 ( )ng can be derived as follows1,3:

1 ( )

2 1( ) | ( ) |
nj

F Fn n e
q

g g=            (9)
The output ( )ng can then be given as follows:

2( ) . ( )n F ng g=          (10)

where, F is the multiplying factor of the frequency multiplier 
and F=4 for a quadrupler.

2.3 New Modified Polynomial Model Computational 
Approach (NM-PMCA)
This approach was initially proposed in the paper1, 

wherein the input signal b(n) is first pre-processed before 
being applied, i.e., at first, it is passed through 4th root to lead 
to 4 ( )nb = 1( )nb  as an output. Further, in this approach, 1( )nb  is 
phase unwrapped and gain unwrapped to give output as  2 ( )nb . 

In the next phase, this is now passed through the DPD 
system model, whose output in offset and square formations is 
as in Eqn. 111:
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In the above equation, q denotes the order and memory 
depth is denoted by k. Further, 1( )ng is then passed through a 
frequency quadrupler to give output ( )ng . The diagrammatic 
representation of this approach is represented in Fig. 3.

2.4 Proposed Computational Approach for Frequency 
Quadrupler   
The results using the approach proposed in 2.3 can 

be further extended & optimized by using WT MS-PCA, 
i.e., wavelet MS-PCA. Thus, an in-depth analysis of PCA, 
wavelet decomposition and their implementation in frequency 
quadrupler is covered in this section.

2.4.1 Principal Component Analysis (PCA)
In literature13,16, principal component analysis is used to 

reduce the dimensionality by identifying variance at the global 
level in the data set. i.e., matrix P=[j1,j2….ji] can be defined: 
first using eigenvalue decomposition for A observation 
matrix defined by A=L*(M+1)(N+1),J=[j1,j2…j(M+1)(N+1)] as 
eigenvector. The main data point is that the projection of data 
is to low dimensionality space by new observation matrix 
V=AP, dimensions of new observation matrix V is reduced 
from L*(M+1)(N+1) to L*I13,16, which means a reduction 
in coefficients as well from (M+1)(N+1) to I16 & y=VD.  

Figure 3.  New modified polynomial model computational 
approach1.

Figure 4.  Proposed computational approach for frequency 
quadrupler.

This method uses a multiplicative root block to correct 
AM and PM distortions11,14-15 to relax the linearity requirement 
for the next pre-distortion block, whose output is 11

2 ( )ng . After 
this, up-conversion can now be done. First conversion is done 
at intermediate frequency (fIF) and then subsequently also 
upscaled by order of F(F=4 for quadrupler) & then filtered to 
have the final RF output signal 1,11,15( )ng  

SCA2: This computational method is shown in Fig. 2, 
wherein the input signal b(n) is passed through a cascade MP 
& QDPD (MP-QPD),  leading to output as 1,3,11

1( )ng allowing 
linearization of frequency quadrupler to be done using QDPD 
and remaining distortion to be corrected using MP model1,3,11. 
After this, the output is passed through an inverse modelling 
process, wherein coefficients are extracted for DPD signal 
generation to give output3. However, to overcome the drawback 
of direct implementation, phase unwrapping is applied before 
the multiplicative factor root 4

1( )ng  (in the case of quadrupler, 
multiplicative factor=4), after which the output 2 ( )ng is then 
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D=[d0,d1..di]
T, Ix1 vector13,16 of PCA coeff. Thus, PCA is done 

using a correlation matrix and eigen value decomposition13,16, 
wherein the new matrix is selected with principal components 
using eigenvalue weights of data variance, which can be 
implemented using classical polynomial models as well13. 
In order to not just focus on global variance as in PCA, 
local variance also needs to be accounted for, which can be 
achieved using wavelet-based MS-PCA to improve signal 
quality. WT-MSPCA steps have been depicted in algorithm  
number 1. Mathematical explanation & implementation(s) of 
the proposed idea have been shown in the next sections.

2.4.2 Wavelet Decomposition 
It helps to analyze frequencies at varied resolutions17. 

Wavelet decomposition is defined as17:
0 0, ,( ) ( ) ( ) ( ) ( )d d d d

d
t t tτ τ τ

τ τ

b a τ η µ τ q= +∑ ∑∑
      (12)

Here, 
2

, ( ) 2 (2 )
d

d
d t tτη η τ= − ;  2

, ( ) 2 (2 )
d

d
d t tτq q τ= −

d = dilation parameter, τ =translation parameter
( )tη =scaling function, ( )tq =wavelet function, 

0da :approximate coefficient; dτµ :detailed coefficient
For Wavelet decomposition, the following steps are 

covered:

2.4.2.1 Wavelet Function Selection
The primary step is selecting the wavelet (mother) based 

on data. The most common mother wavelets in literature are 
as follows:
Haar Wavelet18: Simplest wavelet with piecewise function, 

hence benefits detection of edges. However, transitions at 

the edges might add artefacts.
Daubechies Wavelets19: This is one of the wavelets which can 

be utilized for noise removal and compression & supports 
localization in time. 

Symlets20-21: Symlets are useful when symmetry is important; 
properties of wavelet functions are similar. It is used in 
applications: gaussian noise removal; in remaining cases, 
it is identical to Daubechies results

Coiflet Wavelet21: These are mainly orthogonal in nature, 
having vanishing moments. Wavelet comprises scaling & 
wavelet functions.

Biorthogonal Wavelets21: This is used where the realization of 
both reconstruction and linear phase filters needs to be 
done together.
For our experiments covered in section 5, Daubechies 

Wavelets have been implemented owing to noise removal, 
which supported the experiments and the results, thereby 
helping to increase the NMSE values, one of the leading 
performance metrics, which is covered in section 3 of this 
paper.

2.4.2.2 Data Decomposition 
After the main wavelet selection, decomposition is 

performed to have wavelet coefficients at varying resolutions 
to create levels for decomposition. Data decomposition 
is implemented using successive low pass-high pass 
filters combination13,17 to produce coarse, high-resolution 
approximates, respectively17. Passing through LPF-HPF is 
achieved by multiple stages to improve the results. Typically, 
the stages vary from 2-3 depending on the data; however, three 
stages have been considered for the experiment covered in the 
3rd section.

Figure 5. (a) Experimental test bench; and (b) Frequency quadrupler+PA used for experiment.
(b)

(a)
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2.4.2.3 Thresholding
In the literature17, the authors explained threshold 

detection by implementing hard/soft thresholding. The primary 
intent of thresholding, which is used in our implementation, is 
as follows: 

Removal of noise: This step removes those coefficients 
that will not impact, i.e., mainly at noise level.

Dimensionality reduction: This step helps reduce the 
computations before the PCA step, which thereby helps reduce 
the complexity of computations. As in the algorithm 1 table 
post-WT-Decomposition, PCA is implemented, post which 
inverse WT  is done, such that post the processing, coefficients 
so obtained passed for signal reconstruction which is the 
reverse process of signal decomposition wherein data is passed 
through LPF-HPFs 13. 

Algorithm 1: WT-MSPCA  methodology13,17

Step 1: Signal is passed through WT-Decomposition
Step 2: The output is then passed through the PCA 
Step 3: Result goes through IWT for reconstruction of  
            wavelet
Step 4: Reiterate with 3rd level WT- Decomposition
Step 5: Estimated output of the input is produced.

2.4.3  Implementation of Proposed Model in Frequency 
Quadrupler

The analysis discussed in sections 2.4.1 and 2.4.2 can be 
implemented as depicted in Fig. 4, wherein the input signal

( )nb was pre-processed and passed through the 4th root to give 
1( )nb , which is then passed through phase and gain unwrap, 

its output 2 ( )nb then passes through the system model which 
provides the output with: 1( )ng and post that it is passed 
through WT-MSPCA whose output is denoted by 2 ( )ng , which 
was then passed to the last stage i.e, the frequency quadrupler, 
which can also be replaced by two frequency doublers whose 
output and as whole system’s output is ( )ng . 

3. EXPERIMENTAL IMPLEMENTATION & 
PERFORMANCE METRICS

3.1 Experimental Setup 
To physically realize the theory proposition discussed 

in section 2, an experimental setup, as shown in Fig 5. was 
done. To set up a frequency quadrupler with the input of 6 
GHz, two multipliers, ZX90-2-24-S+ and HMC 576L3B, 
with a range of 10 to 20 GHz and 18 to 29 GHz, respectively, 
were implemented. In addition, to overcome the attenuations 
at these frequencies, a power amplifier (ZX60-146012l-S+) 
with a range of 300 KHz to 14GHz was used with the first 
multiplier (ZX90-2-24-S+) and before the output of the second 
multiplier (HMC-576L3B). The test bench was also comprised 
of a vector signal generator (MXGN5182B) and vector signal 
analyzer (MXAM9020B) with a range capability of capturing 
output of 26.5 GHz, which was utilized for the experiment.

3.2 Signal Under Test
The signal used for the test was a baseband signal with a 

bandwidth of 10 MHz and a sampling rate of 184.32 MSPS. 

The signal is modulated at 6 GHz frequency using a vector 
signal generator (MXG).

        
3.3 Implementation of Experiment

Based on the experimental setup in section 3.1, 
mathematical analysis, which was done for the proposed 
computational approach with WT-MSPCA, other state-of-art 
approaches & new approaches discussed in section 2 were 
performed in MATLAB. Once it was done, the test signal was 
passed through it. The output of the mat file was then loaded 
into a vector signal generator, which then modulated the signal 
at 6 GHz. The modulated signal was then passed over the 
coaxial wire and passed via one frequency multiplier ( ZX90-
2-24-S+) post which the attenuated signal was boosted by a 
power amplifier ( ZX60-146012L-S+). Then it was passed to 
a 2nd frequency multiplier (HMC576LC3B) to have an output 
frequency of a quadrupler of the order of ~24GHz. Once the 
quadrupler frequency is achieved, the signal is then passed to 
a vector signal analyzer (MXAN9020B) via coaxial wires, 
which were then subsequently analyzed based on performance 
metrics (discussed in section 3.4) and the power density 
spectrum curves and in-depth comparative analysis has been 
shown in results and discussions section of this paper.

3.4 Performance Metrics
Performance parameters in this section were utilized 

during experimentation to evaluate the proposed computational 
approach (covered in section 2.4). These parameters enabled 
the measurement of the results against the current literature 
methodologies, which helped provide a comparative analysis 
(covered in section 5). These performance metrics act as a 
benchmark to validate experiment results to the theoretical 
and mathematical approaches covered during the system-
level discussion. In this paper, the following primary 
performance metrics have been covered for lucid validation of 
methodological approaches and their proofs of concepts. 

3.4.1 Normalized Mean Square Error (NMSE)
NMSE is used to check the in-band errors. This benchmark 

helps to determine the performance of the system. By analyzing 
the NMSE, the signal quality can be compared and enhanced/
optimized. NMSE can be defined as below:
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d
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d
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y n y n
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−
=

∑

∑                    
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where, ( )y n , ( )dy n  and N signifies estimated y(n), desired 
value of y(n) and length of waveform respectively. In the 
above equation, an in-band error can be expressed by d which 
is equivalent to | ( ) ( ) |dy n y n−  

3.4.2 Adjacent Channel Power Ratio (ACPR)
This metric is used to measure performance by considering 

out-of-band errors. ACPR compares the power of an error-
constrained signal in adjacent channels to the power of the 
main channel. This metric is also a very crucial parameter for 
maintaining signal quality. 

Mathematically, the concept of ACPR can be defined as 
follows: 
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where, 
2( )
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f dfχ∫
    : Adjacent channel power

2( )
ch

f dfχ∫
    : Desired channel power

4. RESULTS AND DISCUSSION
In order to validate the proposed methodology discussed 

in sub-section 2.4, extensive analysis and comparison were 
made based on metrics of performance as described in sub-
section 3.4 with respect to the state-of-the-art approaches and 
new approaches in the literature using experimental setup (as 
shown in sections 3.1 through 3.3). The results based on the 
hardware experimental setup, in Fig. 5, have been discussed in 
the following subsections :

approach. This result also extends the result of NM-PMCA1 
wherein the proposed approach presented in this paper shows 
the benefit of 3.2 dB as compared to the approach presented in 
the paper1 with all other parameters such as nonlinearity order, 
MSPS, BW, and memory depth kept similar to each other.

Table 1. Comparison of models in literature vs proposed model 

Model NMSE
(dB)

ACPR
(dB)

MP model + SCA1,11,14 -30.4 -38.5
GMP model + SCA1,11,14 -30.5 -40.3
NM-PMCA model1 -31.1 -48.3
MP model +WT-MSPCA 13,22 -30.8 -41.8
GMP model + WT-MSPCA13,22 -31 -43.8
Proposed model
[This work] -31.5 -51.5

(MSPS=184.32, Bandwidth=10 MHz, NonLinearity Order=10, Memory 
Depth=4)

4.1 Hardware Experimental Results in terms of  Power 
Spectral Density
Comparison results of power density spectrums of all 

waveform outputs coming in spectrum analyzer as shown in 
Fig. 5(a) coming from hardware setup are shown in Fig. 6. 
Since the input frequency was 6 GHz as discussed in section 
3 of the experimental setup, the output centre frequency of all 
waveforms is 24GHz which is aligning to frequency quadrupler 
expectations. The spectrum analyzer outputs were overlapped 
for all models of interest, which were covered in mathematical 
and system models in section 2. The model outputs captured 
from the spectrum analyzer were: MP+SCA, GMP+SCA, 
NM-PMCA, MP+WT-MSPCA, GMP+WT-MSPCA, proposed 
model, gain-phase unwrapped signal and original LTE signal, 
which were measured in hardware described in sub-section 3.1. 

The output waveforms prove the theoretical and 
mathematical foundations covered in section 2 in a 
methodological manner that the gain-phase unwarp, standard 
computational approaches help reduce the ACPR compared 
to the original LTE signal. Also, the graph shows that we see 
benefits in ACPR values going from state-of-the-art SCA 
approaches to NM-PMCA approach1 to WT-MSPCA approach.       

The result in Fig. 6, depicts that the ACPR of the proposed 
model decreases around 11.5 dB vs the GMP+SCA approach 
and decreases around 13.3 dB when compared to the MP+SCA 

Figure 6. PSD comparison of proposed vs models in literature.

4.2 Comparative Study of Proposed vs Models in   
Literature
Based on the experimental setup shown in section 3, 

the results for both NMSE and ACPR are summarized in  
Table 1. The results show that for a given nonlinearity order 
of 10, memory depth of 4 and 184.32 MSPS signal. Per 
expectation and system-level discussions in section 2, a 
decrement of 1.8 dB in ACPR from the MP model +SCA to the 
GMP model+SCA  is seen. Also, the ACPR decrement from 
the GMP model+SCA to the NM-PMCA model was seen to be 
8 dB. In the next phase, it has been observed that WT-MSPCA 
models show a decrease of 3.2 dB to 3.5 dB in ACPR (whose 
theoretical modelling concept has been covered in section 2.4). 

It is also observed that there is a decrement in 3.2 dB 
ACPR of the proposed model in this paper compared to the 
previous NM-PCA model1. This proves that WT-MSPCA helps 
decrease ACPR. Another valuable data point to be observed 
is that at the time when ACPR is decreasing, NMSE is not 
increasing or it is decrementing in the ballpark of 0.5 dB, i.e., 
without affecting NMSE/ with a slight improvement in NMSE, 
substantial improvement in terms of ACPR is observed using 
the above methodology, which is also observed in Fig 6. 
Regarding the power density spectrum and the comparative 
study of polynomial-based models of interest using standard 
computational approach(s), the NM-PMCA approach1 and the 
proposed methodology proposed here have been documented 
in Table 1.

5.  CONCLUSIONS 
The current paper portrays the current trends in frequency 

multipliers and quadruplers. It delves deeper into the 
mathematical aspects of current relevant models in literature. It 
also extends the methodological model proposed in the paper1 
to a more computationally efficient version by introducing 



ARORA, et al.: COMPUTATIONAL-EFFICIENT SIGNAL PROCESSING SOLUTION TO FREQUENCY QUADRUPLER BASED

291

and analyzing the wavelet transform multiscale principal 
component analysis technique (WT-MSPCA). The paper 
first establishes the mathematical extension of the approach 
and then shows the results in actual using an experimental 
setup. The results are then compared with current models for 
ACPR using power spectrum density curves of all models. 
The improvement shows that the proposed approach helped 
improve 11.5 dB and 13.3 dB ACPR over GMP+SCA and 
MP+SCA models, respectively. The proposed model approach 
also shows around 3.2 dB improvement in ACPR value with 
respect to NM-PMCA1, with all other constraints, namely 
bandwidth, nonlinearity order, sampling rate and memory 
depth as constant.
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